第六章 理想流体不可压缩流体的定常流动
3、理想流体的定常流动

ΔS·V=常数C
1)原理:在同一流管中,对不可压缩的流体而 言,流体的流速和流管的横截面积之 积为一恒量,叫体积流量。 2)流量单位:m3/s 应用: 在流量不变的情况下,流管中横截面积大的地 方,流速小;流管中横截面积小的地方,流速大
回 目 录
ΔS·V=常数C
成立的前提之一是流量Q不变
毛细管的面积之和 大于主动脉的横截面 V毛细 << V主动脉
1 2 gh p v C 2
人的脚在心脏之下约1.35m处, 脚步上血压多大? ρ =1.05×103 Kg/米3 P主=100 mmHg Δ h=1.35 m
gh脚 p脚 gh p 主 主 则P脚-P主=ρ g(h主 – h脚)
=1.05×103×9.8×1.35 =103 P脚=203 mmHg mmHg 整天站立
S
解: 出水速度应为
水平距离为
2
v出口 2 g ( H h) S v出口 t
g
而 h 1 gt 2 得 t 2h
S=
2h 2 g ( H h) g
4( H h)h
要得到S的最大值, 可以求下式的极值
H 为开口向下抛物线的最高点 h 2
H V出口 h S 普本作业:再做4-4 从“伯”推出出口速度
微重状态对人体的生理影响 影响1、生理平衡系统 影响2、心血管 影响3、肌肉组织 影响4、骨骼
9.8m/S2
身体上部血液流量加大
造成胸腹和大脑的高血压 上部有肿胀之感觉 四天太空飞行之后血流量减少20%左右 宇航员回到地面后 补偿方法: 飞行服 调节压力 使下身的外部压力小一些,则下身血管净 压力比上身血管净压力更大一些,于是促 使血液从上部往下部流。
工程流体力学课件 第06章 流体流动微分方程 - 4

时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )
流体力学复习提纲及答案 交大

切向应力与流体的角变形率成正比 应力张量 σ xx τ xy τ xz
τ yx σ yy τ yz τ zx τ zy σ zz
九个应力分量中只有六个是独立的
二、计算
1、积分形式的动量方程、连续方程同伯努利方程的综合应用; (注意坐标系、控制体的选取、 受力分析时尤其要注意表压力是否存在)
1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。的特点; 方向垂直于作用面,并指向流体内部 静止流体任意点处静压强的大小与其作用面方位无关,只是作用点位置的函数 理想流体压强的特点(无论运动还是静止) ;
p = f (x , y ,z ) 静压强的大小与其作用面方位无关,只是作用点位置的函数
DN ∂N ∂N ∂N ∂N = +u +v +w Dt ∂t ∂x ∂y ∂z
DN 流体质点的物理量 N 随时间的变化率 Dt ∂N 空间点上的 N 随时间的变化率,由物理量场的非定常性引起 局部导数或当地导数 ∂t u ∂N ∂N ∂N +v +w 由物理量场的非均匀性引起的 N 的变化率 位变导数或对流导数 ∂x ∂y ∂z
/
µ 反应流体真实粘性的大小 ν 不能真实反应流体粘性的大小
µ ρ
理想流体的定义及数学表达 粘性系数为零的流体
µ = 0
牛顿内摩擦定律(两个表达式及其物理意义)
τ = µ du dy
粘性切应力与层间速度梯度成正比,而不由速度决定
τ =µ
dα dt 粘性切应力与角变形率成正比,而不由变形量决定
粘性产生的机理,粘性、粘性系数同温度的关系 液体:分子间内聚力 温度上升,粘性系数增大 气体:分子热运动 温度上升,粘性系数减小 牛顿流体的定义 符合牛顿内摩擦定律的流体 3、可压缩性的定义 压强变化引起流体体积或密度变化的属性 体积弹性模量的定义、物理意义及公式 =−
6第六章伯努利方程及其应用

0 ,质量力有势(3) f U ,兰姆方程为: 假设流动为定常(2) t
左边是标量场的梯度,标量梯度在某一方向的 投影,等于标量在该方向的方向导数。等式反 映了四个向量的平衡关系,他们投影到某一方 向仍然是平衡的。在流场中做任意曲线L,将上式在曲线的微元弧线 (切线)上投影,有: V2 1 p U ( ) (V )l l 2 l l
第一节 伯努利定理
