1.3 探索三角形全等的条件 (1) 2
八年级数学教案:探索三角形全等的条件 ( 全8课时 )

合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。
1.3探索三角形全等的条件(1)

问题导学: 你能找到图中的三角形吗?
你能说出为什么这些地方是 三角形吗?
问题导学:
问题导学:
例1、如图,在△ABC中,AB=AC, AD是中线,△ABD与△ACD 全等吗?为什么?
A
答:△ABD≌△ACD. 做判断 在△ABD与△ACD中 指出三角形 ∵AD是△ABC的中线,(已知) B ∴BD=CD, 列条件 又∵AB=AC,AD=AD,(已知) ∴ △ABD≌△ACD(SSS). 得结论
A
D
C
列条件
E F
CA=FD
∴ △ABC ≌△ DEF(SSS) 得结论
问题导学:
准备若干长度适中的小木条,用其中三根木条 钉成一个三角形的框架,它的形状和大小是固 定的吗?如果用四根小木条钉成的框架形状和 大小固定吗?
问题导学:
三角形的框架,它的大小和形状是固定不变的, 三角形的这个性质叫做三角形的稳定性.
A
E
F
D
B
C
巩固练习:
2.已知 AB=DC, AC=DB,
A D
试说明(1) △ABC≌△DCB (2) ∠A=∠D
B C
课堂小结:
谈谈你 这节课 的收获 吧!
寻求: 判别三角形全等的条件.
问题导学:
一个条件
二个条件
要求:先独立完 1.都给边:给一条边 成,然后小组内 2.都给角:给一个角 交流讨论,最后 1.都给边:给二条边 小组展示、点评 .
2.都给角:给二个角 3.既给角,又给边: 给一条边,一个角
1.都给角:给三个角 三个条件 2.都给边:给三条边 3.既给角,又给边: 给两条边,一个角
D
C
问题导学:
三角形全等书写三步骤:
探索全等三角形的条件

证明三角形全等的步骤:
1.写出在哪两个三角形中证明全等。 (注意把表示对应顶点的字母写在对应 的位置上).
2.按边、角、边的顺序列出三个条件, 用大括号合在一起.
3.写出结论.每步要有推理的依据.
P14练一练1: 在下列三角形中,哪两个三角 形全等?
4 4 5 6
11.3探索三角形全等的条件
两边夹角对应相等 两边一角 对应相等 (边角边) 两边一对角对应相等 (边边角)
大家一起做下面的实验:
1、画∠MAN=45°; C\
N
2、在AM上截取AB=3cm; 45° 在AN上截取AC=2cm; A 3、连接BC。
与周围同学所剪的比较一下, 它们全等吗?
′ B M
C F
A
40° B
D
40° E
结论:两边及其中一边所对的角对 应相等,两个三角形不一定全等.
两边夹角对应相等 两边一角 对应相等 (边角边)
√
×
两边一对角对应相等 (边边角)
例1
已知:如图, AB=CB ,∠ABD= ∠CBD
△ABD 和△CBD 全等吗?
A
分析:△ ABD ≌△ CBD
边: AB=CB (已知) (SAS)
B C
D
角: ∠ABD=∠CBD (已知) 边:
?
现在例1的已知条件不改变,而问题改变成:
问:AD与CD相等吗,BD平分∠ADC吗?
例题推广
已知:如图,AB=CB,∠ABD=∠CBD .
问: AD与CD相等吗?
BD 平分∠ ADC 吗?
B
A
D C
归纳:判定两条线段相等或两个角相等可以 通过从它们所在的两个三角形全等而得到。
探索三角形全等--边角边

2.如果满足两个条件,你能说出 有哪几种可能的情况?
①两边;
②一边一角;
③两角.
①如果三角形的两边分别为4cm,6cm 时
4cm
4cm
6cm
6cm
结论:两条边对应相等的两个三角形不一定全等.
②三角形的一条边为4cm,一个内角为30°时:
30◦ 4cm
30◦ 4cm
结论:一条边一个角对应相等的两个
2. 如图所示 , 根据题目条件,判断下面 的三角形是否全等. (1) AC=DF, ∠C=∠F, BC=EF; (2) BC=BD, ∠ABC=∠ABD.
