马柯维茨的资产组合理论
投资组合理论与资本资产定价模型CAPM

投资组合理论与资本资产定价模型CAPM投资组合理论与资本资产定价模型(CAPM)是金融学中两个基本的理论框架,用于解释资本市场的行为和为投资者提供投资决策的依据。
投资组合理论是由美国经济学家哈里·马科维茨(Harry Markowitz)于1952年提出的,也是他获得1990年诺贝尔经济学奖的主要理论基础。
该理论认为,投资者可以通过合理配置资金,选择不同风险和收益水平的资产组合,从而实现在给定风险下最大化收益或在给定收益下最小化风险的目标。
通过将不同资产之间的相关性考虑在内,投资者可以通过分散投资来降低投资组合的整体风险。
资本资产定价模型(CAPM)是由美国经济学家威廉·夏普(William Sharpe)、芝加哥大学教授约翰·林特纳(John Lintner)和莱芜丝·特雷南伯格(Jan Mossin)于1964年同时独立提出的。
CAPM认为,资产的预期回报率与其系统风险(与整个市场波动相关的风险)成正比,与无风险利率成反比。
该模型通过将投资者面临的风险分解为系统风险和非系统风险(特异风险)两部分,提供了确定资产预期回报率的方法。
CAPM认为,投资者应该通过以无风险资产利率为基准,根据投资组合整体风险水平确定预期回报率。
投资组合理论和CAPM在投资决策中起着重要的作用。
投资组合理论强调通过选择不同相关性的资产来实现分散投资,降低整体风险。
投资者可以通过投资不同资产类别(如股票、债券、房地产等)来达到分散投资的目的。
而CAPM通过考虑整个市场风险来确定资产预期回报率,为投资者提供了估计资产预期回报率的方法,从而辅助投资者做出投资决策。
然而,投资组合理论和CAPM也存在一些局限性。
首先,投资组合理论和CAPM都是基于一系列假设和简化条件建立的,如理性投资者、完全市场、无摩擦成本等,因此在实际应用中存在局限性。
其次,CAPM是基于市场均衡的理论,没有考虑其他因素对资产价格的影响,如宏观经济因素、公司基本面等,因此在预测和解释市场波动方面具有一定的局限性。
投资组合管理中的资产配置模型

投资组合管理中的资产配置模型资产配置是投资组合管理中的重要环节,旨在平衡投资者的风险和回报预期。
为了实现这个目标,投资者需要借助资产配置模型,将资金分配到不同的资产类别中。
本文将介绍几种常见的资产配置模型,包括马科维茨均值-方差模型、资本市场线模型和资产组合的最优分配模型。
1. 马科维茨均值-方差模型马科维茨均值-方差模型是资产配置中最经典的模型之一。
它通过考虑不同资产之间的相关性和预期收益率来计算资产的风险和预期收益。
该模型的核心思想是通过分散投资来降低风险,即在多个资产之间进行组合投资。
具体来说,该模型通过计算投资组合的期望收益率和方差,并构建有效边界,找到具有最佳收益风险比的投资组合。
2. 资本市场线模型资本市场线模型是基于资本资产定价模型(CAPM)的资产配置模型。
它认为投资组合的预期收益率应该与投资组合的贝塔值相关,贝塔值反映了投资组合相对于市场的风险敏感度。
该模型通过选择合适的贝塔值来实现投资组合的最优配置。
具体来说,投资者可以通过加权分配市场组合和无风险资产来确定最佳配置比例,以实现期望收益率与风险的平衡。
3. 资产组合的最优分配模型资产组合的最优分配模型是基于现代投资组合理论和均值-方差分析的模型。
它通过将资产配置问题转化为数学规划问题,以找到投资组合的最优分配比例。
具体来说,该模型考虑投资者的风险偏好和预期收益率,通过最小化投资组合的风险和最大化投资组合的预期收益率,找到最佳的资产配置比例。
综上所述,投资组合管理中的资产配置模型对于实现投资目标至关重要。
不同的模型可以根据投资者的需求和风险偏好进行选择和应用。
通过合理的资产配置,投资者可以在获取较高回报的同时有效控制投资风险,最大化投资组合的效益。
然而,投资决策需要基于充分的市场研究和分析,以及对资产配置模型的准确理解和应用。
均值—方差证券资产组合理论

均值—方差证券资产组合理论1. 简介均值—方差证券资产组合理论,也被称为马科维茨模型,是现代投资组合理论的基础。
该理论由美国经济学家哈里·马科维茨于1952年提出,并在1959年获得了诺贝尔经济学奖。
这一理论通过权衡资产组合的预期收益率和风险来寻找最佳的投资组合。
