数字图像加密技术
图像加密技术研究背景意义及现状

图像加密技术研究背景意义及现状图像加密技术研究背景意义及现状 1 研究背景及意义2 图像加密技术综述2.1密码学的基本概念2.2图像加密的特点2.3图像加密研究现状互联网的迅速普及已经成为信息时代的重要标志,任何人在任何时间、任何地点都可以通过网络发布任何信息。
据此可以看出,互联网在一个层面上体现了法国启蒙运动百科全书型的梦想:把全世界的所有知识汇集在一起,形成一本反映全人类所有文明的百科全书。
然而,在面对大量信息共享和方便的同时,也面临着大量数据被泄漏、篡改和假冒的事实。
目前,如何保证信息的安全已成为研究的关键问题。
信息安全技术经过多年的发展,已经从密码技术发展到了隐藏技术,但是在信息隐藏技术的应用过程中,人们发现单纯地用各种信息隐藏算法对秘密信息进行隐藏保密,攻击者很有可能较容易地提取出秘密信息。
因此,在信息隐藏之前,先对秘密信息按照一定的运算规则进行加密处理,使其失去本身原有的面目,然后再将其隐藏到载体信息里面,这样所要传输的信息更加安全。
即使攻击者将秘密信息从载体中提取了出来,也无法分辨出经过加密后的秘密信息到底隐藏着什么内容,于是使得攻击者认为提取的算法错误或该载体中没有任何其它信息,从而保护了信息。
所以,对信息进行加密是很有必要的,这也是将来信息隐藏技术研究的一个重要方向。
1 研究背景及意义研究图像加密领域,是将图像有效地进行加密和隐藏,而最关键的是能否将图像在几乎无任何细节损失或扭曲的情况下还原出来。
一般的应用中,图像数据是允许有一定失真的,这种图像失真只要控制在人的视觉不能觉察到时是完全可以接受的。
经典密码学对于一维数据流提供了很好的加解密算法,由于将明文数据加密成密文数据,使得在网络传输中非法拦截者无法从中获得信息,从而达到保密的目的,诸如,DES,RSA,等著名现代密码体制得到了广泛地应用。
尽管我们可以将图像数据看成一维数据流,使用传统的加密算法进行加密,但是这些算法往往忽视了数字图像的一些特殊性质如二维的自相似性、大数据量等,而且传统加密算法很难满足网络传输中的实时性要求,因此数字图像的加密技术是一个值得深入研究的课题。
数字图像加密技术研究与实践

数字图像加密技术研究与实践第一章绪论1.1 研究背景随着信息技术的发展,数字图像作为一种重要的媒介形式被广泛应用于多个领域,例如医学、军事、工业等。
而数字图像的隐私性和安全性难以保障,因此数字图像加密技术越来越受到关注。
数字图像加密技术可以实现对数字图像数据进行安全加密,避免信息泄露,保护个人隐私和国家安全。
1.2 研究意义数字图像加密技术是信息安全领域中的一个重要研究方向,其在计算机网络安全、信息隐藏、多媒体安全等方面都有重要的应用价值。
本文从理论和实践两个角度展开数字图像加密技术的研究,提出了一种有效的数字图像加密方案,为数字图像的安全传输和处理提供了有力保障。
1.3 发展历程数字图像加密技术的研究可以追溯到上世纪80年代,最早的加密方案是基于传统加密算法的改进,例如DES、AES等。
然而,这些加密方案无法满足数字图像的特殊需求,后来,一些专门的数字图像加密算法被提出,在加密强度、加解密速度、安全性等方面都有了大大的改进。
第二章数字图像加密常用算法2.1 分组密码算法分组密码算法是一种将普通的明文划分为不同的分组,每个分组利用一定的加密算法进行加密的算法。
在加密过程中需要采用一定的填充模式,防止加密数据在分组时出现长度不足的情况。
常见的分组密码算法有DES、AES、Triple-DES等。
2.2 公钥密码算法公钥密码算法是一种利用两个不同的密钥进行加密解密的算法,一个用于加密数据,一个用于解密数据。
其主要特点是在加密和解密过程中使用不同的密钥,因此避免了密钥传递的安全问题。
常见的公钥密码算法有RSA、ElGamal等。
2.3 杂凑函数算法杂凑函数算法是一种将任意长度的消息经过杂凑算法处理后得到固定长度的消息摘要的算法。
消息摘要可以用于数字签名、信息验证等方面。
常见的杂凑函数算法有MD5、SHA-1、SHA-256等。
第三章数字图像加密方案3.1 加密算法设计基于前面介绍的数字图像加密常用算法,本文设计了一种混合加密算法,既包含分组密码算法,又包含公钥密码算法,保证了加密的强度。
彩色数字图像的混沌加密算法

对图1 所示 的 彩色 图像 ( 2 5 0  ̄ 1 8 8 ) 的三基 色 的 系数 矩
单, 因此很多图像加密算法都是基于l o g i s t i c 映射的。
阵 进 行 置乱 , 假设( 、 ( ) 分 别 为 置乱 前 和 置乱 后
,
3
,
3
、
、
缸 4
,
4
、
缸5 , 。 ) 、
5
: ) 由式( 1 ) 分别产生6 个l o g i s t i c 混沌序列, 另用初 图像加密算法 , 并通过仿真分析表明 , 该算法具有 良 始值 。 ) 由式 ( 1 ) 产生一个l o g i s t i c 混沌序列 。 好 的加密 性 能 。 ( 2 ) 6 个混沌序列 中,每两个混沌序列组成一组分别
新 技 o l o g y
彩色数字图像的混沌加密算法
杜 翠霞 张定会 ( 1 . 上海理 工大学光 电信 息与计 算机工程学院 上海 2 0 0 0 9 3
2 . 上海现代光学 系统 重点实验室 上海 2 0 0 0 9 3)
摘
要: 提 出了一种基 于混沌系统的彩色图像加密算法 , 利用l o 舀 s t i c 混沌映射生成混沌序列 , 分别对彩色