答案:
(1)全等
(2)全等
例2:小兰做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注 在图中,小明不用测量就能知道EH=FH吗? 与同桌进行交流。 D 解:在△EDH和△FDH中: ED=FD(已知)
全等
F C 3cm 3cm A D F 3cm F 3cm F 3cm F F
实践 检验
F F F 3cm 3cm 3cm 3cm
45°
D
D DE D E D E D ED D E E E E E B 4cm 4cm 4cm 4cm 4cm 4cm 4cm 4cm 4cm
实践与探索
同桌两个同学自行约定:各画一个三角 形,使它们具有相同的两条线段和一个 夹角,比较一下,可以得出什么结论? 结论: 在两个三角形中,如果有 两条边及它们的夹角对应 相等,那么这两个三角形 全等(简记为S.A.S)
三角形不一定全等.
③如果三角形的两个内角分别是30°,45°时
30◦
45◦
30◦
45◦
结论:两个角对应相等的两个三角形不一定全等.
1-3 探索三角形全等的条件-2021-2022学年八年级数学上册课后练(苏科版)(原卷版)

姓名: 班级1.3 探索三角形全等的条件本课重点(1)熟练掌握五种全等三角形的判定本课难点 (2)全等三角形的判定的综合运用全卷共25题,满分:120分,时间:120分钟一、单选题(每题3分,共30分)1.(2021·山东济南市·七年级期末)如图,测河两岸A ,B 两点的距离时,先在AB 的垂线BF 上取C ,D 两点,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC △≌△ABC ,从而得到ED =AB ,测得ED 的长就是A ,B 的距离,判定△EDC ≌△ABC 的依据是:( )A .ASAB .SSSC .AASD .SAS2.(2021·浙江九年级期末)如图,在ABC 与DEF 中,点B ,E ,C ,F 在同一条直线上,,//=BE CF AB DE ,下列所添条件中不能判定ABC DEF △≌△的是( )A .AC DF =B .AB DE =C .AD ∠=∠ D .ACB F ∠=∠3.(2021·江苏南京市·九年级专题练习)如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点B ,D ,E 在同一条直线上,若∠CAE +∠ACE +∠ADE =130°,则∠ADE 的度数为( )A .50°B .65°C .70°D .75°4.(2021·重庆万州区·八年级期末)如图,在MPN △中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( )A .3B .4C .5D .65.(2021·河南焦作市·九年级二模)已知锐角AOB ∠,如图,(1)在射线OA 上取点C ,E ,分别以点O 为圆心,OC ,OE 长为半径作弧,交射线OB 于点D ,F ;(2)连接CF ,DE 交于点P .根据以上作图过程及所作图形,下列结论错误..的是( ) A .CE DF =B .PE PF =C .若60AOB ∠=︒,则120CPD ∠=︒ D .点P 在AOB ∠的平分线上6.(2021·成都市第十八中学校八年级期末)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD上一点,连接OM ,过点O 做ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B .2C .2D .227.(2021·全国七年级专题练习)如图所示,90E F ∠=∠=︒,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ≌,其中正确的是有( )A .1个B .2个C .3个D .4个8.(2021·北京九年级专题练习)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<- D .AB AD -与CB CD -的大小关系不确定9.(2021·北京九年级专题练习)数学课上,老师给出了如下问题:如图1,90B C ∠=∠=︒,E 是BC 的中点,DE 平分ADC ∠,求证:AB CD AD +=.小明是这样想的:要证明AB CD AD +=,只需要在AD 上找到一点F ,再试图说明AF AB =,DF CD =即可.如图2,经过思考,小明给出了以下3种辅助线的添加方式.①过点E 作EF AD ⊥交AD 于点F ;②作EF EC =,交AD 于点F ;③在AD 上取一点F ,使得DF DC =,连接EF ;上述3种辅助线的添加方式,可以证明“AB CD AD +=”的有( )A .①②B .①③C .②③D .①②③10.(2021·河南新乡市·新乡学院附属中学八年级月考)如图,点C 是线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,有以下5个结论:①AD=BE ;②PQ ∥AE ;③AP=DQ ;④DE=DP ;⑤∠AOB=60°.其中一定成立的结论有( )个A .1B .2C .3D .4二、填空题(每题3分,共24分)11.(2021·云南玉溪市·八年级期末)如图,某人将一块三角形玻璃打碎成三块,带第___块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是____.12.(2021·全国八年级) 如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ . 