山东省青岛二中2019-2020学年高一上学期期中考试数学试卷及答案
山东省青岛市2019-2020学年高一上期中数学试卷及答案

当 x 0 时, x x x2 3 x3 x 0 ,此时集合共有 1 个元素,
当 x 0 时, x x x2 3 x3 0 ,此时集合共有 2 个元素,
5
综上所述,此集合最多有 2 个元素.
故选: A .
【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用 分类讨论思想,对 x 分三种情况进行讨论,是基础题.
B.
a
若
b
,则
a>b
cc
C. 若 a3>b3 且 ab<0,则 1 1 ab
D. 若 a2>b2 且 ab>0,则 1 1 ab
【答案】C
【解析】
【分析】
根据不等式的性质,对 A、B、C、D 四个选项通过举反例进行一一验证.
【详解】A.若 a>b,则 ac2>bc2(错),若 c=0,则 A 不成立;
2.由实数 x,﹣x,|x|, x2 , 3 x3 组成的集合中,元素最多有( )
A. 2 个 【答案】A 【解析】
B. 3 个
C. 4 个
【分析】
D. 5 个
根据绝对值的定义和开平方、立方的方法,应对 x 分 x 0, x 0, x 0 三种情况分类讨论,根
据讨论结果可得答案.
【详解】当 x 0 时, x x x2 , 3 x3 x 0 ,此时集合共有 2 个元素,
x2 + y2 > 2
反之 x=-2,y=-1, x2 + y2 > 2 成立不能推出“ x, y 中至少有一个数大于 1”,
因此“ x, y 中至少有一个数大于 1”是“ x2 + y2 > 2 ”成立既非必要又非充分条件,
青岛二中2019—2020学年第一学期第一学段期中高三模块考试数学试题答案

数学试题 第1页 共3页青岛二中2019—2020学年第一学期第一学段 期中高三模块考试——(数学)试题答案答案:1~10. DBCAA BCBDA 11. ABC 12.BC 13.BCD14.2a 15.1216.16π 17.e18. 【解析】(Ⅰ)在ABC 中,由余弦定理得2221cos 24AB BC AC ABC AB BC +-∠==-⋅.所以sin ABC ∠=. 因为角D 与角B 互补,所以sin sin ADC ABC ∠=∠=,1cos cos 4ADC ABC ∠=-∠=.又32AD CD ⋅=, 所以3cos 2AD CD AD CD ADC ⋅=⋅⋅∠=,即6AD CD ⋅=,所以1sin 2ACDSAD CD ADC =⋅⋅∠=(Ⅱ)在ACD 中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠, 所以2222cos 12AD CD AC AD CD ADC +=+⋅∠=,所以AD CD+=所以ACD 的周长为3AD CD AC ++=.19. 【解析】(Ⅰ)证明:在中,又平面平面ABCD平面平面ABCD=AD ,平面PAD ,又(Ⅱ)如图,作于点O , 则平面ABCD过点O 作于点E ,连接PE ,以O 为坐标原点,以OA,OE,OP 所在直线为x 轴, y 轴,z 轴建立空间直角坐标系,则由(1)知平面DBC 的一个法向量为 设平面PBC 的法向量为则 取设平面DBC 与平面PBC 所成二面角的平面角为 则20. 【解析】(Ⅰ)等差数列{}n a 的公差设为d ,前n 项和为n S ,且120a a +=,515S =, 可得120a d +=,151015a d +=,解得11a =-,2d =,ABD ∆2,3AD BD BAD π==∠=AD BD ∴⊥PAD ⊥PAD ⋂ABCD BD 面⊂BD ∴⊥PAD PD 面⊂BD PD ∴⊥PO AD⊥PO ⊥OE BC ⊥()()(()1,0,0,,,D B p C ---()()1,23,3,2,0,0BP BC =-=-()0,0,1(),,n x y z =00n BCn BP ⎧⋅=⎪⎨⋅=⎪⎩200x x -=⎧⎪⎨-+=⎪⎩即()0,1,2,n =θcos 5θ=数学试题 第2页 共3页则12(1)23n a n n =-+-=-数列{}n b 满足:12b a =,131(2)n n n n n nb a b a b ++++=, 可得11b =,1(21)(61)n n nnb n b n b ++-=-,即为14n nb b +=,所以数列{}n b 是以1为首项,4为公比的等比数列, 可得14n n b -=(Ⅱ)2111111()(5)log 4(1)41n n n c a b n n n n +===-+⋅++ 11111114223144n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫∴=-+-++-= ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦21. 【解析】(Ⅰ)由题意可得⎩⎪⎨⎪⎧1-b 2a 2=34, 4a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=8,b 2=2.故椭圆C 的方程为x 28+y 22=1.(Ⅱ)由题设可知A (-2,-1)、 B (2, 1) 因此直线l 的斜率为12,设直线l的方程为:y =12x +t .由⎩⎪⎨⎪⎧y =12x +t , x 28+y 2 2=1,得x 2+2tx +2t 2-4=0.(Δ>0) 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2t ,x 1·x 2=2t 2-4 ∴k PD +k PE =y 2-1x 2+2+-y 1-1 -x 1+2=(y 2-1)(2-x 1) -(2+x 2) (y 1+1)(2+x 2) (2-x 1)而(y 2-1)(2-x 1) -(2+x 2) (y 1+1)=2(y 2-y 1)-(x 1 y 2+x 2y 1)+x 1-x 2-4=x 2-x 1-x 1·x 2-t (x 1+x 2) +x 1-x 2-4=-x 1·x 2-t (x 1+x 2)-4 =-2t 2+4+2t 2-4=0即直线PD 、PE 与y 轴围成一个等腰三角形.22. 【解析】(Ⅰ)依题意,(0.0050.0350.028)101a b ++++⨯=, 故0.032a b +=; 而0.016a b -=,联立两式解得,0.024,0.008a b ==;所求平均数为550.05650.24750.35850.28950.08⨯+⨯+⨯+⨯+⨯2.7515.626.2523.87.676=++++=;(Ⅱ)(i )因为一款游戏初测被认定需要改进的概率为223333C (1)C p p p -+,一款游戏二测被认定需要改进的概率为1223C (11(1)p p p ⎡⎤---⎣⎦, 所以某款游戏被认定需要改进的概率为:2233122333C (1)C C (1)1(1)p p p p p p ⎡⎤-++---⎣⎦ 23223(1)3(1)1(1)p p p p p p ⎡⎤=-++---⎣⎦5432312179p p p p =-+-+;(ii )设每款游戏的评测费用为X 元,则X 的可能取值为900,1500;123(1500)C (1)P X p p ==-, 123(900)1C (1)P X p p ==--,故1212233()9001C (1)1500C (1)9001800(1)E X p p p p p p ⎡⎤=⨯--+⨯-=+-⎣⎦ ;数学试题 第3页 共3页令2()(1),(0,1)g p p p p =-∈ ,2()(1)2(1)(31)(1)g p p p p p p '=---=-- .当10,3p ⎛⎫∈ ⎪⎝⎭时,()0,()g p g p '>在1,13⎛⎫⎪⎝⎭上单调递增, 当1,13p ⎛⎫∈ ⎪⎝⎭时,'0g p g p <(),()在1,13⎛⎫ ⎪⎝⎭上单调递减,所以g p ()的最大值为14327g ⎛⎫=⎪⎝⎭所以实施此方案,最高费用为445060090018001050541612011027-⎛⎫+⨯+⨯⨯=++=> ⎪⎝⎭故所需的最高费用将超过预算.23. 【解析】(Ⅰ)当1b =,则()21xe f x ax x =++,2212()()(1)x ae ax x af x ax x -+'=++,当102a <…时,()0f x '≥,()f x 在[)0,+∞ 上单调递增,()(0)1f x f ≥=; 当12a >时,()f x 在[0,21]a a -上单调递减, 在21[a a-,)+∞上单调递增, 21()()(0)1mina f x f f a-<==,不成立,102a ∴<…即10,2a ⎛⎤∈ ⎥⎝⎦(Ⅱ)当0b =时,2222(21)(),()1(1)x x e e ax ax f x f x ax ax -+'==++, 因为()f x 存在两个极值点,2440a a ->即1a >有条件知1x ,2x 为2210ax ax -+=两根,121212,x x x x a+==, 不妨设12x x <则12012x x <<<<1212122112221212()()11222x x x x x x e x e x e e e e f x f x ax ax ax ax ++=+=+=++,由(1)知当1b =,12a =,0x ≥,211xe ax x ≥++,即2112x e x x ++≥(当且仅当0x =取等号)所以当0x >时,恒有2112xx e x >++ 2212122211111()()11222f x f x x x x x x x ⎡⎤⎛⎫⎛⎫+>+++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()12121211422x x x x x x ⎡⎤=++++⎢⎥⎣⎦16222a ⎛⎫=+ ⎪⎝⎭312a=+ 又()211121122111()()222x x x x x e x e f x f x x e x e -+⎡⎤+==+-⎣⎦ 令()()22xx h x xex e -=+-()01x <<则()()()`210x xh x x e e-=->+ 所以()h x 在()0,1 上递增,()()12h x h e <=,从而12()()f x f x e +< 综上可得:()()12312f x f x e a+<+<。
2020-2021学年山东省青岛二中高一(上)期中数学试卷(附详解)

2020-2021学年山东省青岛二中高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1.已知全集U={−1,0,1,2,3},A={0,1},B={1,2,3},则(∁U A)∩B=()A. {1}B. {2,3}C. {1,2,3}D. {−1,0,2,3}2.命题p:∀x∈[0,+∞),√x>x2的否定形式¬p为()A. ∀x∈[0,+∞),√x≤x2B. ∃x0∈(−∞,0],√x0>x02C. ∃x0∈[0,+∞),√x0>x02D. ∃x0∈[0,+∞),√x0≤x023.设a∈R,则“a>1”是“a2>a”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知a=0.20.3,b=0.30.3,c=0.2−0.2,则()A. a<b<cB. b<a<cC. b<c<aD. a<c<b5.已知函数的图象如图所示,则函数g(x)=a x+b的图象是()A.B.C.D..6. 已知函数f(x)=√ax 2−4x −2a +8对任意两个不相等的实数x 1,x 2∈[1,+∞),都有不等式f(x 1)−f(x 2)x 1−x 2>0,则a 的取值范围是( )A. [2,4]B. [2,+∞)C. (0,2]D. [4,+∞)7. 若函数f(x)={a x−2,x ≥3(2020−a)x +4,x <3(a >0且a ≠1)是R 上的增函数,实数a 的取值范围为( )A. (1516,2020)B. (1,2020)C. [1516,2020)D. (1,+∞)8. 已知a >0,设函数f(x)=x 5+2x +b ,x ∈[−a,a],b ∈Z ,若f(x)的最大值为M ,最小值为m ,那么M 和m 的值可能为( )A. 4与3B. 3与1C. 5和2D. 7与4二、多选题(本大题共4小题,共20.0分) 9. 下列各组函数不能表示同一个函数的是( )A. f(x)=√−2x 3与g(x)=x ⋅√−2xB. f(x)=x+1x 2−1与g(x)=1x−1 C. f(x)=x +1与g(x)=x +x 0 D. f(x)=x x 与g(x)=x 010. 下列命题为真命题的是( )A. 函数y=|x−1|既是偶函数又在区间[1,+∞)上是增函数B. 函数f(x)=√x2+9+√x2+9最小值为2C. “x=2”是“x−2=√2−x”的充要条件D. 若a>b>0,则b+1a+1>ba11.