大连理工大学 高等数值分析 常微分方程数值解法-2017

合集下载

常微分方程数值解法

常微分方程数值解法

用分段的折线逼近函数,此为 “折线法”而非“切线法”, 除第一个点是曲线上的切线,
其它都不是。
2、Euler方法的误差估计
1)局部截断误差。 在一步中产生的误差而非累积误差:
~
T x y y

n1
n1
n1
其中
~
y
是当
y
n

y(
x
)
n
(精确解!)时
n1
由Euler法求出的值,即y 无误差! n
y y x , y x y 则得: h f
f ,
n1
n2
n
n
n1
n1
同样与Euler法结合,形成迭代算法,对n 0,1,2,
y y x , y 0 hf
n1
n
n
n
y y x , y x y

k 1
推出总体误差与步长的关系。
由微分方程解的存在唯一性,自然假定 ( f x,y)
充分光滑,或满足 Lipschitz条件:
f
x,ny源自xn

f
x
,
n
y
n

L
yxn
y n
第 n 步 的 总 体 截 断 误 差 记 为
en y
xn
y n
则 对 n 1 步:
e x y x y y y T y y ~ ~
用yn1, yn代替y(xn1), y(xn ), 对右端积分采用 取左端点的矩形公式
则有
xn1 xn
f
(x,
y)dx

hf
(xn ,
yn )

数值分析第九章常微分方程数值解法

数值分析第九章常微分方程数值解法
高斯-赛德尔迭代法
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。

数值分析常微分方程数值解

数值分析常微分方程数值解

许多实际问题的数学模型是微分方程或微分方程的定解问题。

如物体运动、电路振荡、化学反映及生物群体的变化等。

常微分方程可分为线性、非线性、高阶方程与方程组等类;线性方程包含于非线性类中,高阶方程可化为一阶方程组。

若方程组中的所有未知量视作一个向量,则方程组可写成向量形式的单个方程。

因此研究一阶微分方程的初值问题⎪⎩⎪⎨⎧=≤≤=0)(),(y a y bx a y x f dxdy, (9-1) 的数值解法具有典型性。

常微分方程的解能用初等函数、特殊函数或它们的级数与积分表达的很少。

用解析方法只能求出线性常系数等特殊类型的方程的解。

对非线性方程来说,解析方法一般是无能为力的,即使某些解具有解析表达式,这个表达式也可能非常复杂而不便计算。

因此研究微分方程的数值解法是非常必要的。

只有保证问题(9-1)的解存在唯一的前提下,研究其数值解法或者说寻求其数值解才有意义。

由常微分方程的理论知,如果(9-1)中的),(y x f 满足条件(1)),(y x f 在区域} ),({+∞<<∞-≤≤=y b x a y x D ,上连续; (2)),(y x f 在上关于满足Lipschitz 条件,即存在常数,使得y y L y x f y x f -≤-),(),(则初值问题(9-1)在区间],[b a 上存在惟一的连续解)(x y y =。

在下面的讨论中,我们总假定方程满足以上两个条件。

所谓数值解法,就是求问题(9-1)的解)(x y y =在若干点b x x x x a N =<<<<= 210处的近似值),,2,1(N n y n =的方法。

),,2,1(N n y n =称为问题(9-1)的数值解,n n x x h -=+1称为由到1+n x 的步长。

今后如无特别说明,我们总假定步长为常量。

建立数值解法,首先要将微分方程离散化,一般采用以下几种方法: (1) 用差商近似导数在问题(9-1)中,若用向前差商hx y x y n n )()(1-+代替)(n x y ',则得)1,,1,0( ))(,()()(1-=≈-+N n x y x f hx y x y n n n n n)(n x y 用其近似值代替,所得结果作为)(1+n x y 的近似值,记为1+n y ,则有 1(,) (0,1,,1)n n n n y y hf x y n N +=+=-这样,问题(9-1)的近似解可通过求解下述问题100(,) (0,1,,1)()n n n n y y hf x y n N y y x +=+=-⎧⎨=⎩(9-2)得到,按式(9-2)由初值经过步迭代,可逐次算出N y y y ,,21。