X n + l = g x ( 1 — ) , n N ∈ , x ∈(, 0 1 )
o
( 1 )
3 . 9 8 3 5 8 2 6 3 5 5 3 4 7 4 5 , 、 、 : 、 : 、 : 、 分别为
0 . 1 9 8 7 3 4 5 6 7 8 7 4 2 4 5 、 0 . 3 7 8 6 5 1 0 9 2 3 7 5 4 3 2 、 0 . 5 5 9 0 3 4 l 8 5 4 2 3 8 5 4、 0 . 7 3 8 0 0 1 2 4 9 6 3 7 2 9 6、 O . 9 1 7 4 6 3 6 7 4 9 0 0 7 2 4、 0 . 8 3 6 7 8 5 0 1 2 7 4 3 8 7 5 。
数字图像加密算法的研究与实现

数字图像加密算法的研究与实现摘要数字图像加密是进行数字图像信息保密的一种手段。
随着信息技术的飞速发展,数字图像在各个领域中有着极为广泛的运用,那么数字图像中所包含的信息安全性应受到重视。
数字图像本身具有数据量较大的特点,用传统的的加密方法往往无法达到加密的要求,许多学者对数字图像的信息安全性进行了多次研究并提出了许多强而有效的算法。
本文研究并实现了一种基于混沌序列置乱的数字图像加密算法,通过密钥产生混沌序列,将该混沌序列进行逻辑排序,并以此排列方法对数字图像进行加密。
该算法隐私性较强,在数字图像的加密和解密过程中均需要密钥的参与,因此不知道密钥的用户无法恢复数字图像,具有良好的保密性。
关键词:数字图像混沌加密数据隐藏AbstractDigital image encryption algorithm is a method about keeping the information of digital image secret.With the quick development of informational technology,the digital image has been utilized in many areas,so the security of message that digital images carry should be paid attention.Particularly ,digital images have the characteristic of a large amount of data,it can not meet demands about encryption that encrypting data in traditional way,which leads to a lot of scholars have spent much time and energy on researching the security about digital image information and illustrated many effective algorithm.This article discuss and illustrate a kind of digital image encryption algorithm based on chaotic array disruption,producing chaotic array according to the key,then logically arranging existed chaotic array,finally encrypt digital image with same logic.It shows better privacy.This process requires keys participating in both encryption and deciphering,so anyone does not know the key who can not rebuild the original image.Key words:digital image chaotic encryption hiding data目录摘要 (I)Abstract (II)绪论 (1)1数字图像加密的基础理论 (4)1.1密码学的介绍 (4)1.2 图像加密技术 (4)1.3数字图像的置乱 (5)1.4混沌加密简介 (5)1.5混沌加密安全性分析 (6)2开发工具简介 (8)3基于混沌的数字图像加密算法 (11)3.1数字图像混沌加密算法总体设计 (11)3.2 数字图像混沌加密算法 (11)3.3数字图像混沌解密算法 (13)4实验仿真与结果 (14)4.1编程实现相关函数及其方法 (14)4.2仿真结果 (14)4.2.1非彩色图像实验仿真 (14)4.2.2彩色图像实验仿真 (16)结论 (18)附录1混沌加密与混沌解密算法代码 (19)绪论计算机和网络的飞速发展为多媒体数字产品的使用、传播提供了极其便利的途径,然而由于数字产品具有极易被复制和修改的特性,使得数字作品的信息安全问题和版权保护成为迫切需要解决的难题。
基于DWT_SVD和DSP的数字图像加密算法实现_王永皎

142
计算机应用与软件
IMPLEMENTATION OF DIGITAL IMAGE ENCRYPTION ALGORITHM BASED ON DWTSVD AND DSP
Wang Yongjiao1
1 2
Wang Chuan2