若函数f(1−2x)=1−x2x2(x≠0),则下列结论正确的是()A. f(12)=15B. f(2)=−34C. f(x)=4(x−1)2(x≠1)D. f(1x )=4x2(x−1)2−1(x≠0且x≠1)12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如[−3.5]=−4,[2.1]=2,已知函数f(x)=a x1+a x −12(a>1),则关于函数g(x)=[f(x)]的叙述中正确的是()A. f(x)是奇函数B. g(x)是偶函数C. f(x)在R上是增函数D. g(x)的值域是{−1,0}三、单空题(本大题共4小题,共20.0分)13.若幂函数y=(m2−m−1)x m2−2m−1在(0,+∞)上是增函数,则m=______ .14.已知函数f(x)=√8−2x,则y=f(2x−1)x的定义域是______.15.已知x,y>0,且1x+3+1y=12,则x+y的最小值为.16.具有性质:f(1x)=−f(x)的函数,我们称为满足“倒负”交换的函数,下列函数:①y=x−1x ;②y=x+1x;③y={x,(0<x<1)0,(x=1)−1x(x>1)中满足“倒负”变换的函数是______ .四、解答题(本大题共7小题,共82.0分)17.已知集合A={x|x2−4x−12≤0},B={x|x2−4x−m2+4≤0},m>0.(1)求集合A、B;(2)若x∈A是x∈B成立的充分不必要条件,求实数m的取值范围.18.已知f(x)定义在R上的奇函数,当x>0时,f(x)=x−1x+a ,且函数的图象经过点(2,13).(1)求f(x)的解析式;(2)若x∈[1,2],求f(x)的取值范围.19.一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f(f(x))=25x+12.(1)求f(x);(2)当x∈[−1,1]时,g(x)有最大值13,求实数m的值.20.已知函数f(x)=ax+b的定义域为[−1,1],且满足以下两个条件:①是奇函数;x2+1②f(−1)=−12(1)求常数a,b的值;(2)求证:函数f(x)在[−1,1]上是增函数;(3)若f(t−1)>3,求t的取值范围.1021.某小区要建一座八边形的休闲公园,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字型地域,计划在正方形MNPQ上建一座花坛,造价为4200元/m2,在四个相同的矩形上(途中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个角上铺草坪,造价为80元/m2.受地域影响,AD的长最多能达到2√3m,其余的边长没有限制.(1)设总造价为S元,AD的长为xm,试建立S关于x的函数关系式;(2)当x取何值时,S最小,并求出这个最小值.22.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b−1(a≠0).(1)当a=1,b=−2时,求函数f(x)的不动点;(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=−x+a5a2−4a+1的图象上,求b的最小值.(参考公式:A(x1,y1),B(x2,y2)的中点坐标为(x1+x22,y1+y22))23.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合A={1,2,3,…,10},B={1,2,3,4,5},f是A到B的函数,若满足f(x)=f(y),则称有序数对(x,y)为“趣对”,求“趣对”个数的最小值并写出“趣对”个数最少时的函数f.(要求写出必要的解答过程)答案和解析1.【答案】B【解析】解:由U={−1,0,1,2,3},集合A={0,1},∴∁U A={−1,2,3},又B={1,2,3},∴(∁U A)∩B={−1,2,3}∩{1,2,3}={2,3}.故选:B.直接利用补集和交集的运算进行求解即可得到答案.本题考查了交、并、补集的混合运算,是基础的会考题型.2.【答案】D【解析】解:由含有量词的命题的否定方法:先改变量词,然后再否定结论,命题p:∀x∈[0,+∞),√x>x2的否定形式¬p为:∃x0∈[0,+∞),√x0≤x02.故选:D.利用含有量词的命题的否定方法:先改变量词,然后再否定结论,求解即可.本题考查了含有量词的命题的否定,要掌握其否定方法:先改变量词,然后再否定结论,属于基础题.3.【答案】A【解析】【分析】本题考查了不等式的解法、简易逻辑的判定方法,属于基础题.解得a的范围,即可判断出结论.【解答】解:由a2>a,解得a<0或a>1,故a>1”是“a2>a”的充分不必要条件,故选:A.4.【答案】A【解析】 【分析】由题意根据幂函数、指数函数的单调性和特殊点,求得a 、b 、c 的大小关系. 本题主要考查幂函数、指数函数的单调性和特殊点,属于中档题. 【解答】解:已知a =0.20.3,b =0.30.3,c =0.2−0.2,而y =0.2x 是R 上的减函数,0.3>0>−0.2,∴a <1<c . ∵y =x 0.3 是R 上的增函数,1>0.3>0.2>0,∴1>b >a . 综上,c >b >a , 故选:A .5.【答案】A【解析】 【分析】先由函数f(x)的图象判断a ,b 的范围,再根据指数函数的图象和性质即可得到答案. 本题考查了指数函数和二次函数的图象和性质,属于基础题. 【解答】解:由函数的图象可知,b <−1,0<a <1,则g(x)=a x +b 为减函数,排除CD , 当x =0时,y =1+b <0,排除B , 故选:A .6.【答案】A【解析】 【分析】本题主要考查复合函数的单调性,二次函数的、根式函数的性质.由题意利用复合函数的单调性,二次函数的、根式函数的性质,可得{a >02a ≤1a −4−2a +8≥0,由此求得a 的范围. 【解答】解:∵函数f(x)=√ax 2−4x −2a +8对任意两个不相等的实数x 1,x 2∈[1,+∞), 都有不等式f(x 1)−f(x 2)x 1−x 2>0,∴当x ≥1时,f(x)为增函数,∴{a >02a ≤1a −4−2a +8≥0,得2≤a ≤4, 故选:A .7.【答案】C【解析】解:函数f(x)={a x−2,x3(2020−a)x +4,x <3(a >0且a ≠1)为R 上的增函数, 可得:{a >12020−a >0a ≥(2020−a)×3+4,解得1516≤a <2020.则a 的取值范围是:a ∈[1516,2020). 故选:C .利用分段函数的单调性,列出不等式组,转化求解即可.本题考查分段函数的单调性的应用,列出不等式组是解题的关键,是中档题.8.【答案】B【解析】解:令g(x)=x 5+2x ,x ∈[−a,a], 由g(−x)=−x 5−2x =−g(x),得g(x)为奇函数, 设g(x)的最大值为t ,则最小值为−t , ∴M =b +t ,m =b −t ,可得M +m =2b , ∵b ∈Z ,∴2b 为偶数,即M +m 为偶数, 综合选项可知,M 和m 的值可能为3和1. 故选:B .令g(x)=x 5+2x ,x ∈[−a,a],由定义可得函数为奇函数,进一步可得M +m 为偶数,结合选项得答案.本题考查函数的最值及其几何意义,考查函数奇偶性的判定及应用,是中档题.9.【答案】ABC【解析】解:A.由−2x 3≥0得x ≤0,由−2x ≥0得x ≤0,两个函数的定义域相同,f(x)=|x|√−2x =−x √−2x ,两个函数的对应法则不相同,不是同一函数, B .f(x)=x+1(x+1)(x−1)=1x−1(x ≠±1),g(x)=1 x−1(x ≠1),两个函数的定义域不相同,不是同一函数,C .f(x)的定义域为R ,g(x)=x +1(x ≠0),两个函数的定义域不相同,不是同一函数,D .f(x)=1(x ≠0),g(x)=1(x ≠0),两个函数的定义域和对应法则相同,是同一函数, 故选:ABC .分别判断两个函数的定义域和对应法则是否相同即可.本题主要考查同一函数的判断,分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,是基础题.10.【答案】CD【解析】解:y =|x −1|,当x =1时,y =0,当x =−1时,y =2,所以y =|x −1|不是偶函数,选项A 错误;令t =√t 2+9∈[3,+∞),g(x)=t +1t .根据对勾函数的单调性可得,g(t)在[3,+∞)是增函数,g(t)的最小值为103,即f(x)的最小值为103,选项B 错误;x −2=√2−x ≥0,∴x ≥2,又∵2−x ≥0,∴x ≤2∴x =2;反之,也成立,选项C 正确;若a >b >0,b+1a+1−ba =ab+a−ab−b a(a+1)=a−b a(a+1)>0,选项D 正确.故选:CD .对于A ,取特殊值,当x =1时,y =0,当x =−1时,y =2,可判断y =|x −1|不是偶函数;对于B ,令t =√t 2+9∈[3,+∞),g(x)=t +1t .根据对勾函数的单调性可求得答案;对于C ,利用充要条件的定义,即可判断;对于D ,可用作差法验证即可判断. 本题考查了命题真假的判断,函数奇偶性与单调性,充分必要条件定义,存在量词命题,考查了综合运用知识的能力,属于中档题.11.【答案】AD【解析】解:根据题意,函数f(1−2x)=1−x2x2(x≠0),设t=1−2x,变形可得x=1−t2,则有f(t)=1−(1−t2)2(1−t2)2=4(1−t)2−1,故f(x)=4(1−x)2−1,据此分析选项:对于A,f(12)=16−1=15,A正确;对于B,f(2)=4−1=3,B错误,对于C,f(x)=4(1−x)2−1,C错误;对于D,f(1x )=4x2(x−1)2−1,D正确;故选:AD.根据题意,用换元法求出函数的解析式,据此分析选项,即可得答案.本题考查函数解析式的求法,关键是求出f(x)的解析式,属于基础题.12.【答案】ACD【解析】解:∵f(x)=a x1+a x −12(a>1),x∈R,∴f(−x)+f(x)=a−x1+a−x −12+a x1+a x−12=1+a x1+a x−1=0,∴f(−x)=−f(x),∴f(x)是奇函数,故A正确;又f(x)=a x+1−11+a x−12=12−11+a x为R上的增函数,故C正确;∵a>1,a x1+a x∈(0,1),∴f(x)=a x1+a x −12∈(−12,12),∴g(x)=[f(x)]={−1,0},故D正确;又f(−1)=1a+1−12∈(−12,0),f(1)=12−1a+1∈(0,12),∴g(−1)=−1,g(1)=0,g(−1)≠g(1),∴g(x)不是偶函数,故C错误;故选:ACD.利用奇函数的定义可判断函数f(x)=a x1+a x −12(a>1)为奇函数,再分析其单调性,可判断A、C;利用“高斯函数“的概念及f(x)的值域可判断B、D,从而可得答案.本题考查函数的单调性和奇偶性的综合应用,考查了转化与化归思想及运算求解能力,属于中档题.13.【答案】−1【解析】解:∵幂函数y=(m2−m−1)x m2−2m−1在(0,+∞)上是增函数,∴{m2−m−1=1m2−2m−1>0,解得m=−1.故答案为−1.利用幂函数的定义和单调性即可得出.熟练掌握幂函数的定义和单调性是解题的关键.14.【答案】(−∞,0)∪(0,2]【解析】解:由8−2x≥0,解得x≤3,∴f(x)的定义域为(−∞,3],由2x−1≤3,得x≤2.∴要使函数y=f(2x−1)x有意义,则x≤2且x≠0.∴y=f(2x−1)x的定义域是(−∞,0)∪(0,2].故答案为:(−∞,0)∪(0,2].由根式内部的代数式大于等于0求解f(x)的定义域,进一步求得f(2x−1)的定义域,结合分母不为0可得y=f(2x−1)x的定义域.本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.15.【答案】5【解析】【分析】本题考查了“乘1法”与基本不等式的性质,属于中档题. 利用“乘1法”与基本不等式的性质即可得出. 【解答】解:x ,y >0,且1x+3+1y =12, 则x +y =x +3+y −3, =2[(x +3)+y](1x+3+1y)−3=2(2+y x+3+x+3y)−3,≥2(2+2√yx+3⋅x+3y)−3=5,当且仅当y x+3=x+3y且1x+3+1y =12,即y =4,x =1时取等号,则x +y 的最小值为5. 故答案为:5.16.【答案】①③【解析】解:①设f(x)=x −1x ,∴f(1x )=1x −x =−f(x),∴y =x −1x 是满足“倒负”变换的函数,②设f(x)=x +1x ,∵f(12)=52,−f(2)=−52,即f(12)≠−f(2),∴y =x +1x 是不满足“倒负”变换的函数,③设f(x)={x,(0<x <1)0,(x =1)−1x (x >1),则−f(x)={−x(0<x <1)0(x =1)1x (x >1), ∵0<x <1时,1x >1,此时f(1x )−x ; x =1时,1x =1,此时f(1x )=0, x >1时,0<1x <1,此时f(1x )=1x , ∴f(1x)={−x(0<x <1)0(x =1)1x(x >1)=−f(x),∴y ={x,(0<x <1)0,(x =1)−1x (x >1)是满足“倒负”变换的函数.