数值分析常微分方程数值解法

数值分析常微分方程数值解法
7
第8页/共105页
➢ 数值积分方法(Euler公式)
设将方程 y=f (x, y)的两端从 xn 到xn+1 求积分, 得
y( xn1) y( xn )
xn1 f ( x, y( x))dx :
xn
xn1 F ( x)dx
xn
用不同的数值积分方法近似上式右端积分, 可以得到计算 y(xn+1)的不同的差分格 式.
h2 2
y''( )
Rn1
:
y( xn1)
yn1
h2 2
y''( )
h2 2
y''( xn ) O(h3 ).
局部截断误差主项
19
第20页/共105页
➢ 向后Euler法的局部截断误差
向后Euler法的计算公式
yn1 yn hf ( xn1, yn1 ), n 0, 1, 2,
定义其局部截断误差为
y 计算 的n递1 推公式,此类计算格式统称为差分格式.
3
第4页/共105页
数值求解一阶常微分方程初值问题
y' f ( x, y), a x b,
y(a)
y0
难点: 如何离散 y ?
➢ 常见离散方法
差商近似导数 数值积分方法 Taylor展开方法
4
第5页/共105页
➢ 差商近似导数(Euler公式)
(0 x 1)
y(0) 1.
解 计算公式为
yn1
yn
hfn
yn
h( yn
2xn ), yn
y0 1.0
n 0, 1, 2,
取步长h=0.1, 计算结果见下表
13

(完整版)大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

(完整版)大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法线性双曲型方程定解问题: (a )一阶线性双曲型方程()0=∂∂+∂∂xux a t u (b )一阶常系数线性双曲型方程组0=∂∂+∂∂xt uA u 其中A ,s 阶常数方程方阵,u 为未知向量函数。

(c )二阶线性双曲型方程(波动方程)()022=⎪⎭⎫⎝⎛∂∂∂∂-∂∂x u x a x t u()x a 为非负函数(d )二维,三维空间变量的波动方程0222222=⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂y u x u t u 022222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-∂∂z u y u xu t u §1 波动方程的差分逼近 1.1 波动方程及其特征线性双曲型偏微方程的最简单模型是一维波动方程:(1.1) 22222xu a t u ∂∂=∂∂ 其中0>a 是常数。

(1.1)可表示为:022222=∂∂-∂∂xu a t u ,进一步有0=⎪⎭⎫ ⎝⎛∂∂+∂∂⋅⎪⎭⎫ ⎝⎛∂∂-∂∂u x a t x a t由于xat ∂∂±∂∂当a dt dx ±=时为()t x u ,的全导数(=dtdu dt dx x u t u ⋅∂∂+∂∂x ua t u ∂∂±∂∂=),故由此定出两个方向(1.3) adx dt 1±=解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =⋅+ 和 2C t a x =⋅- 称其为特征。

特征在研究波动方程的各种定解问题时,起着非常重要的作用。

比如,我们可通过特征给出(1.1)的通解。

(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。

由复合函数的微分法则212211C uC u x C C u x C C u x u ∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ x C C u C u C x C C u C u C x u ∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=∂∂2212121122 222122212212C u C C u C C u C u ∂∂+∂∂∂+∂∂∂+∂∂= 2222122122C uC C u C u ∂∂+∂∂∂+∂∂= 同理可得a t t a t C -=∂∂-=∂∂1,a tC=∂∂2 ⎪⎪⎭⎫⎝⎛∂∂-∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂212211C u C u a t C C u t C C u t utC C u C u a C u t C C u C u a C t u ∂∂⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅∂∂+∂∂⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅∂∂=∂∂2122112122 ⎥⎦⎤⎢⎣⎡∂∂∂-∂∂+⎥⎦⎤⎢⎣⎡∂∂-∂∂∂-=21222222221222C C u C u a C u C C u a ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂-∂∂=22221221222C u C C u C u a 将22x u ∂∂和22tu∂∂代入(1.1)可得: ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂-∂∂22221221222C u C C u C u a ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂+∂∂=22221221222C u C C u C u a 即有0212=∂∂∂C C u求其对2C 的积分得:()11C f C u=∂∂ 其中()1C f 是1C 的任意可微函数。

第九节常微分方程的数值解法

第九节常微分方程的数值解法
N
卷积
• 在求拉氏逆变换的过程中,卷积往往 有着重要的应用价值。 • 定义 f * f f ( ) f (t )d
t 1 2 0 1 2
为函数f1(t)与f2(t)的卷积。 • 注意:当t<0时,f1(t)=f2(t) 0
• 交换律
f1*f2=f2*f1
• 例1
求t*sint f1*(f2+f3)=f1*f2+f1*f3
• (每一步计算f(x,y)四次,截断误差为O(h5))
• 例 分别用改进的欧拉格式和四阶龙格— 库塔格式解初值问题(取步长h=0.2):
2x y y y y (0) 1
(0 x 1)