2. 理论原理均值—方差证券资产组合理论的核心原理在于风险与收益之间的平衡。
根据该理论,投资者可以通过有效的资产配置,实现在给定风险水平下最大化投资组合的预期收益率。
具体来说,均值—方差模型在计算资产组合时,考虑了以下两个重要指标:2.1 均值均值指的是资产组合的预期收益率。
通过对各个资产的历史数据进行分析和估计,可以计算出每个资产的预期收益率,并据此求得资产组合的整体预期收益率。
2.2 方差方差表示资产组合的风险程度。
在均值—方差模型中,方差用于衡量资产之间的波动性和相关性。
如果两个资产的收益变动具有较高的相关度,那么它们之间的方差较小;反之,如果两个资产的收益变动独立或者相关度较低,那么它们之间的方差较大。
3. 资产组合优化基于均值—方差证券资产组合理论,投资者可以通过优化资产组合来实现风险与收益之间的最佳平衡。
具体的资产组合优化包括以下几个步骤:3.1 数据准备在优化资产组合之前,首先需要收集并整理相关的数据。
这些数据包括各个资产的历史收益率、期望收益率以及方差。
通常,投资者可以通过金融数据提供商或者证券公司获取这些数据。
3.2 风险-收益曲线通过对各个资产的历史数据进行分析和计算,可以得到不同投资组合的风险和收益指标。
在优化资产组合之前,投资者可以绘制出风险-收益曲线,以便直观地了解不同投资组合之间的收益和风险的关系。
3.3 最优组合根据风险-收益曲线,可以找到在给定风险水平下具有最高预期收益率的投资组合。
这个投资组合被称为最优组合,也是均值—方差模型的核心输出。
3.4 边际效益在确定最优组合后,投资者可以通过计算边际效益来衡量每个资产对投资组合的贡献。
马科维茨资产组合选择模型

马科维茨资产组合选择模型马科维茨资产组合选择模型是20世纪50年代由美国经济学家哈里·马科维茨提出的,它是一个经典的现代资产组合理论,被广泛应用于投资组合的构建和风险管理。
资产组合是指通过分散投资降低风险,并在不同资产之间实现收益最大化的组合。
在构建资产组合时,投资者需要考虑资产的收益、风险和相关性等因素。
马科维茨模型的核心思想是通过优化投资组合来实现最大化的收益和最小化的风险。
根据马科维茨模型,投资者可以通过以下步骤来构建资产组合:1、确定可用投资对象和资产的收益率和标准差等风险指标。
2、计算不同资产之间的相关系数,以了解它们之间的关联程度。
3、通过计算每种资产的预期收益率、标准差和相关系数来确定每种资产所贡献的效用。
4、通过计算各种资产之间的交叉效用来确定资产组合的整体效用。
5、通过最小化投资组合的风险,并使投资组合达到预期收益的最大化,确定最优化投资组合。
6、定期对投资组合进行调整和监控,以确保投资组合与风险偏好的变化相适应。
马科维茨模型的关键在于寻找最优化资产组合,最优化资产组合是指在给定风险水平下,能够实现最大化预期收益率。
根据模型,投资者需要构建一个有效前沿,这个前沿代表每种风险水平下最高预期收益率所对应的资产组合。
有效前沿显示了投资者能够在不增加风险的情况下获得更高的预期收益率。
马科维茨模型的优点在于它提供了一种科学的方法来构建有效的资产组合,并帮助投资者理解不同资产之间的相关性。
它还提供了一种定量方法来评估不同的投资策略,并可以根据实际情况对投资组合进行调整。
但是,马科维茨模型也有一些限制。
首先,该模型假设投资者是理性决策者,能够准确估计预期收益和风险。
其次,该模型不考虑市场的非理性和不确定性因素,这些因素可能会导致投资组合的价值下降。
此外,该模型还假设市场是有效的,即所有的投资者都具有相同的信息,从而导致资本市场行为的分散性问题被低估。
总的来说,马科维茨资产组合选择模型是一种基于现代资产组合理论的有效工具。
markowitz的文献综述

文献综述:Markowitz的资产组合理论随着金融市场的不断发展,投资者对资产配置和风险管理的需求愈发迫切。
在这个方兴未艾的环境下,哈里·马科维茨(Harry Markowitz)于1952年提出了著名的资产组合理论(Modern Portfolio Theory),该理论对资产组合和风险管理产生了深远的影响。
本文将对Markowitz的资产组合理论进行综述,探讨其核心理念、应用价值以及未来发展趋势。
一、资产组合理论的核心理念1.1 效用理论Markowitz的资产组合理论建立在效用理论的基础之上。