在流体静力学中,我们曾引入过压力函数的概念,现在在推导伯 努利方程之前,我们先对压力函数的性质在作进一步的分析。
一、压力函数分析
在流体静力学中,对于密度仅是压力 的函数的正压流体,引入了压力函数:
我们考察流场中的任意一条曲线L,规定线上的某点o为原点,因 此曲线L上的任意一点能用该点到o弧长 l 表示,而dl 表示曲线弧的微 元长度。显然,在曲线L上,密度和压力是弧长 l 的函数,并且在不 同的曲线L上,其函数也是不同的,这样速度和压力就可表示为:
第二节
伯努利方程的应用
在应用伯努利方程时,要注意它的应用条件,在确认求解问题符 合方程的应用条件后,关键就是要正确的选取计算点或计算截面,即 公式中的的①、②位置,选取的一般原则:1、包含未知数的截面; 2、包含已知数最多的截面。必要时,伯努利方程可以与连续方程联 立,以求解两个未知数。
一、容器小孔出流问题
常见的正压场有:
1、不可压缩流场:
2、完全气体等温流场:
3、完全气体的绝热等熵流场 :
在现实问题中最常见的是第一种和第三种流场。比如对于液体,一般 就可以视为不可压缩流场。对于气体,当流速较低时,今后会讨论到, 也可以视为不可压缩流场;而当流速较高时,由于其导热系数小,又 可以视为绝热流场。
流体力学——定常流动

vA
A
d B
d+h
图8 测流速原理
如图6.8所示,A点的流速为VA, 该点在水面下 的深度为d, 故该处的压强PA =ρgd, B点在管 口之前,流速VB=0,压强PB=ρg(d+h), 根据 伯努利方程 PA v A PB 所以,
vA
PB PA
gh
27
泊肃叶公式 无限长刚性圆管内稳定层流的黏 滞性规律有如下公式
P P Q ( )R l
其中,Q为体积流量,P1,P2为圆管两端的压 强,R为圆管的半径,l为管长。当流速小, 管子细,黏滞系数大,泊肃叶公式很准确, 它可用于测量黏滞系数。
例7 人的某根血管内半径为4*10-3M,流过 血管的血液流量
S2 S2’ S1 S1’
v2
v1
h2
h1
图5 推导伯努利方程
由于理想流体不可压缩有:Δm1=Δm2=Δm Δt时间内动能变化: ΔEk=1/2Δm V22 —1/2Δm V12 Δt时间内外力作功 S1处,压力f1=P1 S1 ,正功W1= f1V1Δt S2处,压力f2=P2 S2 ,负功W2= - f2V2Δt 重力作负功:W3= -Δm g(h2—h1) 总功W= P1S1V1Δt-P2S2V2Δt-Δmg(h2-h1) 根据连续性原理,V1S1=V2S2=Δm/ρΔt 综合上式有,W=(P1 -P2)Δm/ρ-Δmg(h2—h1)
根据动能定理:外力作功等于动能的增量,
(P1 —P2 )Δm/ρ-Δm g(h2—h1)=1/2ΔmV22-1/2Δm V12
得:P2 + 1/2ρV22 +ρgh2 = P1 + 1/2ρV12 +ρgh1 即对于定常流动的理想流体中同一根流线上 (或同一根细流管内)的任意一点,有
第六章理想流体不可压缩流体的定常流动

(粘性系数为常数)
Du 1 p 2u 2u 2u gx Dt x x 2 y 2 z 2
Dv 1 p 2v 2v 2v gy 2 2 2 Dt y x y z
流动条件,截面为A 1、A 2,平均速度为V 1、
V 2,流体密度为ρ. 由一维平均流动伯努利方程
V12 p1 V22 p gz1 gz 2 2 2 2
移项可得
(a)
V22 V12 p p ( gz1 1 ) ( gz 2 2 ) 2
(b)
文特里流量计:一维平均流动伯努利方程 A1、A2截面上为缓变流,压强分布规律与U 形管内静止流体一样,可得
讨论: 1、上式为非定常不可压缩理想流体欧拉运动微分方程。 DV 0 上述方程变成流体静力学中的欧拉平衡微分方程。 2、 Dt 1 g p 0 V 0 此时的理想流体欧拉运动微分方程变成定常不可压缩理 3、 t 想流体欧拉运动微分方程。 1 V V g p
基本方程组:
动量方程:
u u u 1 u v fx t x y v v v 1 u v fy t x y
p x p y
V 1 V V g p t
定常
连续性方程:
V 不考虑重力 0 t u v w D 0 Dt x y z u v 0 x y v u 0 x y
ρ,U 形管中液体密度ρm .