表7—4
准确解
• 节点 改进欧拉法 四阶龙格—库塔法

• • •

1 0.2 1.186667 1.183216 0.4 1.348312 1.341641 0.6 1.493704 1.483240 0.8 1.627861
第九节
常微分方程的数值解法
dy f ( x, y ) dx y ( x0 ) y0
• 一阶常微分方程的初值问题:
• 节点:x1<x2< <xn • 步长 h x x 为常数 i i 1
• • • • •

欧拉方法(折线法) yi+1=yi+hf(xi,yi)(i=0,1, , n 优点:计算简单。 缺点:精度不高。 二 改进的欧拉方法
• • • • •


第三步 如果 1 ,则将步长h折 半, xi 1/ 2 从xi出发以区间[xi,xi+1]的中点(记为 ) ( h / 2) (h) 1/ 2 yi 1/ 2 yi 1/ 2 为目标,判别 y ( xi 1/ 2 ) 1 / 2 如果 yi(h1//22) ,则得 xi 1 / 2 的满足精度要 求 的近似值 ,然后从 出发,以 xi+1 为 目标,重复上述步骤,否则继续下一步

常微分方程数值解法5262115页PPT文档

常微分方程数值解法5262115页PPT文档
x 1 ( t ) 表示时刻 t 食饵的密度,x 2 ( t ) 表示捕食者的密度;
r 表示食饵独立生存时的增长率;
d 表示捕食者独立生存时的死亡率;
a 表示捕食者的存在对食饵增长的影响系数,反映捕
食者对食饵的捕获能力;
b 表示食饵的存在对捕食者增长的促进系数,反映食
饵对捕食者的喂养能力
150 100
令 y 1 y ,y 2 y ',y 3 y '', ,y n y ( n 1 )
可以将以上高阶微分方程化为如下一阶常微分方程组
y1 ' y2 y2 ' y3 yn ' an(x)y1
a1(x)yn f (x)
例:P120,1(a),Bessel方程
常微分方程的数值解
一般地,凡表示未知函数,未知函数的导 数与自变量之间的关系的方程叫做微分方 程.未知函数是一元函数的,叫常微分方 程;未知函数是多元函数的,叫做偏微分方 程.

y ' x y'x2y2 y''y'xy
Matlab实现 [t,x]=ode45(f,ts,x0,options,p1,p2,......)
50 0 0
30 20 10
0 0
10
20
50
30
20
10

0
30
0
10
8
6
4
2
100
0
50
100
150
50
100
高阶常微分方程的解法
高阶常微分方程
y ( n ) a 1 ( x ) y ( n 1 ) a ( n 1 ) ( x ) y ' a n ( x ) y f( x )

数值分析课件第9章常微分方程初值问题数值解法

数值分析课件第9章常微分方程初值问题数值解法
隐式方程通常用迭代法求解,而迭代过程的实质 是逐步显式化.
上页 下页
设用欧拉公式
y(0) n1
yn
hf
( xn ,
yn )
给出迭代初值 yn(0)1,用它代入(2.5)式的右端,使之转
化为显式,直接计算得
y(1) n1
yn
hf
( xn1 ,
y(0) n1
),
然后再用 yn(代1)1 入(2.5)式,又有
在yn=y(xn)的前提下,f(xn,yn )=f(xn,y(xn))=y(xn).于是
可得欧拉法(2.1)的公式误差为
y(xn1)
yn1
h2 2
y(n )
h2 2
y(xn ),
(2.3)
称为此方法的局部截断误差.
上页 下页
如果对方程(1.1)从xn到xn+1积分,得
y( xn1) y( xn )
基于上述几何解释,我们从初始点P0(x0, y0)出发, 先依方向场在该点的方向推进到x=x1上一点P1,然后 再从P1点依方向场在该点的方向推进到 x=x2 上一点 P2 , 循环前进做出一条折线P0 P1 P2.
上页 下页
一般地,设已做出该折线的顶点Pn,过Pn(xn, yn)依
方向场的方向再推进到Pn+1(xn+1, yn+1),显然两个顶
(2.13)
校正 yn1 yn 2 [ f ( xn , yn ) f ( xn1, yn1 )] .
或表为下列平均化形式
yp yc
y(2) n1
yn
hf
( xn1 ,
y(1) n1
).
如此反复进行,得
y(k1) n1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i.常微分方程初值问题数值解法i.1 常微分方程差分法考虑常微分方程初值问题:求函数()u t 满足(,), 0du f t u t T dt=<≤ (i.1a ) 0(0)u u = (i.1b)其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。