( Department of Computer Science and Engineering,Henan University of Urban Construction,Pingdingshan 467036 ,Henan,China) ( College of Computer and Information Technology,Henan Normal University,Xinxiang 453007 ,Henan,China)
j) | V ( i , j) ∈ { 0 , 1} , 1≤ ③ 假设加密信息记为 V = { V( i, i, j ≤ P} , 其目的是为了消除加密 对 V 进行 l 次 Arnold 置乱变换, 信息比特的空间相关性 。 将得到的结果记为 V g , 同时将 l 记为 密钥。 ④ 再给每一个系数子块中都加入预设的加密信息 。 在这 里以一个系数子块的操作为例进行说明 。 首先对系数子块 A i 进行奇异值分解运算: Ai = Ji Ri T Ki ( 4)
Abstract In order to solve the security problem of digital images in communication channel transmission,we propose a new digital image encryption algorithm based on DWTSVD. Singular value of the image has good irreversibility against the geometric attacks,and after mathematical transformation,the image centroid will not change. Based on the above analyses,in this paper we dwell on the designing idea of the DWT-SVD algorithm,and present the implementation steps of the algorithm. The DWTSVD algorithm could be implemented on the constructed platform of image processing system based on DSP,and through the experimental test we can find that the DWTSVD algorithm could well fight against geometric attack in communication channel,thereby ensure the security,invisibility and robustness of the images transmitted in the channel. Keywords DWTSVD algorithm DSP Image centroid Geometric attack Robustness
图像加密技术综述

图像加密技术综述随着数字图像技术的快速发展,图像数据的应用越来越广泛,但同时也带来了越来越多的安全问题。
为了保护图像数据的安全性,图像加密技术应运而生。
本文将概述图像加密技术的历史、定义、分类,并深入探讨图像加密技术的研究意义、具体实现方法以及未来发展趋势。
一、图像加密技术概述图像加密技术是一种通过特定的加密算法将图像数据转换为不可读或不可用的形式,以保护图像数据的安全性和机密性的技术。
根据加密原理的不同,图像加密技术可以分为可逆加密和不可逆加密两类。
其中,可逆加密是指通过加密算法将图像数据转换为可逆的加密图像,解密时可以通过相应的解密算法将加密图像恢复成原始图像;不可逆加密是指通过加密算法将图像数据转换为不可逆的形式,解密时无法恢复原始图像。
二、图像加密技术详解1.密码技术密码技术是图像加密技术的核心,包括密码的建立和破解方法两个方面。
其中,密码的建立是指通过特定的算法和密钥生成加密图像的过程;破解方法则是指通过一定的技术手段和工具尝试破解加密图像的过程。
在密码技术中,密钥的管理和安全分发是关键问题,需要采取有效的措施来确保密钥的安全性和机密性。
2.图像处理技术图像处理技术是实现图像加密的必要手段,包括图像的预处理、加密处理、解密处理等。
在预处理阶段,需要对输入的原始图像进行一些必要的处理,如调整图像大小、改变图像格式等,以便于进行后续的加密处理;加密处理则是将预处理后的图像通过特定的加密算法转换为加密图像;解密处理则是将加密图像通过相应的解密算法恢复成原始图像。
3.安全威胁分析在图像加密技术中,安全威胁是不可避免的。
这些威胁可能来自于恶意攻击者、病毒、黑客等。
为了应对这些威胁,需要深入分析可能存在的安全漏洞和攻击手段,并采取有效的措施来提高加密算法的安全性和鲁棒性。
例如,可以采用一些复杂度较高的加密算法来增加破解难度;或者采用多层次加密的方法来增加破解成本和时间。
4.未来发展方向随着技术的不断发展和进步,图像加密技术也在不断发展和演变。
数字图像加密技术的研究

数字图像加密技术的研究近年来,随着数字图像在各个领域的广泛应用,保护图像的安全性和隐私性变得尤为重要。
数字图像加密技术应运而生,成为保护图像隐私的重要手段。