他提出,投资者的最终目标不是简单地追求收益最大化,而是在一定风险水平下追求效用最大化。
投资者的投资决策不仅取决于预期收益,还应考虑风险水平和资产之间的相关性。
1.2 效率前沿Markowitz将资产组合理论建模为一个多目标优化问题,他提出了“效率前沿”的概念。
效率前沿是指在给定风险水平下,投资组合所能达到的最大收益,或者在给定收益水平下,投资组合所能达到的最小风险。
通过对效率前沿的研究,投资者可以找到最优的资产配置方案。
1.3 马科维茨方差-收益均衡模型Markowitz提出了著名的方差-收益均衡模型,该模型将投资组合的风险定义为收益的方差,将投资组合的收益定义为期望收益。
他指出,投资者在选择资产配置方案时应该追求一种均衡,即在风险和收益之间取得最佳的折衷。
二、资产组合理论的应用价值2.1 风险管理Markowitz的资产组合理论为风险管理提供了重要的思路。
通过对资产之间相关性的分析和有效的风险分散,投资者可以在一定程度上规避风险,提高投资组合的抗风险能力。
2.2 盈利机会资产组合理论也为投资者提供了寻找盈利机会的方法。
通过对不同资产类别和不同资产之间相关性的分析,投资者可以发现低相关性的资产,实现有效的分散,从而获取更高的收益。
2.3 资产配置决策资产组合理论已经被广泛应用于资产配置决策中。
马科维茨投资组合理论模型

马科维茨投资组合理论模型
1 马科维茨投资组合理论
马克·科维茨(Markowitz)投资组合理论是一种采用数学工具来评估投资组合最优化的价值投资方法。
它的目的在于帮助投资者实现取得最大的投资回报,同时将风险保持在一个更合理的水平。
科维茨说,有一种投资组合可以达到最大的投资回报,其风险跟另一种投资组合相同。
也可以用资本资产定价模型(CAPM)来实现这一点。
2 科维茨假设
马克·科维茨(Markowitz)投资组合理论假设只有两个因素可以影响投资组合的收益:风险和期望收益。
科维茨假设个体投资者都有一个趋向于尽可能获得最大回报的目标,他认为这是投资目标的核心原则。
为了实现最高的投资回报,投资者应根据他们的投资目标和风险容忍度,以及预期投资行业的收益率,制定一个体面的投资组合,使之尽可能获得最大的投资回报。
3 评估投资组合
马克·科维茨(Markowitz)投资理论定义了两个投资组合评估指标:1)期望收益,2)投资组合的系统性风险。
期望收益作为投资组合的衡量指标,是投资组合在一定时间内的有效收益的预期值。
投资组合的系统风险是投资组合的整体风险,可以由波动率和夏普比率来衡量。
4 总结
马克·科维茨(Markowitz)投资组合理论引入了投资领域众多新的概念,其中包括期望收益,系统性风险,夏普比率等指标,为投资者制定投资组合,获得最大回报提供了可靠可行的途径,并成为当今价值投资的重要理论基础。
10—1马克维茨的资产组合理论

23
最优投资组合(T)的确定
E(RP )
I3 T
I2 I1 B
N
A
O
P
24
补充:系统性风险的衡量(市场模型、指数 模型、对角线模型)
(1)定义:证券市场处于均衡状态时的所有证券按 其市值比重组成一个“市场组合”(m),这个组合 的非系统性风险将等于零。
13
例 2:同前例,不同的是,此时 A 与 B 的相关系数为 0,组合后的结果也可以用图 3 来说明。
E(RP )
E(RB )
B
=0
E(RA )
A
0
A
B
P
图 3 完全不相关时的组合收益与风险的关系
14
思考:
➢ 假设仅由两项证券资产A和B构成证券组合。A 的期望收益率E(RA)=5%,标准差σA=20%;B 的期望收益率E(RB)=15%,标准差σB=40%;
WB
A A B
因此,当投资组合 WB
A A B
时( W A
B A B
),组合完全回避了风险。
17
例 3:同前例,不同的是ρAB=-1。上述结论可以用图 4 来说明。
E(RP )
E(RB )
B
=﹣1
E(RA )
A
0
A
B
P
图 4 完全负相关时的组合收益与风险的关系
18
结论
➢ 1.资产组合的收益与资产收益间的相关性无 关,而风险则与之有很大关系;
系数为1的时候,组合收益 也是组合风险 的线性函数。
10
证明:
∵σp=WAσA+WBσB =(1-WB)σA+WBσB =σA+WB(σB-σA)