求:
用液位差Δh表示流速v
毕托测速管 解: 设流动符合不可压缩无粘性流体 定常流动条件。 AOB线是一条流线(常称为零流线), 沿
第六章 不可压缩理想流体平面无旋流动

ϕ = xV∞ cos α + yV∞ sin α + c1 ∂ψ ∂ψ dψ = dx + dy = −V∞ sin α dx + V∞ cos α dy
∂x ∂y
ψ = − xV∞ sin α + yV∞ cos α + c2
令通过原点的流函数及势函数及势函数的值为零,则 c1 = c2 = 0 ,最后得到均匀场速度势与流函数为
V×V = 0
将V = ∇ϕ 及 V = ∇ψ × k 代入,得
V × V = ∇ϕ × (∇ψ × k ) = (∇ϕ ⋅ k )∇ψ − (∇ϕ ⋅ ∇ψ )k = −(∇ϕ ⋅ ∇ψ )k = 0
∇ϕ ⋅ ∇ψ = 0
所以
§ 9-4 不可压理想流体平面无旋流动的 复势与复速度
一.复势与复速度
2 2
1 d[(x − x0 ) +(y − y0 ) ] 2 2 σ 1 2 d ln σ 2
Γ φ = ∫ dφ + const = − ln σ + const 2π Γ ln σ φ= − 2π y − y0 Γ arctg ϕ= 2π x − x0 Γ ' ϕ= ε 2π
Γ ' ⎛ Γ ⎞ χ = ϕ + iφ = ε + i ⎜ − ln σ ⎟ 2π ⎝ 2π ⎠ iΓ ⎡ iε ⎤ =− ln σ + ln e ⎥ ⎣ ⎦ 2π ⎢ iΓ iε =− ln σ e 2π iΓ =− ( z-z0 ) 2π iΓ χ ( z ) = − ( z-z0 ) 2π
一、流函数的定义
∂ρ + ∇i( ρV ) = 0 ∂t ∇iV = 0 ∇i( ρV ) = 0 ∂ = 0 ,Vz = 0 ∂z 1 ⎛ ∂h2 ρV1 ∂h1ρV2 ⎞ ∇iV = + ⎜ ⎟=0 h1h2 ⎝ ∂q1 ∂q2 ⎠
长沙理工 流体力学是非题、选择题、思考题

第一章流体及其物理性质1、在高压下,流体(包括气体和液体)的粘性随着压力的升高而增大。
( )2、流体在静止时无粘性,只有内部发生相对运动时才有粘性。
( )3、。
流体在静止时无粘性,只有在流体微团发生相对运动时才有粘性。
( )4、当两流层之间残生相对运动时,单位面积上的内摩擦力与速度梯度成反比。
( )5、构成气体粘性主要因素是气体分子间的吸引力。
( )6、根据牛顿内摩擦定律,流层间的摩擦切应力与速度梯度成正比,而与压力无关。
( )7、理想流体必须具备两个条件:一是不具有粘性,二是不可压性。
( )8、流体在静止时无粘性,只有在内部发生相对运动时才有粘度。
( )9、在无粘性流体中,不管是否运动,都不会产生切应力。
( )10、流体的粘性随温度的升高而减小。
( )11、静止的不可压缩流体的密度并非处处都为同一常数,只有即为不可压缩流体,同时又是均质时,密度才时时处处都是同一常数。
( )12、静止流体无粘性,即切应力等于零。
( )13、由于粘性是流体的固有属性,因此粘性流体在静止是应该存在切应力。
( )第一章流体及其物理性质1、如果在某一瞬间使流体中每个流体微团的密度均相同,则这种流体一定是( )。
A、可压缩流体;B、不可压缩流体;C、均质流体;D、非均质流体;2、牛顿内摩擦定律告诉我们( )。
A、作用于流层上切向应力与压力成正比;B、作用于流层上切向应力与速度梯度成正比;C、作用于流层上切向应力与速度梯度成反比;D、作用于流层上切向应力与流层面积成反比;3、流体的特点是( )。
A、只能承受微小剪切力作用;B、受任何微小压力都能连续变形;C、当受到剪切力作用时,仅能产生一定程度的变形;D、受任何微小剪切力作用将发生连续变形;4、在地球的重力场中,流体的密度和重度的关系为( )。
A、gργ=;B、gργ=;C、ργg=;D、γρg=;5、流体是那样一种物质,它( )。