故答案为:①③利用“倒负”函数定义,分别比较三个函数的f(1x )与−f(x)的解析式,若符合定义,则为满足“倒负”变换的函数,若不符合,则举反例说明函数不符合定义,从而不是满足“倒负”变换的函数.本题考查了对新定义函数的理解,复合函数解析式的求法,分段函数解析式的求法.17.【答案】解(1)由x 2−4x −12≤0,得−2≤x ≤6.故集合A ={x|−2≤x ≤6}由x 2−4x −m 2+4=0,得x 1=2+m ,x 2=2−m .当m >0时,2−m <2+m ,由x 2−4x −m 2+4≤0得2−m ≤x ≤2+m , 故集合B ={x|2−m ≤x ≤2+m}.(2)∵x ∈A 是x ∈B 成立的充分不必要条件,所以[−2,6]是[2−m,2+m]的真子集, 则有{2−m <2+m 2−m ≤−22+m ≥6,解得m ≥4,又当m =4时,[2−m,2+m]=[−2,6],不合题意,所以实数m 的取值范围为(4,+∞).【解析】(1)由x 2−4x −12≤0,利用一元二次不等式的解法即可得出集合A.由x 2−4x −m 2+4=0,得x 1=2+m ,x 2=2−m.根据m >0时,2−m <2+m ,即可得出x 2−4x −m 2+4≤0解集,可得集合B .(2)由x ∈A 是x ∈B 成立的充分不必要条件,可得[−2,6]是[2−m,2+m]的真子集,进而得出实数m 的取值范围.本题考查了不等式的解法、简易逻辑的判定方法、集合与元素之间的关系,考查了推理能力与计算能力,属于基础题.18.【答案】解:(1)f (x)定义在R 上的奇函数,可得x =0时,f(0)=0;当x >0时,f(x)=x−1x+a ,且函数的图象经过点(2,13), 可得f(2)=12+a =13,解得a =1, 即有x >0时,f(x)=x−1x+1;当x <0时,−x >0,f(−x)=−x−1−x+1=x+1x−1=−f(x), 可得x <0时,f(x)=x+11−x . 所以f(x)={1+x1−x ,x <00,x =0x−1x+1,x >0;(2)若x ∈[1,2],则f(x)=x−1x+1=1−2x+1,由y =2x+1在[1,2]递减,可得f(x)=1−2x+1在[1,2]递增, 所以f(x)的最小值为f(1)=0,最大值为f(2)=13, 则f(x)的取值范围是[0,13].【解析】(1)由f(2)=13可得a 的值,由奇函数的性质可得f(0)=0,再由奇函数的定义和已知解析式,可得所求解析式;(2)判断x >0时,f(x)的单调性,可得f(x)在[1,2]的单调性,计算可得所求范围. 本题考查函数的奇偶性的定义和运用,以及函数的单调性的判断和运用,考查方程思想和运算能力、推理能力,属于中档题.19.【答案】解:(1)一次函数f(x)是R 上的增函数,可设f(x)=ax +b(a >0);∴f(f(x))=a(ax +b)+b =a 2x +ab +b =25x +12,∴{a 2=25ab +b =12, 解得{a =5b =2或{a =−5b =−3(不合题意舍去); ∴f(x)=5x +2;(2)g(x)=f(x)(x +m)=(5x +2)(x +m)=5x 2+(5m +2)x +2m , 是二次函数,开口向上,且对称轴为x =−5m+210,①当−5m+210≤0,即m ≥−25时,由二次函数的性质可得g(x)max =g(1)=7+7m =13,解得m =67,符合题意; ②当−5m+210>0,即m <−25时,由二次函数的性质可得g(x)max =g(−1)=3−3m =13,解得m =−103,符合题意; 综上可得,实数m 的值为67或−103.【解析】(1)根据题意设f(x)=ax +b(a >0),利用f(f(x))=25x +12求出a 、b 的值即可;(2)求出g(x)解析式,知g(x)是二次函数,开口向上,对称轴为x =−5m+210,讨论−5m+210≤0和−5m+210>0时,求出g(x)max ,即可得出对应m 的值.本题考查了函数解析式的应用,最值的求法,二次函数的图象与性质的应用问题,属于中档题.20.【答案】解:(1)由题意可得,f(0)=b =0,f(−1)=−a 2=−12,故a =1,b =0, (2)由(1)可得f(x)=xx 2+1, 设−1≤x 1<x 2≤1,则f(x 1)−f(x 2)=x 11+x 12−x21+x 22=(x 1−x 2)(1−x 1x 2)(1+x 12)(1+x 22),因为−1≤x 1<x 2≤1,所以x 1−x 2<0,1−x 1x 2>0,(1+x 12)(1+x 22)>0,故(x 1−x 2)(1−x 1x 2)(1+x 12)(1+x 22)<0,即f(x 1)<f(x 2),故函数在[−1,1]上单调递增; (3)由f(13)=310,故原不等式可转化为t −1>13,且−1≤t −1≤1, 解可得2≥t >43. 故原不等式的解集(43,2].【解析】(1)由题意可得,f(0)=b =0,f(−1)=−12,代入即可求解a ,b ; (2)由(1)可求f(x),然后结合单调性的定义即可判断; (3)由f(13)=310,结合(2)的单调性即可求解.本题主要考查了待定系数求解函数解析式及函数单调性的定义的应用及利用单调性求解不等式,属于函数性质的简单应用.21.【答案】解:(1)设AM =z ,则4zx +x 2=200,则z =200−x 24x;则S =4200x 2+210×(200−x 2)+80×2×200−x 24x×200−x 24x=4000(x2+100x2)+38000,(0<x≤2√3);(2)∵x2+100x2≥20,(当且仅当x2=100x2,即x=√10时,等号成立)∴当x=√10m时,S最小,最小值为4000×20+38000=118000(元).【解析】(1)由题意先求出边长AM,从而写出S关于x的函数关系式;(2)利用基本不等式求最值,注意等号是否成立.本题考查了实际问题转化为数学问题的能力及基本不等式的应用,属于中档题.22.【答案】解:(1)f(x)=x2−x−3,由x2−x−3=x,解得x=3或x=−1,所以所求的不动点为−1或3.(2)令ax2+(b+1)x+b−1=x,则ax2+bx+b−1=0①由题意,方程①恒有两个不等实根,所以△=b2−4a(b−1)>0,即b2−4ab+4a>0恒成立,则△′=16a2−16a<0,故0<a<1(3)设A(x1,x1),B(x2,x2)(x1≠x2),g(x)=−x+a5a2−4a+1,又AB的中点在该直线上,所以x1+x22=−x1+x22+a5a2−4a+1,∴x1+x2=a5a2−4a+1,而x1、x2应是方程①的两个根,所以x1+x2=−ba ,即−ba=a5a2−4a+1,∴b=−a25a2−4a+1=−1(1a)2−4(1a)+5=−1(1a−2)2+1∴当a=12∈(0,1)时,b min=−1【解析】(I)将a=1,b=−2代入f(x)=ax2+(b+1)x+b−1(a≠0),求出f(x),令f(x)=x,解方程求不动点即可;(II)由ax2+(b+1)x+b−1=x有两个不动点,即ax2+bx+b−1=0有两个不等实根,可通过判别式大于0得到关于参数a,b的不等式b2−4ab+4a>0,由于此不等式恒成立,配方可得b2−4ab+4a=(b−2a)2+4a−4a2>0恒成立,将此不等式恒成立转化为4a −4a 2>0即可.(III)由于本小题需要根据两个点A 、B 的坐标转化点关于线的对称这一条件,故可以先设出两点的坐标分别为A(x 1,x 1),B(x 2,x 2)(x 1≠x 2),可以得到x 1+x 2=a5a 2−4a+1,由此联想到根与系数的关系,由(II)知,x 1、x 2应是方程ax 2+bx +b −1=0的根,故又可得x 1+x 2=−ba ,至此题设中的条件转化为−ba =a5a 2−4a+1,观察发现参数b 可以表示成参数a 的函数即b =−a 25a 2−4a+1,至此,求参数b 的问题转化为求b 关于a 的函数最小值的问题.本题考点是二次函数的性质,主要考查二次函数、方程的基本性质、不等式的有关知识,同时考查函数思想、数形结合思想、逻辑推理能力和创新意识.23.【答案】解:A 中有10个元素,B 中有5个元素,当A 中元素平规均分配到B 中时,可能组合最少,即B 中每个元素都有2个元素对应,即C 22+C 22+C 22+C 22+C 22,设B 中1,2,3,4,5各对应a ,b ,c ,d ,e 个A 中元素,则a +b +c +d +e =10,个数为C a 2+C b 2+C c 2+C d 2+C e 2,当i <2时,C i 2视作0,当且仅当a =b =c =d =e 时取得最小值5,f(x)不妨取分段函数f(x)={x(x ∈{1,2,3,4,5})x −5(x ∈{6,7,8,9,10}),即可满足要求.【解析】趣对个数最小值为5,f(x)={x(1≤x ≤5)x −5(6≤x ≤10),即可满足要求.本题考查根据实际情况选择函数模型,属中档题.。
2023-2024学年山东省青岛二中高一(上)期中数学试卷【答案版】

2023-2024学年山东省青岛二中高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x∈N|﹣2≤x≤2},B={﹣1,0,1,2},则A∩B=()A.(0,1)B.(0,2)C.{0,1}D.{0,1,2}2.已知命题p:∃m>0,方程mx2+x﹣2m=0有解,则¬p为()A.∀m>0,方程mx2+x﹣2m=0无解B.∀m≤0,方程mx2+x﹣2m=0有解C.∃m>0,方程mx2+x﹣2m=0无解D.∃m≤0,方程mx2+x﹣2m=0有解3.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.已知集合M={1,2,3},N={1,2,3},给出下列四个对应法则,请由函数定义判断,其中能构成从M到N的函数的是()A.B.C.D.4.在同一直角坐标系中,二次函数y=ax2+bx幂函数y=x ba(x>0)图象的关系可能为()A.B.C.D.5.若函数f(2x+1)的定义域为[−32,−1],则y=f(1x)x+1的定义域为()A.(−1,−23]B.[−1,−23]C.[−1,−12]D.(−1,−12]6.十六世纪中叶,英国数学家雷科德在《砥智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( ) A .若a >b ,则ac 2>bc 2B .若b >a >0,m <0,则b−m a−m>baC .若a >b ,1a>1b,则ab >0D .若a >b >c ,a +b +c =0,则ab >ac7.已知定义在R 上的函数f (x )在[﹣2,+∞)上单调递增,且f (x ﹣2)是偶函数,则满足f (2x )<f (x +2)的x 的取值范围为( ) A .(23,2) B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,2)D .(−∞,23)∪(2,+∞)8.山东省青岛第二中学始建于1925年,悠悠历史翻开新篇:2025年,青岛二中将迎来百年校庆.在2023年11月8日立冬这天,二中学子摩拳擦掌,开始阶段性考试.若f (x )是定义在R 上的奇函数,对于任意给定的不等正实数x 1,x 2,不等式[f(x 1)]20232025−[f(x 2)]20232025x 1811−x 2811<0恒成立,且f (﹣4)=0,设g (x )=[f(x−2)x+2]1925为“立冬函数”,则满足“立冬函数”g (x )≥0的x 的取值范围是( ) A .(﹣2,2)∪[6,+∞) B .(﹣2,0)∪(2,6] C .(﹣∞,﹣2]∪[0,2]D .[2,6]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列各组函数中,不能表示同一函数的是( ) A .f(x)=√x +1⋅√x −1,g(x)=√x 2−1B .f (x )=x 2,g(x)=√x 63C .f(x)=x 2−1x−1,g (x )=x ﹣1D .f(x)=√x 2,g(x)=(√x)210.对任意两个实数a ,b ,定义min {a ,b }={a ,a ≤bb ,a >b ,若f (x )=2﹣x 2,g (x )=|x |,下列关于函数F(x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[﹣1,1]上单调递增D .函数F (x )有4个单调区间 11.