6第六讲 现代投资理论:马科维茨投资组合选择理论(E-V)(PPT)

Harry Markowitz1952年在Journal of Finance上发表了
现代投资理论
之二:投资组合理论 张璟
一篇名为portfolio selection的文章,在其分析中引入了统计 上的均值—方差[mean-variance,E-V][或标准差]概念来衡 量证券或证券组合的收益与风险,并对投资组合和选择问 题进行了研究。1959年,他出版了同名著作,进一步阐述 了投资组合问题。 Markowitz的研究被认为是历史上首次对投资领域中收 益和风险运用现代微观经济学和数理统计的规范方法进行 的全面研究 [Miller,1999],是现代投资组合理论的起点。
金融学院金融学系
金融学院金融学系
2.无风险资产与风险资产[组合]的组合
四、引入无风险借贷后的理论拓展
1.无风险资产的特点 9标准差为0,即σRf=0; 9收益率是确定的或已知的; 9与任意风险资产收益率之间的协方差为0,即σiRf=0 ;
假定风险资产和无风险资产在投资组合中的比例分别 为Wr和WRf,各自的预期收益率分别为ERr和Rf,标准差分 别为σr和0,二者的协方差显然为0,我们可以得到:
金融学院金融学系
[1] [2]
图6-1两种证券的风险—收益关系
预期收益率
ρ12 = 0
ERAσ B + ERBσ A 0, D σ A +σB
ρ12 = 0.5
(σ A , ER A )
ρ12 = 1
B.允许卖空 例6-1:我们仍然以表5-2中股票1和2为例。 预期收益率 15%
σp
金融学院金融学系
金融学院金融学系
三、理论评价
1.Markowitz投资组合理论的贡献 9Markowitz的投资组合理论建立了一系列的基本概念,运 用统计学的均值和方差[标准差]等概念为金融资产的风险 与收益分析提供了科学的依据,使得以均值衡量收益、方 差[标准差]衡量风险的现代风险分析基本框架在现代金融 理论中得到确立; 9该理论提出的有效投资组合概念和投资组合分析方法大 大简化了投资分析的难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资产组合和定价理论1马柯维茨的资产组合理论
发布人:圣才学习网发布日期:2010-06-02 14:24 共149人浏览[大] [中] [小]
马柯维茨(Harry Markowitz)1927年8月出生于芝加哥一个店主家庭,高中毕业后进入芝加哥大学读经济系。
在研究生期间,他作为著名的经济学家、线性规划专家库普曼(Koopmans)(1975年诺贝尔经济学奖得主)的助理研究员,参加了考尔斯经济研究基金会组织的证券市场研究工作。
马柯维茨运用在库普曼教授的课堂中学到的线性规划知识来处理收益与风险的权衡问题,给出了选择最佳资产组合的方法,在此基础上完成了博士论文《资产组合的选择》。
从当时论文答辩委员、以后成为经济学巨擘的弗里德曼教授的评论中也可以看出马柯维茨论文的创新性。
弗里德曼说,这不是一篇经济学论文,不能授予经济学博士学位,论文讨论的不是经济学、也不是数学或企业管理的论文。
当然,马柯维茨还是顺利地拿到了博士学位。
1952年在《财务学杂志》(Journal of Finance)发表了论文《资产组合的选择》。
这不仅是证券投资理论的重大进展,也标志着现代投资理论发展的开端。
马柯维茨的博士论文题目的确定很有戏剧性,他在考尔斯基金会研究负责人的马查克(Jacob Marschak)教授门外等候接见时,有一个自称是股票经纪人的长者建议他研究股票市场,当马柯维茨把这个想法告诉马查克时,马查克欣然同意,但认为自己的专长不适合做这个方向的导师,就将马柯维茨介绍给芝加哥大学商学院院长、《财务学杂志》主编凯彻姆(Marshal Kerch um)教授。
凯彻姆要马柯维茨去读威廉姆斯的《投资价值理论》一书。
马柯维茨在读书时想到为什么许多时候投资者并不简单地选择内在价值最大的股票,并且在投资时往往同时投资不同的股票,甚至还会同时投资于股票、债券等不同的金融工具。
马柯维茨终于想明白,投资者不仅要考虑收益,还担心风险,投资者分散投资是为了分散投资的风险。