本文将探讨数字图像加密技术的研究现状以及其在保护图像安全性方面的应用。
数字图像加密技术是一种基于密码学原理的技术,通过对图像进行加密转换,使得除了授权者之外的任何人无法理解图像的内容。
在图像加密过程中,首要考虑的是加密算法的安全性和效率。
常见的数字图像加密算法有DES(数据加密标准)、RSA (一种非对称加密算法)以及AES(高级加密标准)等。
这些算法通过对图像像素值的置乱、置换和替换等操作,实现对图像的加密保护。
同时,为了提高加密效率,研究者们还提出了很多优化算法,如基于混沌系统的加密算法和基于人工智能的加密算法等。
数字图像加密技术的研究不仅仅局限于加密算法的设计,也涉及到加密密钥的生成和管理、加密图像传输和解密等方面。
密钥的生成和管理是加密技术的核心问题之一。
目前,常用的密钥生成方法有基于密码学的方法、基于混沌系统的方法和基于生物特征的方法等。
这些方法都旨在生成强大的密钥,保证加密的安全性。
而加密图像的传输和解密则需要保证图像在传输过程中不被篡改,同时能够被授权者正确解密。
为了实现这一目标,研究者们提出了很多解决方案,如基于公钥密码学的数字签名、数字水印技术以及多重加密技术等。
数字图像加密技术的研究不仅在保护个人隐私方面具有重要意义,还在军事、医学、金融等领域有广泛的应用。
例如,在军事领域,加密技术可以用于保护机密图像的传输和存储,防止敌方获取敏感信息。
在医学领域,加密技术可以用于保护医学影像的隐私,防止未经授权的人员获取患者的隐私信息。
在金融领域,加密技术可以用于保护金融交易的安全性,防止黑客攻击和信息泄露。
综上所述,数字图像加密技术的研究对于保护图像的安全性和隐私性具有重要意义。
当前,这一领域的研究主要集中在加密算法的设计和密钥的生成管理等方面。
数字图像加密课程设计

数字图像加密课程设计一、教学目标本课程的教学目标是让学生掌握数字图像加密的基本原理和常用算法,能够运用这些知识对图像进行加密和解密,提高学生对信息安全领域的认识和兴趣。
具体来说,知识目标包括了解数字图像加密的背景和意义,掌握图像加密的基本概念和常用算法;技能目标包括能够使用相关软件进行图像加密和解密,能够分析和解决图像加密过程中遇到的问题;情感态度价值观目标包括培养学生的信息安全意识,提高学生对数字图像加密技术的兴趣和热情。
二、教学内容本课程的教学内容主要包括数字图像加密的基本原理和常用算法。
首先,介绍数字图像加密的背景和意义,让学生了解图像加密的重要性。
然后,讲解图像加密的基本概念,包括加密模型、加密方法和加密强度等。
接着,介绍常用的图像加密算法,如对称加密算法、非对称加密算法和混合加密算法等。
最后,通过案例分析,让学生了解这些算法在实际应用中的具体使用方法和效果。
三、教学方法为了实现教学目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
首先,通过讲授法,向学生传授图像加密的基本原理和常用算法。
然后,通过讨论法,引导学生主动思考和探讨图像加密技术的相关问题。
接着,通过案例分析法,让学生了解图像加密算法在实际应用中的具体使用方法和效果。
最后,通过实验法,让学生动手实践,提高学生对图像加密技术的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,我们将选择和准备适当的教学资源。
教材方面,我们将选用权威、实用的数字图像加密教材,为学生提供全面、系统的学习资料。
参考书方面,我们将推荐一些相关的书籍,供学生深入学习和研究。
多媒体资料方面,我们将制作和收集一些与课程相关的视频、动画和图片等,丰富学生的学习体验。
实验设备方面,我们将准备一些图像加密和解密的软件和硬件设备,让学生能够进行实际的操作和实验。
五、教学评估本课程的评估方式将包括平时表现、作业和考试三个部分,以全面、客观、公正地评估学生的学习成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程 clear RGB=imread('lenna.jpg');
序 s=size(RGB); 一 r=randsample(s(1),s(1));
RGBS=RGB(r,:,:); t=1;j=1;f=1:r; while t<=length(r)
f(j)=find(r==t); t=t+1; j=j+1; end f; RGBE=RGBS(f,:,:); subplot(1,2,1);imshow(RGBS);title('加密后','fontsize',20); subplot(1,2,2);imshow(RGBE);title('解密后','fontsize',20);是随着信息安全与保密被重视而发展起来的。
良好的数字图像加密算法一方面可以达到使非法使用者无法破译图像内
容的目的。 Digital image encryption, decryption technology is with the
development of information security and confidentiality are considered. Good digital image encryption algorithm based on the one hand, can achieve the purpose of making illegal users unable to decipher image content.