13.(2020·北京八年级期末)如图,在四边形ABCD 中,AC BC ⊥于点C ,且AC 平分BAD ∠,若ADC的面积为210cm ,则ABD △的面积为________2cm .14.(2021·江苏八年级期中)如图,在ABC 中,90A ∠=︒,AB AC =,BD 平分ABC ∠,CE BD ⊥于E ,若8BD =,则CE 为______.15.(2021·石家庄市第二十八中学八年级月考)如图, BD 是ABC ∆的角平分线,延长BD 至点E ,使DE AD =,若60ADB ∠=,78BAC ∠=, 则BEC ∠=__________.16.(2021·沙坪坝区·重庆八中七年级期中)如图所示,在ΔABC 中, AD 平分∠BAC ,点E 在DA 的延长线上,且EF ⊥BC ,且交BC 延长线于点F ,H 为DC 上的一点,且BH =EF , AH =DF , AB =DE ,若∠DAC +n∠ACB =90°,则n =__________.17.(2021·黑龙江哈尔滨市·八年级期末)如图所示,AD 为ABC 中线,D 为BC 中点,AE AB =,AF AC =,连接EF ,2EF AD =.若AEF 的面积为3,则ADC 的面积为______.18.(2021·浙江宁波市·八年级期末)如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______. 三、解答题(19-22题每题9分,其他每题10分,共66分)19.(2021·重庆巴蜀中学七年级期末)如图,点E 在△ABC 的边AC 上,且∠ABE =∠C ,AF 平分∠BAE 交BE 于F ,FD ∥BC 交AC 于点D .(1)求证:△ABF ≌△ADF ;(2)若BE =7,AB =8,AE =5,求△EFD 的周长.20.(2021·江苏镇江市·九年级二模)如图,在四边形ABCD 中,//AD BC ,点E 为对角线BD 上一点,A BEC ∠=∠,且AD BE =.(1)求证:AD DE BC +=;(2)若70BDC ∠=︒,求ADB ∠的度数.21.(2021·四川宜宾市·八年级期末)在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.22.(2021·广东广州市·八年级期末)如图1,△ABC 中,AB =AC ,∠BAC =90°,点D 是线段BC 上一个动点,点F 在线段AB 上,且∠FDB =12∠ACB ,BE ⊥DF .垂足E 在DF 的延长线上.(1)如图2,当点D 与点C 重合时,试探究线段BE 和DF 的数量关系.并证明你的结论;(2)若点D 不与点B ,C 重合,试探究线段BE 和DF 的数量关系,并证明你的结论.23.(2021·黑龙江佳木斯市·九年级三模)在ABC 中,90ABC ∠=︒,AB BC =,D 为直线AB 上一点,连接CD ,过点B 作BE CD ⊥交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD =,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD +=;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.24.(2021·福建三明市·八年级期中)如图1,△ABC 和△ABD 中,∠BAC =∠ABD =90°,点C 和点D 在AB的异侧,点E 为AD 边上的一点,且AC =AE ,连接CE 交直线AB 于点G ,过点A 作AF ⊥AD 交直线CE 于点F .(Ⅰ)求证:△AGE ≌△AFC ;(Ⅱ)若AB =AC ,求证:AD =AF +BD ;(Ⅲ)如图2,若AB =AC ,点C 和点D 在AB 的同侧,题目其他条件不变,直接写出线段AD ,AF ,BD 的数量关系 .25.(2021·湖北随州市·八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.附加题(1-2题,每题4分,3题6分,4-5题每题8分,共30分)1.(2021·全国七年级专题练习)如图,在△ABC 中,AD 是BC 边上的高,∠BAF=∠CAG=90°,AB=AF ,AC=AG .连接FG ,交DA 的延长线于点E ,连接BG ,CF . 则下列结论:①BG=CF ;②BG ⊥CF ;③∠EAF=∠ABC ;④EF=EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④2.(2021·湖南岳阳市·八年级期末)已知ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别为边AB 、AC 上的动点,且90EDF ∠=︒,连接EF ,下列说法正确的是______.(写出所有正确结论的序号)①270BEF CFE ∠+∠=︒;②ED FD =;③EF FC =;④12ABC AEDF S S =四边形3.(2021·河南商丘市·八年级期末)如图,在ABC 中,BC AC =,E 是射线BF 上一点,且CBE CAE ∠=∠,CD BF ⊥,垂足为D ,过点C 作CM AE ⊥,垂足为M ,连接CE ,2DE =,8AE =,3CD =,则下列结论:①CBD CAM ≌△△;②DE ME =;③30BDC S =△.其中正确的结论有_______(填序号).4.(2020·山东威海市·七年级期末)(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.5.(2020·武汉市二桥中学八年级月考)直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题: ①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.。