关于函数f(x)=√4x 2−x 4|x−2|−2性质描述,正确的是( )A .f (x )的定义域为[﹣2,0)∪(0,2]B .f (x )的值域为[﹣1,1]C .f (x +1)+1的图象关于(﹣1,1)对称D .f (x )在定义域上是增函数12.已知a ≥0,b >0,则下列结论正确的是( ) A .若a +b =ab ,a +4b 的最小值为9 B .若a +b =1,2a +2b +1的最小值为4 C .若a +b =ab ,1a 2+2b2的最小值为23D .若a +b =1,2a a+b 2+ba 2+b 的最大值为2√33+1三、填空题:本题共4小题,每小题5分,共20分. 13.设函数f(x)={2x −1,x ≥01x,x <0,若f(a)=−14,则实数a = .14.设集合A ={x |x +m ≥0},B ={x |﹣1<x <5},全集U =R ,且(∁U A )∩B ≠∅,则实数m 的取值范围为 .15.在数学漫长的发展过程中,数学家发现在数学中存在着神秘的“黑洞”现象.数学黑洞:无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样.目前已经发现的数字黑洞有“123黑洞”、“卡普雷卡尔黑洞”、“自恋性数字黑洞”等.定义:若一个n 位正整数的所有数位上数字的n 次方和等于这个数本身,则称这个数是自恋数.已知所有一位正整数的自恋数组成集合A ,集合B ={x|x 2−5x−32−x <1,x ∈N ∗},则A ∩B 的非空子集个数为 .16.已知x >4,y ≥4,且x +4y ﹣xy =0,若不等式x ﹣y +6≤a ≤x +y ﹣1恒成立,则a 的取值范围为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x+3x−1≤0},B ={x |x 2﹣mx ﹣2m 2≤0,m >0}.(1)当m =2时,求A ∩B 和∁R B ;(2)若x ∈A 是x ∈B 成立的充分不必要条件,这样的实数m 是否存在?若存在,求出m 的取值范围;若不存在,说明理由.18.(12分)设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)证明f (x )是奇函数;(2)关于x 的不等式f (x 2)﹣2f (x )<f (ax )﹣2f (a )的解集中恰有3个正整数,求实数a 的取值范围.19.(12分)已知a ∈R ,f (x )=ax 2+2x ﹣3.(1)关于x 的方程f (x )=0有两个正根,求实数a 的取值范围; (2)解不等式f (x )>0.20.(12分)新冠疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本p (x )万元,当产量不足40万箱时,p (x )=x 2+100x ;当产量不小于40万箱时,p(x)=161x +4900x−1100,若每箱口罩售价160元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(销售利润=销售总价﹣固定成本﹣生产成本)(2)当产量为多少万箱时,该口罩生产厂所获得利润最大,最大利润值是多少(万元)? 21.(12分)已知幂函数f(x)=(m 2−3m +3)x m2−32m+12是其定义域上的增函数.(1)求函数f (x )的解析式;(2)若函数g(x)=x +a ⋅√f(x)3,x ∈[1,9],是否存在实数a 使得g (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. 22.(12分)已知函数f(x)=ax+b1+x 2为定义在R 上的奇函数. (1)求实数b 的值;(2)当a >0时,用单调性定义判断函数f (x )在区间(1,+∞)上的单调性;(3)当a =1时,设g (x )=mx 2﹣2x +2﹣m ,若对任意的x 1∈[1,3],总存在x 2∈[0,1],使得f(x 1)+12=g(x 2)成立,求m 的取值范围.2023-2024学年山东省青岛二中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x∈N|﹣2≤x≤2},B={﹣1,0,1,2},则A∩B=()A.(0,1)B.(0,2)C.{0,1}D.{0,1,2}解:集合A={x∈N|﹣2≤x≤2}={0,1,2},B={﹣1,0,1,2},则A∩B={0,1,2}.故选:D.2.已知命题p:∃m>0,方程mx2+x﹣2m=0有解,则¬p为()A.∀m>0,方程mx2+x﹣2m=0无解B.∀m≤0,方程mx2+x﹣2m=0有解C.∃m>0,方程mx2+x﹣2m=0无解D.∃m≤0,方程mx2+x﹣2m=0有解解:因为特称命题的否定是全称命题,所以¬p为:∀m>0,方程mx2+x﹣2m=0无解.故选:A.3.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.已知集合M={1,2,3},N={1,2,3},给出下列四个对应法则,请由函数定义判断,其中能构成从M到N的函数的是()A.B.C.D.解:A项,集合M中的元素2对应1和3,不符合唯一对应,不是函数;B项,集合M中的元素3在集合N中没有元素与其对应,不是函数;C项,应为从集合N到集合M的函数,不符;D项,符合函数概念,是函数.故选:D.4.在同一直角坐标系中,二次函数y=ax2+bx幂函数y=x ba(x>0)图象的关系可能为()A.B.C.D.解:根据题意,依次分析选项:对于A,二次函数y=ax2+bx开口向上,则a>0,其对称轴为x=−b2a>0,幂函数y=x ba中,ba<0,为减函数,符合题意,对于B,二次函数y=ax2+bx开口向下,则a<0,其对称轴为x=−b2a>0,幂函数y=x ba中,ba<0,为减函数,不符合题意,对于C,二次函数y=ax2+bx开口向上,则a>0,其对称轴为x=−b2a=−1,幂函数y=x ba中,ba=2,为增函数,且其增加越来越快,不符合题意,对于D,二次函数y=ax2+bx开口向下,则a<0,其对称轴为x=−b2a>−12,幂函数y=x ba中,0<ba<1,为增函数,且其增加越来越慢,不符合题意,故选:A.5.若函数f(2x+1)的定义域为[−32,−1],则y=f(1x)x+1的定义域为()A.(−1,−23]B.[−1,−23]C.[−1,−12]D.(−1,−12]解:−32≤x≤−1,则﹣2≤x≤﹣1,则y=f(1x)√x+1,则{−2≤1x≤−1x+1>0,解得﹣1<x≤−12.故选:D.6.十六世纪中叶,英国数学家雷科德在《砥智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R,则下列命题正确的是()A.若a>b,则ac2>bc2B.若b>a>0,m<0,则b−ma−m>baC .若a >b ,1a >1b,则ab >0 D .若a >b >c ,a +b +c =0,则ab >ac解:当c =0时,A 显然错误;若b >a >0,m <0,则b ﹣a >0,m (b ﹣a )<0,a ﹣m >0, 则b−m a−m−b a =(b−a)m a(a−m)<0,即b−ma−m<ba,B 错误;若a >b ,1a >1b ,则1a−1b=b−a ba>0,所以ab <0,C 错误;若a >b >c ,a +b +c =0,则a >0,c <0,b 无法确定正负, 故ac >bc ,D 正确. 故选:D .7.已知定义在R 上的函数f (x )在[﹣2,+∞)上单调递增,且f (x ﹣2)是偶函数,则满足f (2x )<f (x +2)的x 的取值范围为( ) A .(23,2) B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,2)D .(−∞,23)∪(2,+∞)解:因为f (x ﹣2)是偶函数, 故f (x )的图象关于x =﹣2对称,因为定义在R 上的函数f (x )在[﹣2,+∞)上单调递增, 所以f (x )在(﹣∞,﹣2)上单调递减, 由f (2x )<f (x +2)可得|2x +2|<|x +2+2|, 解得﹣2<x <2. 故选:C .8.山东省青岛第二中学始建于1925年,悠悠历史翻开新篇:2025年,青岛二中将迎来百年校庆.在2023年11月8日立冬这天,二中学子摩拳擦掌,开始阶段性考试.若f (x )是定义在R 上的奇函数,对于任意给定的不等正实数x 1,x 2,不等式[f(x 1)]20232025−[f(x 2)]20232025x 1811−x 2811<0恒成立,且f (﹣4)=0,设g (x )=[f(x−2)x+2]1925为“立冬函数”,则满足“立冬函数”g (x )≥0的x 的取值范围是( ) A .(﹣2,2)∪[6,+∞) B .(﹣2,0)∪(2,6] C .(﹣∞,﹣2]∪[0,2]D .[2,6]解:对于任意给定的不等正实数x 1,x 2,不等式[f(x 1)]20232025−[f(x 2)]20232025x 1811−x 2811<0恒成立,可得0<x 1<x 2,可得f (x 1)>f (x 2),即f (x )在(0,+∞)递减,由f (x )为奇函数,可得f (0)=0,f (x )在(﹣∞,0)递减,由f (﹣4)=﹣f (4)=0, 可得当﹣4<x <0,或x >4时,f (x )<0;当x <﹣4,或0<x <4时,f (x )>0. 由g (x )=[f(x−2)x+2]1925≥0,即为f(x−2)x+2≥0, 等价为{x +2>0f(x −2)≥0,或{x +2<0f(x −2)≤0,即有{x >−2x −2≤−4,或0≤x −2≤4,或{x +2<0x −2≥4,或−4≤x −2≤0,解得2≤x ≤6,或x ∈∅,综上可得,所求x 的取值范围是[2,6]. 故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列各组函数中,不能表示同一函数的是( ) A .f(x)=√x +1⋅√x −1,g(x)=√x 2−1B .f (x )=x 2,g(x)=√x 63C .f(x)=x 2−1x−1,g (x )=x ﹣1 D .f(x)=√x 2,g(x)=(√x)2 解:根据题意,依次分析选项:对于A ,函数f (x )的定义域为{x |x >1},g (x )的定义域为{x |x >1或x <﹣1},两个函数不是同一个函数;对于B ,f (x )=x 2,g (x )=√x 63=x 2,两个函数定义域都是R ,解析式相同,是同一个函数;对于C ,f (x )的定义域为{x |x ≠1},g (x )的定义域为R ,两个函数不是同一个函数; 对于D ,f (x )的定义域为R ,g (x )的定义域为[0,+∞),两个函数不是同一个函数. 故选:ACD .10.对任意两个实数a ,b ,定义min {a ,b }={a ,a ≤b b ,a >b ,若f (x )=2﹣x 2,g (x )=|x |,下列关于函数F(x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[﹣1,1]上单调递增D .函数F (x )有4个单调区间解:令|x |﹣(2﹣x 2)=x 2+|x |﹣2=(|x |+2)(|x |﹣1)<0, 解得﹣1<x <1,所以当﹣1<x <1时,|x |<2﹣x 2;当x ≤﹣1或x ≥1时,|x |≥2﹣x 2;所以F (x )=min {f (x ),g (x )}={2−x 2,x ≤−1−x ,−1<x ≤0x ,0<x <12−x 2,x ≥1,作出函数y =F (x )的图象,如图所示:对于A ,由图象可得关于y 轴对称,所以F (x )为偶函数,故正确;对于B ,因为y =F (x )的图象与x 轴有3个交点,所以方程F (x )=0有三个解,故正确; 对于C ,由图象可知函数F (x )在[﹣1,1]上不单调递增,故错误;对于D ,由图象可知函数F (x )在(﹣∞,﹣1]和[0,1]上单调递增,在(﹣1,0)和(1,+∞)上单调递减,所以函数F (x )有4个单调区间,故正确. 故选:ABD . 11.关于函数f(x)=√4x 2−x 4|x−2|−2性质描述,正确的是( )A .f (x )的定义域为[﹣2,0)∪(0,2]B .f (x )的值域为[﹣1,1]C .f (x +1)+1的图象关于(﹣1,1)对称D .f (x )在定义域上是增函数解:由题意得4x 2﹣x 4≥0,解得﹣2≤x ≤2, 又|x ﹣2|﹣2≠0,则x ≠0且x ≠4, 故﹣2≤x ≤2且x ≠0,A 正确; 此时f(x)=√4x 2−x 4|x−2|−2=√4x 2−x 4x,当0<x ≤2时,f (x )=√4x 2−x 4x=√4−x 2∈[0,2),B 显然错误;因为f (x )=√4x 2−x 4x,所以f (﹣x )=−√4x 2−x 4x=−f (x ),即f (x )为奇函数,图象关于(0,0)对称,所以f (x +1)+1的图象关于(﹣1,1)对称,C 正确; f (x )=√4−x 2在[0,2)上单调递减,D 显然错误. 