应当先考虑投资的收益和风险,马柯维茨是第一人,譬如,当时在美国投资界很有影响的华尔街经纪人洛布(Gerald Loeb)认为,分散投资是投资者信心不足的表现,曾经在股票市场投资并大有所获的英国经济学家凯恩斯也主张集中投资,认为选择一家保险的公司比选择很多家了解不足的公司要好得多。
马柯维茨运用在库普曼教授的课堂中学到的线性规划知识来处理收益与风险的权衡问题,给出了选择最佳资产组合的方法,在此基础上完成了博士论文。
论文发表以后,马柯维茨继续研究这个问题,1959年出版了《投
资组合选择:有效率分散投资的策略》一书,书中不仅分析了分散投资的重要性,还给出了如何进行正确的分散方法。
1987年马柯维茨又出版了《投资组合选择与资本市场的均值——方差分析》一书,全面阐述了他的资产组合理论。
可以说,马柯维茨的贡献主要是开创了在不确定性条件下理性投资者进行资产组合投资的理论和方法,第一次采用定量的方法证明了分散投资的优点。
他用数学中的均值来测量投资的预期收益,用方差测量资产的风险,通过建立资产组合的数学模型,使人们按照自己的偏好,精确选择一个在确定的风险下能提供最大收益的资产组合。
1990年诺贝尔经济学奖评奖委员会在宣布授予当时在纽约市大学任教的他和芝加哥大学的莫顿·米勒及斯坦福大学的威廉·夏普诺贝尔经济学奖时指出,他提出的不确定性条件下的资产选择理论已成为金融经济学的基础。
下面做简单的介绍。
一般而言,证券投资者最关心的问题就是证券预期收益与预期风险的关系。
证券收益包括两部分:一是证券买卖的差价,二是债息或股利。
如果投资者要预测某种证券的未来收益,只需将该种证券的收益估值乘以不同状态下发生的概率.加总后得出的值便是预期收益。
因此,预期收益实际是表示投资者持有某种证券在一段时间内所获得的平均收益,即收益的期望值,用公式可表示为:
式中,EX代表预期收益;X i代表第i种可能状态下的收益;P i代表第i种状态发生的概率。
对预期收益加以解释和定量化较为容易,而要精确衡量持有证券的风险,即证券收益的不确定性则甚为困难。
马柯维茨运用统计学的方法,将不确定的收益率看作随机变量,用它们的集中趋势,即期望来表示证券预期收益,而用它们的离散趋势,即标准差来度量证券风险的大小,用公式可表示为:
式中,σ代表标准差。
单个证券的投资预期收益和投资风险可直接从概率分布中得出,而证券投资组合的预期收益和风险则必须把各种证券之间的相关关系考虑在内。
证券预期收益之间的相关程度是用相关系数P ij来表示的。
式中,P ij代表i证券与j证券的相关系数;COV ij代表i证券与j证券预期收益的协方差;σi,σj,分别代表i证券与j证券各自的标准差。
投资者一旦确定了各种证券的预期收益和标准差以及各种证券之间的相关性,就可以进一步计算出每一个证券组合预期收益和标准差。
每一个证券组合的预期收益可以通过对其包含的每一种证券的预期收益的加权平均求得,其计算公式如下:
式中,代表证券i的预期收益; x i代表证券i在该证券组合总值中所占比
重(权数),();代表证券组合的预期收益;n代表证券组合中证券种类数。
一个证券组合的标准差的计算必须通过下面公式求得:
式中,代表证券组合的方差;COV ij代表证券i和证券j收益之间的协方差;x i,x j分别代表证券i和证券j的权数。
由此可以看出,证券组合的预期收益和风险主要取决于各种证券的相对比例、每种证券收益的方差以及证券与证券之间的相关程度。
在各种证券的相关程度、收益及方差确定的条件下,投资者可以通过调整各种证券的购买比例来降低风险。
通过上述的资产组合分析,我们可以在一个可能的收益和风险范围内,对若干种已确认可以投资的证券,通过调整各种证券的购买比例来建立不同的证券组合,这些组合就构成了一个可行集,可行集的形状如图2-1所示。
在可行集提供的证券组合的所有可能的方案中,投资者可以通过有效集定理找到有效集。
有效集定理可以表述为:一个投资者能够从下面一组证券组合中选择到他所期望的最佳证券组合:
(1)在各种风险条件下,提供最大预期收益率;
(2)在各种预期收益水平下,承担最小风险。
同时满足这两个条件的一组证券组合,称之为有效集或有效组合,在马柯维茨的模型图中这套有效组合的位置处在一条左上方的曲线上,即曲线FEAG,又称为有效边界。
投资者投资于有效边界就是满足了上述两个条件的所期望的最佳投资组合。
图2-1 可行集与有效边界。