基于Matlab的数字图像加密 解密技术研究
Contents
1
概述
2
随机打乱各层的行或列
3
像素点随机打乱
4
像素点RGB值的缩放
5
总结
随着社会科学的进步,多媒体技术、信息存储技术的飞 速发展,以及网络普及率的提升,越来越多的数字图像得以 在网络上传输,并逐步成为人们获取信息的主要途径,因此 对图像的安全保密有更高的要求。例如,图像数据所有者在 Internet上传输他所拥有的图像时,为了保护自身的利益,就 需要对发送的图像通过可靠的加密技术进行处理;在远程医 疗系统中,病人的照片等图像数据必须在加密之后才能在网 上传输。于是图像的加密、解密技术就应运而生了。
reshape:该函数可将矩阵重新排列,调用方式为reshape(A,m,n,q)即将
矩阵A重置为m*n*q的矩阵。
find:可找出矩阵中某一元素的位置
2
准备知识
A(b):可将矩阵A中的元素按照向量b的顺序重新排列
原理:
➢ 用imread函数将图像读入矩阵RGB中, RGB是一个m行n 列3层的矩阵。 ➢ 用randsample产生一个与图像矩阵RGB的行数m相等的 整数随机数列并返回到r中。这样就可以将原图像矩阵的行随 机打乱,将打乱后的矩阵返回至RGBS中。 ➢ 用find函数找出向量r内从1到m的元素的位置并返回到向 量f。至此就可以将打乱的图像还原。
加密后
解密后
程
clear RGB=imread('321.jpg');
序 s=size(RGB);
二
i=randsample(s(2),s(2)); RGBS=RGB(:,i,:);
t=1;j=1;f=1:i;
while t<=length(i)
f(j)=find(i==t);
t=t+1;
j=j+1;
t1=1;j1=1;f1=1:i1;
while t1<=length(i1) f1(j1)=find(i1==t1); t1=t1+1; j1=j1+1;
end RGBE1=RGBS1(:,f1,:); RGBE=RGBE1(f,:,:);
subplot(1,2,1);imshow(RGBS1); title('加密后','fontsize',20); subplot(1,2,2);imshow(RGBE); title('解密后','fontsize',20);
优点:
像素点随机打乱算法即将图像文件的每一个像素点 随机打乱。这种算法的加密效果非常好,加密用的随机 数列更提高了这种算法的加密性。
2
准备知识
Matlab里的imread函数可用于读取图片文件中的数据。 读进去的数据为一个三层的矩阵,矩阵的行或列表示图像 每一个像素点的位置。矩阵的第一层、第二层、第三层分 别代表红、绿、蓝三种像素(RGB色域)。对此,可设计 以下几种加密方法:①随机打乱各层的行或列。②随机打 乱像素点③像素点RGB值的缩放。
2
准备知识
imread:用于读取图片文件中的数据,对于RGB图像返回一个m*n*3的矩
阵。
size:该函数返回的是一个行向量,该行向量的第一、二、三个元素分
别是矩阵的行数、列数和层数。
randsample:该函数调用格式为randsample(n,k),其可产生一个元素
数量为k,从1到n的列向量。
end
f;
RGBE=RGBS(:,f,:);
subplot(1,2,1);imshow(RGBS); title('加密后','fontsize',20);
subplot(1,2,2);imshow(RGBE);title('解密后','fontsize',20);
加密后
解密后
程
clear RGB=imread('321.jpg');
序
s=size(RGB);
三
i=randsample(s(1),s(1)); RGBS=RGB(i,:,:);
t=1;j=1;f=1:i;
while t<=length(i)
f(j)=find(i==t);
t=t+1;
j=j+1;
end
i1=randsample(s(2),s(2));
RGBS1=RGBS(:,i1,:);
加密后
解密后
优点:
打乱矩阵行或列的方法运算步骤少、运算速度快, 可对较大图像文件进行加密。
缺点:
对于一些特殊的图像无法进行加密。
加密后
解密后
原理:
➢用imread函数将图像读入矩阵RGB中, RGB是一个m行n列 3层的矩阵。 ➢randsample可产生随机向量,用此函数产生一个值为从1 到m*n*3的行向量并返回到r中。 ➢用reshape函数将RGBS中的所有元素重置为新的矩阵并返 回到RGBSS中。 ➢用find函数找出向量r内从1到m的元素的位置并返回到向量 f。至此就可以将打乱的图像还原。