故选:AC .12.已知a ≥0,b >0,则下列结论正确的是( ) A .若a +b =ab ,a +4b 的最小值为9 B .若a +b =1,2a +2b +1的最小值为4 C .若a +b =ab ,1a 2+2b2的最小值为23D .若a +b =1,2a a+b 2+b a 2+b 的最大值为2√33+1 解:对于A ,由a +b =ab ,得1a+1b=1,所以a +4b =(a +4b )(1a +1b )=5+4ba +ab ≥5+2√4b a ⋅ab =9,当且仅当4a b=ba,即b =2a 时等号成立,故A 正确;对于B ,由2a +2b+1≥2√2a+b+1=2√22=4,当且仅当a =b +1=1时等号成立,这与题设矛盾,故B 错误;对于C ,由a +b =ab ,可得1a+1b=1,1a 2+2b 2=(1−1b )2+2b 2=3b 2−2b+1,根据0<1b<1,可知当1b=13时,即a =32,b =3时,3b 2−2b+1的最小值为3×(13)2−2×13+1=23,故C 正确; 对于D ,2a a+b 2+b a 2+b=2a(a+b)a(a+b)+b 2+b(a+b)a 2+b(a+b)=2a 2+3ab+b 2a 2+ab+b 2=1+a 2+2ab a 2+ab+b 2=1+1+2⋅b a1+b a +(b a)2, 设b a=t ,则2aa+b 2+b a 2+b=1+1+2t 1+t+t 2, 而1+2t 1+t+t 2=1+2t14(1+2t)2+34≤2√14×34(1+2t)=2√33,当且仅当t =√3−12,即b =√3−12a 时,取等号. 所以当b =√3−12a 时,2aa+b 2+b a 2+b取得最大值2√33+1,故D 正确.故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.设函数f(x)={2x −1,x ≥01x,x <0,若f(a)=−14,则实数a = ﹣4或38.解:函数f(x)={2x −1,x ≥01x,x <0,当a <0时,1a=−14,解得a =﹣4,当a ≥0时,2a ﹣1=−14,解得a =38, 综上所述,实数a 的值为﹣4或38.故答案为:﹣4或38.14.设集合A ={x |x +m ≥0},B ={x |﹣1<x <5},全集U =R ,且(∁U A )∩B ≠∅,则实数m 的取值范围为 (﹣∞,1) .解:集合A ={x |x +m ≥0}={x |x ≥﹣m },B ={x |﹣1<x <5},全集U =R , ∴∁U A ={x |x <﹣m },∵(∁U A )∩B ≠∅,∴﹣m >﹣1,解得m <1, ∴实数m 的取值范围为(﹣∞,1). 故答案为:(﹣∞,1).15.在数学漫长的发展过程中,数学家发现在数学中存在着神秘的“黑洞”现象.数学黑洞:无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样.目前已经发现的数字黑洞有“123黑洞”、“卡普雷卡尔黑洞”、“自恋性数字黑洞”等.定义:若一个n 位正整数的所有数位上数字的n 次方和等于这个数本身,则称这个数是自恋数.已知所有一位正整数的自恋数组成集合A ,集合B ={x|x 2−5x−32−x <1,x ∈N ∗},则A ∩B 的非空子集个数为 31 .解:依题意,根据“自恋数”的定义可得,所有的一位正整数都是自恋数, 即A ={1,2,3,4,5,6,7,8,9}, 由不等式x 2−5x−32−x<1可得,(x+1)(x−5)x−2>0,即(x +1)(x ﹣5)(x ﹣2)>0, 解得﹣1<x <2或x >5,∴B ={x |﹣1<x <2或x >5,x ∈N *}, ∴A ∩B ={1,6,7,8,9},∴A ∩B 的非空子集个数为25﹣1=31.故答案为:31.16.已知x >4,y ≥4,且x +4y ﹣xy =0,若不等式x ﹣y +6≤a ≤x +y ﹣1恒成立,则a 的取值范围为 [223,253] .解:因为x >4,y ≥4,且x +4y ﹣xy =0, 所以y =xx−4=1+4x−4, 又因为y ≥4,即1+4x−4≥4,解得4<x ≤163, 所以x ﹣y +6=x ﹣(1+4x−4)+6=x −4x−4+5=(x ﹣4)−4x−4+9, 令t =x ﹣4,则0<t ≤43,易知y =t −4t +9在t ∈(0,+∞)上单调递增,所以当t =43时,y =t −4t +9取最大值,且最大值为:43+6=223;x +y ﹣1=x +1+4x−4−1=x +4x−4=(x ﹣4)+4x−4+4, 令m =x ﹣4,则0<m ≤43, 由对勾函数的性质可知y =m +4m +4在(0,43]上单调递减, 所以当m =43时,y =m +4m +4取最小值,且最小值为:43+7=253; 又因为不等式x ﹣y +6≤a ≤x +y ﹣1恒成立, 所以223≤a ≤253.即a 的取值范围为[223,253].故答案为:[223,253].四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x+3x−1≤0},B ={x |x 2﹣mx ﹣2m 2≤0,m >0}.(1)当m =2时,求A ∩B 和∁R B ;(2)若x ∈A 是x ∈B 成立的充分不必要条件,这样的实数m 是否存在?若存在,求出m 的取值范围;若不存在,说明理由. 解:(1)由x+3x−1≤0 得﹣3≤x <1,故集合A ={x |﹣3≤x <1},把m =2代入B 得(x +2)(x ﹣4)≤0,解得﹣2≤x ≤4,故集合B ={x |﹣2≤x ≤4}, 故A ∩B ={x |﹣2≤x <1},∁R B ={x |x <﹣2或x >4};(2)解(x +m )(x ﹣2m )≤0,且m >0,则集合B ={x |﹣m ≤x ≤2m }, 因为x ∈A 是x ∈B 成立的充分不必要条件, 所以集合A 是集合B 的真子集, 则{−m ≤−32m ≥1,解得m ≥3, 故实数m 的取值范围是{m |m ≥3}.18.(12分)设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)证明f (x )是奇函数;(2)关于x 的不等式f (x 2)﹣2f (x )<f (ax )﹣2f (a )的解集中恰有3个正整数,求实数a 的取值范围.解:(1)证明:∵对于任意x ,y ∈R 都有f (x +y )=f (x )+f (y ), 令x =y =0,则 f (0+0)=f (0)+f (0),∴f (0)=0; 再令y =﹣x ,则 f (x )+f (﹣x )=f (x ﹣x )=f (0)=0, ∴f (﹣x )=﹣f (x ),∴函数f (x ) 是奇函数. (2)令y =x ,则 f (2x )=2f (x ),∴不等式 f (x 2)﹣2f (x )<f (ax )﹣2f (a ) 可化为 f (x 2)+f (2a )<f (2x )+f (ax ), 即 f (x 2+2a )<f (2x +ax ),又函数f (x )在R 上是增函数, ∴x 2﹣(a +2)x +2a <0,即(x ﹣2)(x ﹣a )<0 又该不等式的解集中恰有3个正整数,∴5<a ≤6, 故实数a 的取值范围为(5,6].19.(12分)已知a ∈R ,f (x )=ax 2+2x ﹣3.(1)关于x 的方程f (x )=0有两个正根,求实数a 的取值范围; (2)解不等式f (x )>0.解:(1)∵方程f (x )=0有两个正根,a ≠0, 设两个正根为x 1,x 2,则{Δ≥0x 1+x 2>0x 1⋅x 2>0,即{ 4+12a ≥0−2a >0−3a >0,解得−13≤a <0,即实数a 的取值范围是[−13,0);(2)当a =0时,不等式可化为2x ﹣3>0,x >32; 当a ≠0时,设方程ax 2+2x ﹣3=0的两根为x 1,x 2, 则Δ=4+12a ,x 1=−1−√1+3a a ,x 2=−1+√1+3aa, 若a >0,则Δ>0,x 1<x 2,∴x <x 1或x >x 2, 若a <0,(i )当Δ>0,即−13<a <0时,x 1>x 2,所以x 2<x <x 1, (ⅱ)当△≤0,即a ≤−13时,不等式无解. 综上所述,当a ≤−13时,不等式解集为∅; 当−13<a <0时,不等式解集为{x |x 2=−1+√1+3a a <x <−1−√1+3aa}; 当a =0时,不等式解集为{x|x >32}; 当a >0时,不等式解集为{x|x <−1−√1+3a a 或x >−1+√1+3aa }. 20.(12分)新冠疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本p (x )万元,当产量不足40万箱时,p (x )=x 2+100x ;当产量不小于40万箱时,p(x)=161x +4900x−1100,若每箱口罩售价160元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(销售利润=销售总价﹣固定成本﹣生产成本)(2)当产量为多少万箱时,该口罩生产厂所获得利润最大,最大利润值是多少(万元)? 解:(1)生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本p (x )万元, 当产量不足40万箱时,p (x )=x 2+100x ; 当产量不小于40万箱时,p(x)=161x +4900x−1100, 当0<x <40时,y =160x ﹣(x 2+100x )﹣400=﹣x 2+60x ﹣400; 当x ≥40时,y =160x −(161x +4900x −1100)−400=700−(x +4900x). 所以,y ={−x 2+60x −400,0<x <40700−(x +4900x ),x ≥40. (2)当0<x <40时,y =﹣x 2+60x ﹣400=﹣(x ﹣30)2+500, 当 x =30时,y 取得最大值,最大值为500万元;当x ≥40时,y =700−(x +4900x )≤700−2√x ⋅4900x=560, 当且仅当 x =4900x时,即x =70时,y 取得最大值,最大值为560万元. 综上,当产量为70万箱时,该口罩生产厂在生产中获得利润最大,最大利润为560万元. 21.(12分)已知幂函数f(x)=(m 2−3m +3)x m2−32m+12是其定义域上的增函数.(1)求函数f (x )的解析式;(2)若函数g(x)=x +a ⋅√f(x)3,x ∈[1,9],是否存在实数a 使得g (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解:(1)由题意可知,m 2﹣3m +3=1,解得m =2或m =1, 当m =2时,f(x)=x 32,在(0,+∞)为增函数,符合题意, 当m =1时,f(x)=1x,在(0,+∞)为减函数,不符合题意,舍去, 所以f(x)=x 32;(2)g(x)=x +a √f(x)3=x +a √x , 令t =√x ,因为x ∈[1,9],所以t ∈[1,3],令k (t )=t 2+at t ∈[1,3],对称轴为t =−a2,①当−a 2≤1,即a ≥﹣2时,函数k (t )在[1,3]为增函数, k (t )min =k (1)=1+a =0,解得a =﹣1. ②当1<−a 2<3,即﹣6<a <﹣2时, k(t)min=k(−a 2)=−a 24=0,解得a =0,不符合题意,舍去.③当−a2≥3,即a ≤﹣6时,函数k (t )在[1,3]为减函数, k (t )min =k (3)=9+3a =0, 解得a =﹣3,不符合题意,舍去.综上所述:存在a =﹣1使得g (x )的最小值为0. 22.(12分)已知函数f(x)=ax+b1+x 2为定义在R 上的奇函数. (1)求实数b 的值;(2)当a >0时,用单调性定义判断函数f (x )在区间(1,+∞)上的单调性;(3)当a=1时,设g(x)=mx2﹣2x+2﹣m,若对任意的x1∈[1,3],总存在x2∈[0,1],使得f(x1)+12= g(x2)成立,求m的取值范围.解:(1)因为函数f(x)=ax+b1+x2为定义在R上的奇函数,所以f(0)=b=0.经检验成立,所以b=0;(2)由(1)可得f(x)=ax1+x2,下面证明函数f(x)在区间(1,+∞)上是减函数.