A、不断膨胀,直到充满任意容器;B、实际上是不可压缩的;C、不能承受切应力;D、在任意切应力作用下,不能保持静止;6、流体的力学特征为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厚度)的体积流量等于两条流线的流函数之差,
与流线形状无关。
QAB
ABVndS
dx dy
AB x
y
B d
A
B A
§4 理想不可压缩流体的平面势流
三、速度势函数
1、速度势函数 存在的条件:
在无旋流动中每一个流体微团的速度都要以下条件:
u w z x
v u x y
w v y z
u v 0 x y
u v (连续性方程) x y
udy vdx 0 (流线方程)
根据数学分析可知,不可压缩流体平面流动的连续性条件是 udy vdx 0 成
为某一函数全微分的充分和必要条件,这个函数为流函数 。
d dx dy vdx udy
x
y
u
y
v
x
§4 理想不可压缩流体的平面势流
p4 p5 m gh p3 m gh
及
z4 z5 h z3 h
将上两式代入(d)式可得
gz 2
p2
g(z3
h)
p3
m gh
(e)
文特里流量计:一维平均流动伯努利方程
将(c)、(e)式代入(b)式,整理后可得
V22 V12 ( m 1)gh
2
由连续性方程
V2
A1 A2
V1
由一维平均流动伯努利方程
V12 2
gz1
p1
V22 2
gz2
p2
(a)
移项可得
V22
V12 2
(gz1
p1
)
(
gz
2
p2 )
(b)
文特里流量计:一维平均流动伯努利方程
A1、A2截面上为缓变流,压强分布规律与U 形管内静止流体一样,可得
gz1
p1
gz3
p3
(c)
gz2
p2
gz4
p4
(d)
(3),(5)位于等压面上,p3= p5,由压强公式
v u y
fx
1
p x
v t
u v x
v v y
fy
1
p y
V
V V
g
1
p
t
不可压缩
u v 0 或 V 0 x y
定常和不定常都适应
v
定常
V 0
t
§3 理想不可压缩流体的一元流动
二、理想、不可压缩流体一元定常流动的基本方程
沿流线的一元流动微分方程
V V f 1 p
l
l
f grad ∏为力势函数 l
DV
g
1
p
2V
Dt
§3 理想不可压缩流体的一元流动
理想、不可压缩流体
u t
u
u x
v
u y
w u z
gx
1
p x
v t
u
v x
v
v y
w v z
gy
1
p y
w t
u
w x
v
w y
w w z
gz
1
p z
v
DV g 1 p
Dt
V
V V
g
1
p
t
§3 理想不可压缩流体的一元流动
DV g 1 p
§3 理想不可压缩流体的一元流动
沿同一条流线 的伯努利方程
V12 2
gz1
p1
V22 2
gz2
p2
V22 2
V12 2
g(z2
z1)
p1 p2
伯努利方程的几何意义和能量意义
z p V2 H
g 2 g
位势头
静压头
质点的位置高度 相当的高度
速度头 总机械能
相当的高度
伯努利方程中每一项的量纲与长度单位相同,表示
平面势流流动:
1、平面上任何一点的速度、加速度都平行于所在平面,由两个坐标唯一确 定该点的流动参数,且流动是无旋的。
2、满足上述要求的有轴对称流动问题和相互平行的所 有平面上的流动情况完全一样的流动问题
3、在实际情况中不存在平行平面完全一样的流动。 为了简化,这类问题只是近似地作二元流动问题来处理
§4 理想不可压缩流体的平面势流
p0 p (m )gh
(e)
由(c) , (e)式可得
(m
) gh
k
1 2
v 2
(d)
k 称为毕托管系数。由(d)式可得
v k( m 1) 2gh
伯努利方程的应用
3)文特里管流量计
已知: 文特里管如图所示 求: 管内流量Q
文特里流量计:一维平均流动伯努利方程
解: 设流动符合不可压缩无粘性流体定常流 动条件,截面为A 1、A 2,平均速度为V 1、V 2, 流体密度为ρ.