鲁教版(五四制)初中数学七年级上册_《探索三角形全等的条件》随堂练习

1.3探索三角形全等的条件练习一、探索三角形全等的条件(第一课时)1. “三月三,放风筝”,如图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是(用字母表示)2.如图,(1)连接AD后,当AD=_____,AB=_____,BD=_____时可用“SSS”推得△ABD≌△DCA.(2)连接BC后,当AB=________,BC=_______,AC=______时,可推得△ABC≌△DCB.3.如图,已知∠B=∠D,∠1=∠2,∠3=∠4,AB=CD,AD=CB,AC=CA.则△≌△4.判定两个三角形全等,依定义必须满足()A.三边对应相等B.三角对应相等C.三边对应相等和三角对应相等D.不能确定练习二、探索三角形全等的条件(第二课时)1.如图,因为EA⊥AD,FD⊥AD(已知)所以∠=∠=90°()2. (1)两角和它们的夹边对应相等的两个三角形全等,简写成 或(2)两角和其中一角的对边对应相等的两个三角形全等,简写成 或3.如图,AB =AC ,∠B =∠C ,你能证明△ABD ≌△ACE 吗?⎪⎪⎩⎪⎪⎨⎧∠∠∠=∠(公共角)=(已知)=(已知) 所以 ≌ ( )4.如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD =BC ,你能说明BO=DO 吗?说明:因为AD ∥BC (已知)所以∠A= ,( )∠D= ,( )在 中,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧ 所以 ≌ ( )所以BO=DO ( )5.如图,∠B =∠C ,AD 平分∠BAC ,你能说明△ABD ≌△ACD ?若BD =3厘米,则CD 有多长?解:因为AD 平分∠BAC ( )所以∠ =∠ (角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∠∠∠=∠(公共边)=(已证)=(已知) 所以△ABD △ACD ( )所以BD =CD ( )因为BD=3厘米(已知)所以CD==.练习三、探索三角形全等的条件(第三课时)1.如图,已知AC和BD相交于O,且BO=DO,AO=CO,下列判断正确的是()A.只能说明△AOB≌△CODB.只能说明△AOD≌△COBC.只能说明△AOB≌△COBD.能说明△AOB≌△COD和△AOD≌△COB2.如图,已知AD∥BC,AD=BC,请你思考一下,△ABC与△CDA有什么关系?3.如图,AB=AC,AD=AE,△ABE与△ACD全等吗?请说明理由.4.已知如图,AE=AC,AB=AD,∠EAB=∠CAD,试说明:∠B=∠D参考答案:练习一、1. SSS2.(1)DA,DC,CA (2)DC,CB,DB3.△ABC ≌△CDA4. A练习二、1.EAB,FDC,垂直的定义2.角边角,ASA3.略.4.略.5. 略练习三、1.D2.由AD∥BC得出∠CAD=∠ACB,因为AD=BC,AC=CA. 用SAS.可推出△ABC≌△CDA.3.全等,理由SAS4.说明过程略.。
苏科版八年级数学上册《1.3探索三角形全等的条件》同步测试题(含答案)

1.3探索三角形全等的条件(1)SAS一、选择题1. 如图,已知AB=AD,那么添加下列一个条件后,能用SAS判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°2. 如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是()A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC3. 如图,已知E、F是AC上的两点,AE=CF,DF=BE,∠AFD=∠CEB,则下列结论不成立的是()A.∠A=∠C B.AD=CB C.BE=DF D.DF∥BE4.如图,在△ABD中,AC⊥BD,点C是BD的中点,则下列结论错误的是()A.AB=ADB.AB=BDC. ∠B=∠DD.AC平分∠BAD5. 如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=()A.40°B.50°C.60°D.70°二、填空题6.如图,MN 与PQ 相交于点O ,MO=OP ,QO=ON ,∠M=65°,∠Q=30°,则∠P= ,∠N=.7. 如图,已知AB =AC=12 cm ,AE=AF=7 cm ,CE=10 cm ,△ABF 的周长是 .8. 如图,已知BC =EC ,∠BCE =∠ACD ,要使能用SAS 说明△ABC ≌△DEC ,则应添加的一个条件为______.(答案不唯一,只需填一个)三、解答题9. (2014•常州)已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE .求证:△ACD ≌△CBE .10. (2014•吉林)如图,△ABC 和△DAE 中,∠BAC=∠DAE ,AB=AE ,AC=AD ,连接BD ,CE ,求证:△ABD ≌△AEC .C B FE A参考答案1.3探索三角形全等的条件一、选择题1. B2. C3.D4.B5.D二、填空题6. 65°,30°7.29cm8. AC=CD三、解答题9. 证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,∴△ACD≌△CBE(SAS).10. 证明:∵∠BAC=∠DAE,∴∠BAC-BAE=∠DAE-∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,∴△ABD≌△AEC(SAS).。