我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-∀∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。

通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。

本章讨论常微分方程最常用的近似数值解法-差分方法。

先来讨论最简单的Euler 法。

为此,首先将求解区域[0,]T 离散化为若干个离散点:0110N N t t t t T -=<<<<= (i.3) 其中n t hn =,0h >称为步长。

在微积分课程中我们熟知,微商(即导数)是差商的极限。

反过来,差商就是微商的近似。

在0t t =处,在(i.1a )中用向前差商10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到1000(,)u u hf t u -=一般地,我们有1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

下面我们用数值积分法重新导出 Euler 法以及其它几种方法。

为此,在区间1[,]n n t t +上积分常微分方程(i.1a ),得11()()(,())n n t n n t u t u t f t u t dt ++=+⎰ (i.5)用各种数值积分公式计算(i.5)中的积分,便导致各种不同的差分法。

例如,若用左矩形公式就得到 Euler 法(i.4)。

如果用右矩形公式,便得到下面的:111Euler (,), 0,1,,1n n n n u u h f t u n N +++=+=-隐式方法: (i.6) 类似地,如果用梯形公式,就得到111Euler [(,)(,)], 0,1,,12n n n n n n h u u f t u f t u n N +++=++=-改进的方法 (i.7) 当(,)f t u 关于u 是非线性函数的时候,不能由(i.6)或 (i.7) 从n u 直接算出1n u +,称这一类方法为隐式,通常采用某种迭代法求解。

例如,将一般的隐式方法写成11(,,)n n n n u F t u u ++= (i.8) 则可以利用如下的迭代法由n u 算出1n u +:11101(,,), 0,1, k k n n n n n n u F t u u k u u ++++⎧==⎨=⎩ (i.9)关于k 的迭代通常只需进行很少几步就可以满足精度要求了。

为了避免对隐式方法进行迭代的麻烦,比如说对于改进的Euler 方法(i .7),可以采用某种预估法近似算出11(,)n n f t u ++,然后再用(i .7)作校正,这就导致所谓预估校正法。

下面给出一个例子:1111111(,)2(,)()2n n n n n n n n n n n n n u f t u u u hu u f t u h u u u u +-+++++'⎧=⎧⎪⎪'=+⎨⎪⎪⎪'=⎨⎩⎪⎪''=++⎪⎩预估: 校正: (i.10) 这是一个多步法,即计算节点1n t +上的近似值1n u +时,除了用到前一点的近似值n u 之外,还要用到1n u -,甚至可能用到2,n u -。

而用前面的各种Euler 法计算节点1n t +上的近似值1n u +时,只用到n u ,这样的方法称之为单步法。

下面给出另一个多步法的例子。

在区间2[,]n n t t +上积分(i.1a ),得22()()(,())n n t n n t u t u t f t u t dt ++=+⎰用Simpson 公式(即把被积函数看作二次函数)近似计算积分,便得到212Milne (4), 0,1,,23n n n n n h u u f f f n N +++=+++=-法: (i.11) 用多步法(i.10)或(i.11)计算时,必须先用某种单步法由0u 计算出1u ,称为造表头。

然后再逐次算出23,,,N u u u 。

一般说来,多步法比Euler 法等简单的单步法精度要高一些。

下面我们讨论一类所谓Runge-Kutta 法。

他们是单步法,但是其精度可以与多步法比美。

最常用的是下面的标准Runge-Kutta 法:标准Lunge-Kutta 法⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++++=++=++=++==+)22(6),()2,2()2,2(),(432113423121K K K K h u u hK u h t f K hK u h t f K hK u h t f K u t f K n n n n n n n n n n (i.12)从几何上, Runge-Kutta 法可以粗略地解释为:在区间1[,]n n t t +中选取若干个点(可以重复)1211n k k n t t ττττ-+=<≤≤≤=,仅仅利用在区间1[,]n n t t +内可以得到的所有信息,依次给出函数(,())f t u t 在这些点上尽可能精确的的近似值12,,,k K K K ,然后把它们组合起来,尽可能精确地近似计算(i.5)中的积分。