证明:任取x2>x1>1,则有f(x1)﹣f(x2)=ax11+x12−ax21+x22=ax1(1+x22)−ax2(1+x12)(1+x12)(1+x22)=a(x1−x2)(1−x1x2)(1+x12)(1+x22),再根据x2>x1>1,可得1+x12>0,1+x22>0,x1﹣x2<0,1﹣x1x2<0,又a>0,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以函数f(x)在区间(1,+∞)上单调递减;(3)若对任意的x1∈[1,3],总存在x2∈[0,1],使得f(x1)+12=g(x2)成立,则函数y=f(x)+12在[1,3]上的值域为函数g(x)在[0,1]上的值域的子集,因为函数f(x)在[1,3]上单调递减,则当x∈[1,3]时,f(x)max=f(1)=12,f(x)min=f(3)=310,所以记函数y=f(x)+12在区间[1,3]内的值域为A=[45,1].①当m=0时,g(x)=﹣2x+2在[0,1]上单调递减,则g(x)max=g(0)=2,g(x)min=g(1)=0,得g(x)在区间[0,1]内的值域为B=[0,1],因为A⊆B,所以对任意的x1∈[1,3],总存在x2∈[0,1],使得f(x1)+12=g(x2)成立;②当m<0时,g(x)为开口向下的二次函数,对称轴x=1m<0,∴g(x)在[0,1]上单调递减,g(x)max=g(0)=2﹣m>2,g(x)min=g(1)=0,∴g(x)在区间[0,1]内的值域为B=[0,2﹣m],因为A⊆B,所以2﹣m≥1,所以m≤1,所以m<0;③当m>0时,g(x)为开口向上的二次函数,对称轴x=1m>0,令mx2﹣2x+2﹣m=0,则有[mx+(m﹣2)](x﹣1)=0,解得x1=1,x2=−m−2m,(i )当0<m ≤1时,1m≥1,g (x )在[0,1]上单调递减,且2﹣m ∈[1,2),则g (x )max =g (0)=2﹣m ,g (x )min =g (1)=0,得g (x )在区间[0,1]内的值域为B =[0,2﹣m ],因为A ⊆B ,所以对任意的x 1∈[1,3],总存在x 2∈[0,1],使得 f(x 1)+12=g(x 2)成立; (ⅱ)当1<m ≤2时,12≤1m<1,g (x )在[0,1m ] 上单调递减,在 [1m ,1] 上单调递增,则g (x )max =g (0)=2﹣m ,g(x)min =g(1m)=−1m+2−m ,得g (x )在区间[0,1]内的值域为B =[−1m +2−m ,2−m], 所以−1m +2﹣m ≤45且2﹣m ≥1,该不等式组无解; (iii )当m >2时,0<1m <12,g (x )在[0,1m ] 上单调递减,在[1m ,1] 上单调递增, 则g (x )max =g (1)=0,g(x)min =g(1m)=−1m+2−m , 得g (x )在区间[0,1]内的值域为B =[−1m +2−m ,0],不符合题意. 综上,实数m 的取值范围为(﹣∞,1].。
山东省青岛第二中学2022-2023学年高一上学期期中考试数学试题及答案

青岛二中2022-2023学年第一学期期中考试高一试题(数学)一、单选题(本题共8小题,每题5分,共40分)1.已知全集U=R,集合A={x|0≤x≤1},B={-1,1,2,4},那么阴影部分表示的集合为( ) A.{-1,4} B.{1,2,4} C. {1,4} D.{-1,2,4}2.函数f (x )=xx 2+1的图象大致是( )A .B .C .D .3.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号:使用,后来英国资学家哈利奥特首次使用“>、”和“<”符号,并逐步被数学界接受志不等号的引入对不等式的发展景响深远.已知a ,b 为非零实数,且a>b ;则下列结论正确的是( ) A .b a a b>B .22ab a b > C .22a b >D .2211ab a b>4.在R;上定义的函数f(x)是偶函数,且()()4044f x f x =−,若f(x)在区间[2022,2023]上是函数,则()f x ()A.在区间[-2023,-2022]上是增函数,在区间[2021,2022]上是增函数B.在区间[-2023,-2022]上是增函数,在区间[2021,2022]上是减函数C.在区间[-2023,-2022]上是减函数,在区间[2021,2022]上是增函数D.在区间[-2023,-2022]上是减函数,在区间[2021,2022]上是减函数5.已知x>0,y>0,且30x y xy ++−=;则下列结论正确的是( ) A.xy 的最小值是1 B.x+y 的最小值是2C.x+4y 的最小值是8D.x+2y 的最大值是4√2−36.已知a ∈R,函数f (x )={x 2−4,x >2|x −3|+a,x ≤2, 若 f[f(√6)]=3, 则a 的值为( )A.1B.2C.3D.47.已知函数()f x 的定义域为[1,2],设函数()1f x −的定义域为D,若x D ∃∈ ,使得,²1a x x >−+成立,则实数a 的取值范围为( )A.(-∞,1)B.(-∞,3) c.(1,+∞) D. (3,+∞)8.已知函数()f x 是定义在R 上的偶函数,()f x 在[0,+∞)上单调递减,且()30f = ,则不等式()()2510x f x −−<的解集为( )A.(−2,52)∪(4,+∞)B.(4,+∞)C.(−∞,−2)∪[52,4] D.(-∞,-2)二、多选题(本题共4小题,每题5分,共20分.在每小题给出的选项中;有多项符合题目要求.全部选对得5分,有选错得0分,部分选对得2分)9.已知命题:p x R ∀∈,²40x ax ++> , 则命题P 成立的一个充分不必要条件可以是( ) A. a ∈[−1,1] B.a ∈(-4,4) C.a ∈[-4,4] D.a ∈{0} 10.下列命题正确的是(A.偶函数()f x 的定义域为[2a-1,a], 则 a =13B.若函数()2123f x x x +=++, 则 ()2 2f x x =+ C.已知定义在[-2022,2022]上的函数 f (x )=x 2+2x+1x 2+1, 设f(x)的最大值为m ,最小值为n ,则1m n +=D.若定义在R 上的函数f(x)满足:,x x R ∀∈₁₂,x x ≠₁₂,都有 f (x 2)−f (x 1)x 2−x 1<0, 则当a ∈R 时有f (34)≥f (a 2−a +1)11.设正实数a 、b 满足1a b +=,则下列结论正确的是(A.√ab ≤14 B.a 2+b 2≥12 C.12a +1b ≥3 D.√a +√b ≥√212.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[x]表示不超过x 的最大整数,则y=[x]称为高斯函数,例如:[]3.54−=−,[]2.12=,则下列命题正确的是( )A. [][]1,0,1x x ∀∈−=− B.[],1x R x x ∀∈<+ C. 函数[]y x x =−的值域为[)0,1 D.不等式:[][]2230x x −−≥ 的解集为 { x|x<0或x≥2}三、填空题(本题共4小题,每题5分,共20分)13.命题:“2,20x R x x ∀∈−+≥”的否定是14.已知函数 f (x )=1x 2−2x ,则()f x 的值域为15.己知f(x)是定义在R 上的奇函数,当0x ≥时, ()22f x x x =+, 则当0x <时,()f x = . 16.已知函数 f (x )={x 2,x <0−x 2,x ≥0, 若()()2,4430x R f mx f x ∀∈+−≤恒成立,则实数m 的取值范围为四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知集合. {}22,1|{|2}A x a x a B x x x =−≤≤+=≤−≥或. (1)当3a =时,求,R A B A C B ;(2)若A B R = ,求实数a 的取值范围18.(12分)设函数()()()4,f x x x a a R =−−∈. (1)解关于x 的不等式,()0f x <;(2)当()4,x ∈+∞ 时,不等式()16f x ≥−恒成立,求a 的取值范围.19.(12分)已知00x y >>,,且2222x y x y +=+. (1)求x y + 的最大值; (2)求1x +1y 的最小值.20.(12分)某工厂引进一条先进生产线生产某种化工产品,其生产的年总成本y(单位:万元)与年产量x (单位:吨,x>0)之间的函数关系式为y =x 24−70x +10000, 已知该生产线年产量最大为220吨.(1)求当年产量为多少时,生产每吨产品的平均成本最低,并求最低平均成本.(2)若每吨产品出厂价为50万元,那么当年产量为多少吨时,可以获得最大年利润?最大年利润是多少?21.(12分)已知函数 f (x )=x+mx 2−1(m ∈R )是定义在(-1,1)上的奇函数. (1)求f(x)的解析式;(2).用定义法证明:f(x)在(-1,-1)上是减函数; (3)解关于t 的不等式()()10.f t f t −+<22.(12分)对于定义域为D 的函数()f x ,如果存在区间[],m n D ⊆ ,使得()f x 在区间[],m n 上是单调函数,且函数()[],y f x x m n =∈,的值域是[],m n ,则称区间[],m n 是函数()f x 的一个“黄金区间”.(1)判断函数 y =x (x ∈R )和函数 y =3−4x (x >0)是否存在“黄金区间”,如果存在,请写出符合条件的一个“黄金区间”(直接写出结论,不要求证明);如果不存在,请说明理由. (2)如果[],m n 是函数 f (x )=(a 2+a )x−1a 2x(a ≠0)的一个“黄金区间”,求n m −的最大值:青岛二中2022-2023学年第一学期期中考试——高一试题(数学)参考答案一、单选题1.D2.C3.D4.D5.B6.B7.C8.A 二、多选题9.AD 10.ABD 11.BD 12.BCD 三、填空题13.2,20x R x x −+∃<∈14.(](),10,−∞−+∞15.22x x −+16.98m ≥四、解答题17.(1)3a =时,{}15A x x =≤≤,所以{}25,A B x x =≤≤因为{}12R C B x x =−<<,所以{}15R AC B x x =−<≤(2)若A B R =,则2122a a −≤−⎧⎨+≥⎩,解得01a ≤≤18.(1)当4a <时,不等式()0f x <的解集为(),4a , 当4a =时,不等式()0f x <的解集为∅, 当4a >时,不等式()0f x <的解集为()4,a .(2)因为()x ∈+∞4,,所以由()16f x ≥−可得164x a x −−≥−,164a x x ≤+−,因为16164441244x x x x +=−++≥+=−−,当且仅当4146x x −=−,即8x =时等号成立,所以12a ≤.19.(1)方法一:()22212()2x y x y x y +=+≥+第5页,共8页2=,40,4x y t t t t+−≤≤≤令则得0∴()max4x y+=,当且仅当1x y==时取等号方法二:设x y t+=则y t x=−,代入2222x y x y+=+得()222x t x t+−=即()222220x tx t t−+−=令()()222820t t t∆=−−−≥得04t≤≤即04x y≤+≤∴()max4x y+=,当且仅当1x y==时取等号(2)方法一:∵0x y>,,2222x y x y+=+∴22112122x y x y xyx y xy xy xy+++==≥=,当且仅当1x y==时取等∴min112x y⎛⎫+=⎪⎝⎭方法二:∵0x y>,,2222x y x y+=+∴22111122x y x y x yx y xy xy y x⎛⎫+++===+≥=⎪⎝⎭,当且仅当1x y==时取等∴min112x y⎛⎫+=⎪⎝⎭20.(1)每吨平均成本为()0220yxx<≤,由题可知10000707030,4y xx x=+−≥=当且仅当100004xx=,即200x=时取等号.所以当年产量为200吨时,生产每吨产品的平均成本最低,最低平均成本为30万元.(2)设年利润为L万元,第6页,共8页则22505070100001201000044x x L x y x x x =−=−+−=−+−()()21240440002204x x =−−+<≤ 因为利润L 在(]0,220单调递增,所以当220x =时,L 有最大值,为()2122024044004300.4−−+= 所以当年产量为220吨时,可获得最大年利润,最大年利润为4300万元. 21.(1)方法一:由于函数()21x bf x x +=−是定义在()1,1−上的奇函数,所以()()f x f x −=−即()2211x bx bx x −++=−+−+,化简得0b = ,因此,()21x f x x =−. 方法二:由于函数()21x bf x x +=−是定义在()1,1−上的奇函数,所以()00f =,得0b =. 经检验,0b =时()21x f x x =−是奇函数.故()21xf x x =−.