三元流动
u t
u
u x
v
u y
w
u z
gx
1
p x
v t
u
v x
v
v y
w
v z
gy
1
p y
不可压缩
V
V
V
g
1
p
t
u v w 0 或 V 0 x y z
w t
u
w x
v
w y
w
w z
gz
1
p z
定常和不定常都适应
v
定常
V 0
t
§3 理想不可压缩流体的一元流动
二元流动
u t
u u x
连续性方程: 适用于不可压缩和可压缩,定常和非定常流动。
u v w 0
t x y z
D
Dt
u x
v y
w z
0
讨论: 1、定常流动:
0 V 0
t 适用于不可压缩和可压缩流动
2、不可压缩流动: D 0
Dt
V 0
适用于定常和非定常流动
§3 理想不可压缩流体的一元流动
理想、不可压缩流体基本微分方程组
§3 理想不可压缩流体的一元流动
一、流体运动的基本方程回顾
动量方程: 粘性、不可压缩流体
N-S方程
(粘性系数为常数)
Du Dt
gx
1
p x
2u x2
2u y 2
2u z 2
Dv Dt
gy
1
p y
2v x2
2v y 2
2v z 2
Dw Dt
gz
1
p z
2w x2
2w y 2
2w z 2
x
y
上 d 0 ,流函数 都有各自的常数值,流函数的等值线就是流线。
§4 理想不可压缩流体的平面势流
4、对于不可压缩流体的平面势流,流函数满足拉普拉斯方程,流函数也是调和
函数。
u
y v
x
z 0
v u 0 x y
2
x 2
2
y 2
2
0
满足拉普拉斯方程
5、平面流动中,通过两条流线间任意一曲线(单位
伯努利方程: 理想、不可压缩、定常平面流动,不考虑重力,无旋流动
p 1 V 2 C '
2
讨论:和一元伯努利方程形式完全相同,但 1、一元方程只适用于同一条流线,与流动是否有旋无关 2、二元方程是在无旋下得到的,适用于整个流场
§4 理想不可压缩流体的平面势流
二、流函数 1、流函数的引入
对于不可压缩流体的平面流动有连续性方程如下:
(2)在小孔出口,发生缩颈效应.设缩颈处的截面积为A e,缩颈系数ε
小孔出流量
Ae
A
收缩截面面积 / 孔口面积 (c)
Q vAe vA A 2gh
(d)
小孔出流:托里拆里公式及缩颈效应
收缩系数ε与孔口边缘状况有关,实际的孔口流速会
比理论流速低一些,可以定义速度系数k,即实际平均速
度/理论速度。
重力场中的一元流动微分方程
V V 1 p
l l Hale Waihona Puke lfl g cos g z l
§3 理想不可压缩流体的一元流动
沿流线积分
V V 1 p
l l l
1V 2
2
dp
C
C
gz
V 2 gz p C
2
伯努利(Bernoulli)方程
在重力作用下,不可压缩理想流体作定常流动时,沿同一条流线单位质量流体 的位势能、压强势能和动能的总和保持不变,但可转换。
锐角边ε= 0.61~0.66, k=0.97~0.99
流线型圆弧边ε=1.0,k=0.98
内伸管ε= 0.5,
实际孔口出流应为:
Q kA 2gh A 2gh (e)
上式中μ= kε,称为流量修正系数,由实验测定。
讨论2:上述各式均只适用于小孔情况(孔直径d≤0.1h),对大孔口(d >0.1h)应 考虑速度不均匀分布的影响。
伯努利方程的应用
2)毕托测速管
已知: 设毕托管正前方的流速 保持为v,静压强为p,流体密度为 ρ,U 形管中液体密度ρm .
求: 用液位差Δh表示流速v
毕托测速管
解: 设流动符合不可压缩无粘性流体 定常流动条件。
AOB线是一条流线(常称为零流线), 沿流 线AO段列伯努利方程
v2 2
gz A
p
v02 2
Dt
V
V V
g
1
p
t
讨论:
1、上式为非定常不可压缩理想流体欧拉运动微分方程。
2、 DV 0 上述方程变成流体静力学中的欧拉平衡微分方程。 Dt