下面介绍Runge-Kutta 法的一般构造方式。

选定常数k ,令1(,)n n K f t u =22211(,)n n K f t h u K αβ=++33311322(,)n n K f t h u K K αββ=+++1122,11(,)k n k n k k k k k K f t h u K K K αβββ--=+++++ 11122()n n k k u u h K K K ωωω+=++++ (i.14)选取这些待定常数,,i ij m αβω的原则是:将(i.14)在(,)n n t u 作Taylor 展开,然后按照h 的幂重新整理,使得231123112!31n n u u h h h γγγ+=++++ (i.15) 与微分方程(i.1a )的解()u u t =在n t t =处的Taylor 展式23111()()2!3!n n n n n u t u t f h f h f h +'''=++++ (i.16) 有尽可能多的项重合,即要求123, , , n n n f f f γγγ'''=== 这里(,)(,)(,)(,), n n n n n n t u t u df t u f f t u f dt ='==等等。

按照(i.14)构造出的都是显式Runge-Kutta 方法,每一个i K 可以依次显式地算出。

如果在某一个i K 的表达式中出现j K ,其中j i >,则导致隐式Runge-Kutta 方法,可以迭代求解。

一般来说,隐式Runge-Kutta 方法的稳定性更好一些。

i.2 常微分方程组与高阶常微分方程先来考虑下面的常微分方程组初值问题11122212121100(,,,,)(,,,,)(,,,,)(0),,(0)m m mm m m m du f t u u u dt du f t u u u dt du f t u u u dtu u u u ⎧=⎪⎪⎪=⎪⎪⎨⎪⎪=⎪⎪⎪==⎩ (i.17)利用向量记号,上式可以改写为()(,)(0)t t u '=⎧⎨=⎩u f u u (i.18) 上节中各方法都可以直接应用到常微分方程组(i.18)。

例如,Euler 方法成为 1(,), 0,1,,1n n n n h t n N +=+=-u u f u 再来考虑高阶常微分方程111211(,,,,), 0(0),,(0),(0)m m m m m m m d u du d u f t u t dt dt dt d u du v v u v dt dt ----⎧=>⎪⎪⎨⎪===⎪⎩ (i.19) 这时,可以令1121(,,,)(,,)m m m du d u u u u u dt dt --=≡u (i.20) 231212(,,,)(,,,,(,,,,))m m m f f f u u u f t u u u ==f (i.21) 012(,,,)m v v v =u (i.22)于是可以把高阶常微分方程(i.19)化成一阶常微分方程组(i.18)。

i.3 收敛性与稳定性截断误差 粗略地说,截断误差可以定义为将微分方程解带入到差分方程后得到的误差,代表了微分方程与差分方程之间的误差。

例如,由Taylor 展式和微分方程(i.1a)得到221(,())()()()()()(,())2!2!nn n n n n n n t h h df t u t u t u t hu t u u t hf t u t dt ττ+='''=++=++ 其中n τ是区间1[,]n n t t +上某个常数。

与Euler 法1(,)n n n n u u hf t u +=+相比较,定义余项2(,())2!nt h df t u t dt τ=为Euler 法的截断误差,它关于h 是2阶的,记为2()h O 。

一般地,将上节中讨论的单步法写成1(,,)0n n F u u h +=,则可以定义截断误差为1((),(),)n n F u t u t h +。

对于每一个差分法在适当的点(例如n t t =,1n t +或11()2n n t t ++)作Taylor 展开,就可以得到截断误差的阶。

对多步法可以类似处理。

上节中各方法的截断误差阶分别为:相容性 一个差分方法称为相容的,如果其截断误差至少是2阶的。

收敛性 实用中我们更关心的是近似解的收敛性,即0h →时,是否有()n n u u t →。

在适当的条件下,例如步长h 足够小,右端函数f 和解u 足够光滑等等,可以证明以上讨论的各方法都是收敛的,并且有估计式()pn n u t u Ch -≤ (i.23) 其中常数C 与u 和f 有关,与h 和n 无关;阶数p 等于截断误差的阶数减去1。

相关文档
最新文档