1.3.探索三角形全等的条件(1)

学习内容1.3.探索三角形全等的条件(1)总第课时新授课实施时间年月日学习目标经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理,。
重难点掌握三角形的“边边边”条件,了解三角形的稳定性,训练学生分析问题和解决问题的能力。
实施过程设计培养学生倾听主要环节教学内容教学策略活动时间教师活动学生活动设计三、精讲点拨这三个三角形不全等.那如果三角形的两个内角分别是30°和50°时,所画的三角形又如何呢?画的三角形形状一样,但大小不一样.如图.这两个三角形不能重合,即不全等.如果给定三角形的两边分别为4 cm,6 cm,那么所画出的三角形全等吗?也不全等.如图.我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那给出三个条件时,又怎样呢?如果给出三个条件画三角形,你能说出有哪几种可能的情况?下面我们来逐一探索.做一做:(1)已知一个三角形的三个内角分别为40°,60°,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4 cm,5 cm和7 cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.那给出三角形的三条边又如何呢?下面我们来做一个实验.取三根长度适当的木条,用钉子钉成一个三角形的框架,你所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?做实验时,可用细纸条代替木条.实验后分组讨论.用三根木条钉成的三角形框架是固定的,用四根木条钉成的框架,它的形状是可以改变的.看屏幕(演示图).教师引导,点拨大家来议一议.学生讨论回答通过作图我们知道:已知三角形的三条边画三角形,则画出的所有三角形全等.这样就得到了三角形全等的条件:三边对应相等的两个三角形全等.简写为“边边边”或“SSS”.四、反思拓展图(1)是用三根木条钉成的三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构,它就坚固和稳定了.图(2)的形状是可以改变的,它不具有稳定性.例1如图,已知AB=AC,AD=AE,BDCE,那么△ABD与△ACE全等吗?△ABE与△ACD全等吗?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
C
E
F
1.3 探索三角形全等的条件(1)
讨论交流:
1.当两个三角形的1对边或角相等时,它们全等吗? 2.当两个三角形的2对边或角分别相等时,它们全 等吗? 3.当两个三角形的3对边或角分别相等时,它们全 等吗?
1.3 探索三角形全等的条件(1)
探索活动:
(一)如图,每人用一张长方形纸片剪一个直角三 角形,怎样剪才能使剪下的所有直角三角形都能够重 合?
作法:
图形:
aa
b b
1.作∠MAN =∠α.
2.在射线AM、AN上分别
作△ABC就是所求作的三角形.
1.3 探索三角形全等的条件(1)
提炼归纳:
基本事实: 两边及其夹角分别相等的两个三角形全等(简写成 “边角边”或“SAS”) .
A 几何语言: ∵在△ABC和△DEF中, AB=DE, ∠B=∠E, B BC=EF, ∴ △ABC ≌ △DEF(SAS). D
1.3 探索三角形全等的条件(1)
探索活动:
(二)如图,△ABC与△DEF、 △MNP能完全重合 吗?
A
1.5
D
1.5 60
M
3
3 45 1.5
N
B
45 3
C
E F
P
1.3 探索三角形全等的条件(1)
探索活动:
(三)按下列作法,用直尺和圆规作△ABC,使 ∠A=∠α,AB=a,AC=b.
变式拓展:
如图,AB =AD,∠BAC =∠DAC.
D
(1)DC =BC吗? (2)CA平分∠DCB吗?
A C
(3)本例包含哪一种图形变换?
B
1.3 探索三角形全等的条件(1)
体会小结:
通过本节课的学习,你有什么体会?
1.3 探索三角形全等的条件(1)
课堂作业:
略.
C
E
F
1.3 探索三角形全等的条件(1)
新知应用:
例1 如图,AB =AD,∠BAC =∠DAC. 求证:△ABC ≌ △ADC.
D
证明:在△ABC和△ADC中, AB= AD(已知) , ∠BAC=∠DAC (已知), A AC=AC(公共边), ∴ △ABC ≌ △ADC(SAS).
B
C
1.3 探索三角形全等的条件(1)
初中数学 八年级(上册)
1.3
探索三角形全等的条件(1)
作 者:王正东(射阳长荡初级中学)
1.3 探索三角形全等的条件(1)
问题情境:
(1)如图,△ABC≌△DEF,你能得出哪些结论?
A
D
B
C
E
F
1.3 探索三角形全等的条件(1)
问题情境:
(2)小明想判别△ABC与△DEF是否全等,他逐一 检查三角形的三条边、三个角是不是都相等.小红提 出了质疑:分别检查三条边、三个角这6个元素固然 可以,但是不是可以找到一个更好的方法呢?