(2)()12,1,1x x ∀∈−,且12x x <,即<1211x x −<<<,则()()()()()()()()()()()()2212212121121222221211221211111111111x x x x x x x x x x f x f x x x x x x x x x −−−−+−=−==−−−+−+−− 1211x x −<<<,210x x ∴−>,2110x x +>,110x −<,110x +>,210x −<2,10x +>()()()()12120,f x f x f x f x ∴−>>即,因此,函数()y f x =在区间()1,1−上是减函数.(3)由(2)可知,函数()y f x =是定义在()1,1−的减函数,且为奇函数, 有()()10f t f t −+< 得()()()1f t f t f t −<−=− ,所以111111t t t t −>−⎧⎪−<−<⎨⎪−<<⎩,,,解得112t << .因此,不等式()()10f t f t −+<的解集为112(,)第7页,共8页22.(1)220,y x y x =≥=在[)0,+∞上单调递增, 由2x x =得0x =或1,存在黄金区间是[0,1];()430y x x =−>是增函数,若存在黄金区间[],m n ,则43,43,m mn n ⎧−=⎪⎪⎨⎪−=⎪⎩,无解, 因此,不存在黄金区间. (2)()()2221111a a x f x a xa a x+−==+−在(−∞,0)和(0,+∞)上都是增函数, 因此黄金区间[]()[](),,0,0,m n m n ⊆−∞⊆+∞或 ,由题意()(),,f m m f n n =⎧⎪⎨=⎪⎩ 所以()f x x =有两个同号的不等实根()()222211110.f x x a x a a x a a x=+−=−++=, ∆=(a 2+a )2−4a 2>0,a 2(a +3)(a −1)>0,解得a <−3或a >1,2121210,x x x x a =>,同号,满足题意, 22121a a a x x a a+++==,21n m x x ==−====,因为a <−3或a >1,所以 113a =即a =3时,()3max nm −==第8页,共8页。
高考题库-山东省学年青岛市第二中学上学期高一数学期中试题

2018-2019年青岛2中高一上11月期中考试1、下列四组函数,表示同一函数的是( ) A 、x x g x x f ==)(,)(2 B 、x e x g x x f ln )(,)(==B 、22)(,)()(x x g x x f == D 、xx x g x x f 2)(,)(==2、已知集合}061|{},1621|{≥--=≤<=x x x B x A x,则=B C A R I A 、}41|{≤<x x B 、}60|{≤<x x C 、}10|{<<x x D 、}64|{≤≤x x 3、半径为3cm,圆心角为1200的扇形的弧长为( )A 、3πcm B 、32πcm C 、34πcm D 、35πcm 4、已知函数)(x f y =的定义域为[-2,3],则函数2)12(--=x x f y 的定义域为( )A 、)2,21[-B 、]2,21[- C 、]5,5[- D 、]5,2()2,5[Y -5、函数)43(log )(221++-=x x x f 的单调递增区间是( )A 、)23,(-∞B 、)+∞,23(C 、)4,23(D 、)23,1(- 6、设4log ,)21(,421421===c b a 则( )A 、c b a <<B 、a b c <<C 、a c b <<D 、b a c << 7、函数||1)(2x x x f --=的图像大致为( )A 、 B. C. D.8、函数2ln )(-+=x x x f 的零点必定属于区间( ) A 、)1,21( B 、)23,1( C 、)2,23( D 、)25,2(9、函数)2,1(32)(2-+-=在ax x x f 上是单调函数,则实数a 的取值范围是( ) A 、)1,(--∞ B 、),2(+∞ C 、),2()1,(+∞--∞Y D 、),2[]1,(+∞--∞Y 10、已知偶函数]2,1[1)(2-++=a bx ax x f 的定义域,则函数)(x f 的值域为( ) A 、)1,(-∞ B 、]1,(-∞ C 、]1,3[- D 、),1[+∞11、函数R x x x a x a x f a 在⎩⎨⎧≥-<+-=2),1(log 2,)21()(上单调递减,则实数a 的取值范围是( )A 、)21,0( B 、]32,21( C 、)32,21( D 、)1,21(12、给出定义:若]21,21(+-∈m m x (其中m 为整数),则m 叫做与实数x ”亲密的整数”记作m x =}{,在此基础上给出下列关于函数|}{|)(x x x f -=的四个说法:①函数)1,0()(在x f y =上是增函数;②函数)(x f y =的图像关于直线)(2Z k kx ∈=对称;③函数))(21,()(Z k k k x f y ∈+=在上单调递增④当)2,0(∈x 时,函数|212|)()(2--=x x f x g 有两个零点,其中说法正确的序号是( )A 、①②③B 、②③④C 、①②④D 、①③④ 二、填空题13、已知对数函数)(x f y =的图像经过点)21,2(,且2)(0=x f ,则0x = 14、若θθθ则角,02sin ,0cos <>的终边在 象限15、定义在)8,0()0,8(Y -上的奇函数)(x f ,在区间)0,8(-上单调递增,则不等式0)2()(22>--+x x f x f 的解集为16、已知x x x g x x x x x f R m x 2)(,2,42|,12|)(,22-=⎩⎨⎧>-<-=∈函数,若函数m x g f y -=))((有6个不同的零点,则实数m 的取值范围是 三解答题17、已知角a 的终边经过点P )且0,)(3,4(≠∈-t R t t t ,求a a tan sin -的值18、已知集合A=}06|{},01|{22<≤-+=≥---∈x x x B a ax x R x (1)若2=a ,求B A I(2)若a B A C R 求实数,⊆的取值范围19、已知方程02)1(2=+-+-k x k x 的两个实数根21,x x ,满足21021<<<<x x ,求实数k 的取值范围20、定义在R 上一次函数)(x f y =是增函数,且34)]([+=x x f f (1)求一次函数)(x f y =的解析式(2)当)()()(12x f m x x g x •+=≤≤-时,函数有最大值9,求实数m 的值21、函数)(x f 的定义域为),0(+∞,且1)31(,0)(1),()()(-=>>+=f x f x y f x f xy f 时,当 (1)求)9()1(f f 和(2)证明函数)(x f 在),0(+∞上单调递增 (3)求不等式2)8()(<-+x f x f 的解集22、已知定义在R 上的函数ab x f x x+-=+122)(是奇函数(1)求实数b a ,的值(2)若对任意实数x ,不等式0)2()24(12<-+⋅-+k f k f x xx恒成立,求实数k 的取值范围23、附加题:若正实数1311111,-+-=+y x y x y x ,求满足的最小值。
山东省青岛市第二中学2019-2020学年高一上学期期末数学试题(解析版)

青岛二中2019-2020学年第一学期期末考试高一数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合ln1cos ,2A e π⎧⎫=⎨⎬⎩⎭,{}2|20B x Z x x =∈+≤,则A B =U ( ) A. {}0,1 B. {}1,0- C. {}1,0,1- D. {}2,1,0,1--【答案】D 【解析】 【分析】先求出B 集合,注意x 属于整数集合,而集合A 等价于{}0,1A =,求并集运算即可。
【详解】因为cos02π=,0ln11e e ==,所以{}0,1A =;{}2|20B x Z x x =∈+≤解得{}2,1,0B =--所以{}2,1,0,1A B ⋃=-- 故选:D【点睛】此题考查集合的并集运算,解出每个集合的取值即可,属于简单题目。
2.下列哪个函数的定义域与函数12xy ⎛⎫= ⎪⎝⎭的值域相同( )A. 2xy = B. 1y x x=+C. 12y x =D. ln y x x =-【答案】D 【解析】 【分析】指数函数12xy ⎛⎫= ⎪⎝⎭的值域是(0,)+∞,依次看选项的定义域是否在(0,)+∞即可。
【详解】指数函数12xy ⎛⎫= ⎪⎝⎭的值域是(0,)+∞ A 选项定义域是R ; B 选项定义域是{}|0x x ≠; C 选项定义域是{}|0x x ≥;D 选项定义域是{}|0x x >,满足题意。
故选:D【点睛】此题考查函数的值域和定义域,掌握基本初等函数的图像和性质,属于简单题目。
3.已知幂函数()y f x =的图象经过点(,则()31log 3f 的值是( )A. 13- B. -1 C.13D. 3【答案】A 【解析】 【分析】设幂函数是a y x =,代入点(求得 a ,再代入求()31log 3f 即可。
【详解】设幂函数是a y x =,代入点(,即1333a ==所以13a =,13y x=所以()1333f =()1111333333l log 3log og 31313log 3f ==-= 故选:A【点睛】此题考查幂函数和对数函数,注意对数函数换底公式的使用,属于较易题目。
青岛二中高三期中理科数学试题

数学试题 第1页 共7页青岛二中2019—2020学年第一学期第一学段期中高三模块考试——(数学)试题命题人:高三数学备课组 审核人:高三数学备课组满分:150分 时间:120分钟一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的选项中,第1至10题,只有一项是符合题目要求的;第11至13题,有多项符合要求,全部选对得4分,选对但不全得2分,有选错的得0分)1. 设集合2{1213},{log }A x x B x y x =-≤+≤==,则=A B I ( ) A.B.C. D.2.若复数z 满足()1234i z i +=-,则z 的实部为( ) A.1B. 1-C.2D. 2-3. 已知是等差数列的前n 项和,,则2a =( ) A.5B.6C.7D.84. 命题为“”为真命题的一个充分不必要条件是( ) A.B.C. D.4a ≤5.函数(其中e 为自然对数的底数)的图像大致为( )6. 若非零向量,a b r r满足=a b r r ,向量2+a b r r 与b r垂直,则a b r r 与的夹角为( )A .B .C .D .7.如图,双曲线()222210,0x y a b a b-=>>的右顶点为A ,右焦点为F ,点B 在双曲线的右支上,矩形OFBD 与矩形AEGF 相似,且矩形OFBD 与矩形AEGF 的面积之比为 2:1 ,则该双曲线的离心率为( ) B.1+ C.2+D.8. 已知定义在R 上的函数满足,且当时,,则()2020f = ( )A. B. 0 C. 1 D.2 9.已知函数的图像的一条对称轴为直线,且,则的最小值为( )A. B. C.D.10.记n S 为正项等比数列{}n a 的前n 项和,若1266363780S S S S S S ---⋅-=,且正整数,m n 满足31252m n a a a a =, 则18m n+的最小值是( ) A .53 B .95 C .157D .7511.(多选题)如图,设的内角所对的边分别为,cos cos )2sin a C c A b B +=,且3C A Bπ∠= .若点是外一点,1,3DC DA == ,下列说法中,正确的命题是( )A .的内角3B π=B .的内角3C π=[0,1][1,0]-[1,0)-(0,1]n S {}n a 3778,35a a S +==[]21,2,20x x a ∀∈-≥1a ≤2a ≤3a ≤()()11x xe f x x e +=-1501206030()f x ()()()(),11f x f x f x f x -=+=-[]0,1x ∈()()2log 1f x x =+1-()sin f x a x x =-56x π=12()()4f x f x ⋅=-12x x +3π-03π23πABC ∆,,A B C ,,a b c D ABC ∆ABC ∆ABC ∆数学试题 第2页 共7页C .四边形面积的最大值为+32D .四边形面积无最大值12. (多选题)下列说法中,正确的命题是( )A .已知随机变量ξ服从正态分布)2(2δ,N ,()40.84P ξ<=,则()24P ξ<<=0.16.B .以模型kxy ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3 .C .已知两个变量具有线性相关关系,其回归直线方程为y a bx =+,若2b =,1,3x y ==,则1a =.D .若样本数据1x ,2x ,…,10x 的方差为2,则数据121x -,221x -,…,1021x -的方差为16.13. (多选题) 设函数,若有4个零点,则的可能取值有( ) A. 1 B. 2 C. 3 D. 4二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 14. 若o cos 27a = ,)o o cos72cos18+的值为_______.(用a 表示)15.在中,,其外接圆圆心满足0OA OB OC ++=uu r uu u r uuu r r ,则AB AC ⋅uu u r uuu r= .16.已知三棱锥的各顶点都在同一球面上,且平面,若该棱锥的体积为1 ,,则此球的表面积=_________.17.已知函数在上的图像是连续不断的一条曲线,并且关于原点对称,其导函数为,当时,有不等式成立,若对,不等式222()()0x x e f e a x f ax -≥ 恒成立,则正数的最大值为_______.三、解答题(本大题共6小题,共82分.解答须写出文字说明,证明过程或演算步骤.)18.(本小题满分12分) 如图,在平面四边形ABCD中,1=AB,1=BC ,3CA =,且B ∠与D ∠互补,32⋅=uuu r uu u r AD CD .(Ⅰ)求ACD V 的面积;(Ⅱ)求ACD V 的周长.19.(本小题满分14分)如图,四棱锥的一个侧面PAD 为等边三角形,且平面平面ABCD ,四边形ABCD 是平行四边形,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.20.(本小题满分14分)已知等差数列{}n a 的前n 项和为n S ,且120a a +=,515S =,数列{}n b 满足:12b a =,且131(2)n n n n n nb a b a b ++++= .(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)若211(+5)log n n n c a b +=⋅,求数列{}n c 的前n 项和n T .ABCD ABCD 2()ln (0)2ax f x ax a e=->()f x a ABC △1BC =O P ABC -PA ⊥ABC 2,1,60AB AC BAC ==∠=()y f x =R ()f x '0x >()()22x f x xf x '>-x R ∀∈a P ABCD -PAD⊥2,3AD BD BAD π==∠=BD PD ⊥P BC D --数学试题 第3页 共7页21. (本小题满分14分)已知椭圆()22122:10x y C a b a b+=>>的离心率为2,(2,1)P -是椭圆1C 上一点.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设A B Q 、、是点P 分别关于x 轴、y 轴及坐标原点的对称点,平行于AB 的直线l 与椭圆1C 相交于不同于P Q 、的两点C D 、,点C 关于原点的对称点为E . 证明:直线PD PE 、与y 轴围成的三角形是等腰三角形.22. (本小题满分14分)某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中0.016a b -=.(Ⅰ)求这300名玩家测评分数的平均数;(Ⅱ)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为()01p p <<,且每款游戏之间改进与否相互独立. (i )对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;(ii )每款游戏聘请专家测试的费用均为300元/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.(以聘请专家费用的期望为决策依据)23.(本小题满分14分)已知函数()21xe f x ax bx =++,其中0a >,b R ∈,e 为自然对数的底数.(Ⅰ)若1b =,且当0x ≥时,()1f x ≥总成立,求实数a 的取值范围; (Ⅱ)若0b =,且()f x 存在两个极值点1x ,2x ,求证:()()12312f x f x e a+<+<.青岛二中2019—2020学年第一学期第一学段 期中高三模块考试——(数学)试题答案答案:1~10. DBCAA BCBDA 11. ABC 12.BC 13.BCD数学试题 第4页 共7页14.2a 15.1216.16π 17.e18. 【解析】(Ⅰ)在ABC 中,由余弦定理得2221cos 24AB BC AC ABC AB BC +-∠==-⋅.所以sin ABC ∠=. 因为角D 与角B 互补,所以sin sin 4ADC ABC ∠=∠=,1cos cos 4ADC ABC ∠=-∠=.又32AD CD ⋅=, 所以3cos 2AD CD AD CD ADC ⋅=⋅⋅∠=,即6AD CD ⋅=,所以1sin 2ACDSAD CD ADC =⋅⋅∠=(Ⅱ)在ACD 中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠, 所以2222cos 12AD CD AC AD CD ADC +=+⋅∠=, 所以AD CD +=所以ACD 的周长为3AD CD AC ++=.19. 【解析】(Ⅰ)证明:在中,又平面平面ABCD平面平面ABCD=AD ,平面PAD ,又(Ⅱ)如图,作于点O , 则平面ABCD过点O 作于点E ,连接PE ,以O 为坐标原点,以OA,OE,OP 所在直线为x 轴, y 轴,z 轴建立空间直角坐标系,则由(1)知平面DBC 的一个法向量为 设平面PBC 的法向量为则取设平面DBC 与平面PBC 所成二面角的平面角为 则20. 【解析】(Ⅰ)等差数列{}n a 的公差设为d ,前n 项和为n S ,且120a a +=,515S =, 可得120a d +=,151015a d +=,解得11a =-,2d =, 则12(1)23n a n n =-+-=-数列{}n b 满足:12b a =,131(2)n n n n n nb a b a b ++++=, 可得11b =,1(21)(61)n n nnb n b n b ++-=-,即为14n nb b +=,ABD ∆2,3AD BD BAD π==∠=AD BD ∴⊥PAD ⊥PAD ⋂ABCD BD 面⊂BD ∴⊥PAD PD 面⊂BD PD ∴⊥PO AD ⊥PO ⊥OE BC ⊥()()(()1,0,0,,,D B p C ---()()1,23,3,2,0,0BP BC =-=-()0,0,1(),,n x y z =00n BC n BP ⎧⋅=⎪⎨⋅=⎪⎩200x x -=⎧⎪⎨-+=⎪⎩即()0,1,2,n =θcos θ=数学试题 第5页 共7页所以数列{}n b 是以1为首项,4为公比的等比数列, 可得14n n b -=(Ⅱ)2111111()(5)log 4(1)41n n n c a b n n n n +===-+⋅++11111114223144n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫∴=-+-++-= ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦21. 【解析】(Ⅰ)由题意可得⎩⎪⎨⎪⎧1-b 2a 2=34, 4a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=8,b 2=2.故椭圆C 的方程为x 28+y 22=1.(Ⅱ)由题设可知A (-2,-1)、 B (2, 1) 因此直线l 的斜率为12,设直线l的方程为:y =12x +t .由⎩⎪⎨⎪⎧y =12x +t , x 28+y 2 2=1,得x 2+2tx +2t 2-4=0.(Δ>0) 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2t ,x 1·x 2=2t 2-4 ∴k PD +k PE =y 2-1x 2+2+-y 1-1 -x 1+2=(y 2-1)(2-x 1) -(2+x 2) (y 1+1)(2+x 2) (2-x 1)而(y 2-1)(2-x 1) -(2+x 2) (y 1+1)=2(y 2-y 1)-(x 1 y 2+x 2y 1)+x 1-x 2-4=x 2-x 1-x 1·x 2-t (x 1+x 2) +x 1-x 2-4=-x 1·x 2-t (x 1+x 2)-4 =-2t 2+4+2t 2-4=0即直线PD 、PE 与y 轴围成一个等腰三角形.22. 【解析】(Ⅰ)依题意,(0.0050.0350.028)101a b ++++⨯=, 故0.032a b +=; 而0.016a b -=,联立两式解得,0.024,0.008a b ==;所求平均数为550.05650.24750.35850.28950.08⨯+⨯+⨯+⨯+⨯2.7515.626.2523.87.676=++++=;(Ⅱ)(i )因为一款游戏初测被认定需要改进的概率为223333C (1)C p p p -+,一款游戏二测被认定需要改进的概率为1223C (11(1)p p p ⎡⎤---⎣⎦, 所以某款游戏被认定需要改进的概率为:2233122333C (1)C C (1)1(1)p p p p p p ⎡⎤-++---⎣⎦ 23223(1)3(1)1(1)p p p p p p ⎡⎤=-++---⎣⎦5432312179p p p p =-+-+;(ii )设每款游戏的评测费用为X 元,则X 的可能取值为900,1500;123(1500)C (1)P X p p ==-, 123(900)1C (1)P X p p ==--,故1212233()9001C (1)1500C (1)9001800(1)E X p p p p p p ⎡⎤=⨯--+⨯-=+-⎣⎦ ; 令2()(1),(0,1)g p p p p =-∈ ,2()(1)2(1)(31)(1)g p p p p p p '=---=-- .数学试题 第6页 共7页当10,3p ⎛⎫∈ ⎪⎝⎭时,()0,()g p g p '>在1,13⎛⎫⎪⎝⎭上单调递增,当1,13p ⎛⎫∈ ⎪⎝⎭时,'0g p g p <(),()在1,13⎛⎫ ⎪⎝⎭上单调递减,所以g p ()的最大值为14327g ⎛⎫=⎪⎝⎭所以实施此方案,最高费用为445060090018001050541612011027-⎛⎫+⨯+⨯⨯=++=> ⎪⎝⎭故所需的最高费用将超过预算.23. 【解析】(Ⅰ)当1b =,则()21xe f x ax x =++,2212()()(1)x ae ax x af x ax x -+'=++,当102a <…时,()0f x '≥,()f x 在[)0,+∞ 上单调递增,()(0)1f x f ≥=; 当12a >时,()f x 在[0,21]a a -上单调递减, 在21[a a-,)+∞上单调递增, 21()()(0)1mina f x f f a-<==,不成立,102a ∴<…即10,2a ⎛⎤∈ ⎥⎝⎦(Ⅱ)当0b =时,2222(21)(),()1(1)x x e e ax ax f x f x ax ax -+'==++, 因为()f x 存在两个极值点,2440a a ->即1a >有条件知1x ,2x 为2210ax ax -+=两根,121212,x x x x a+==, 不妨设12x x <则12012x x <<<<1212122112221212()()11222x x x x x x e x e x e e e e f x f x ax ax ax ax ++=+=+=++,由(1)知当1b =,12a =,0x ≥,211xe ax x ≥++,即2112x e x x ++≥(当且仅当0x =取等号)所以当0x >时,恒有2112xx e x >++ 2212122211111()()11222f x f x x x x x x x ⎡⎤⎛⎫⎛⎫+>+++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()12121211422x x x x x x ⎡⎤=++++⎢⎥⎣⎦16222a ⎛⎫=+ ⎪⎝⎭312a=+ 又()211121122111()()222x x x x x e x e f x f x x e x e -+⎡⎤+==+-⎣⎦ 令()()22xxh x xex e -=+-()01x <<则()()()`210x xh x x e e-=->+ 所以()h x 在()0,1 上递增,()()12h x h e <=,从而12()()f x f x e +< 综上可得:()()12312f x f x e a+<+<数学试题第7页共7页。