实验四实验报告
实验四预做实验报告

计算机组成原理预做实验报告实验四数据通路的组成1实验目的和要求在JYS-4实验装置上模拟计算机最基本的工作过程, 打通“键盘”、“CPU”、“RAM”之间的数据通路, 掌握计算机的数据通路组成及其工作原理。
2 实验设备JYS-4计算机组成原理教学实验装置及导线若干。
3实验内容及步骤1)实验原理2)该实验实际是前三个实验的综合, 就是把JYS-4实验装置上的INPUT DEVICE(输入设备—键盘)、SWITCH UNIT(开关单元—控制器)、SIGNAL UNIT(信号单元—时钟)、STATE UNIT(时序单元)、ALU UNIT(算术逻辑单元—运算器)、MAIN MEM(主存储器—内存)、ADDRESS UNIT(地址单元)、BUS UNIT(总线单元)、W/R UNIT(写/读单元)、OUTPUT DEVICE(输出设备)等单元电路连接起来, 构成一个最基本的计算机系统, 以模拟计算机的实际工作过程。
电路构成也是运算器实验和存储器实验电路的综合, 如实验指导书图4-1。
3)实验步骤①接线前的准备、实验电路的接线程序参见实验一和实验三。
②从输入单元电路输入四个八位二进制数据, 并存入存储器单元(四个数据及四个存放数据的内存单元地址由各组定义, 但要求不能与其它组定义的数据相同)。
③从内存单元取出两组八位二进制分别送入DR1和DR2, 并进行四种不同的算术运算, 并把不同的算术运算的结果保存在存储器单元里(四种不同的算术运算及其结果的存放地址由各组自行规定)。
④再从内存单元里取出剩下的两个原始数据分别送入DR1和DR2, 并进行四种不同的逻辑运算, 并把不同的逻辑运算结果存入存储器单元里(要求同3)。
⑤分别从存储器单元读出算术运算和逻辑运算的结果, 并进行理论分析其正确性。
图4-1 JYS-4装置的数据通路组成原理数据通路实验数据记录表4 实验数据记录与分析数据通路实验数据记录表验证分析: 实验结果与理论分析相符;5注意事项实验中, LDDR1与CE、LDDR2与WE分别共用一个控制开关, 在上述两个实验分别做的时候, 这两个开关要么用于产生LDDR1和LDDR2(做运算器实验时)这两个控制信号, 要么用于产生CE和WE(做存储器实验时)这两个控制信号, 所以是不矛盾的。
人工智能实验报告四

人工智能实验报告四课程实验报告课程名称:人工智能实验项目名称:实验四:分类算法实验专业班级:姓名:学号:实验时间:2021年6月18日实验四:分类算法实验一、实验目的1.了解有关支持向量机的基本原理2.能够使用支持向量机的代码解决分类与回归问题3. 了解图像分类的基本原理二、实验的硬件、软件平台硬件:计算机软件:操作系统:***** 10应用软件:C+ + ,Java或者Matlab三、实验内容支持向量机算法训练分类器:1.训练数据集:见文档“分类数据集.doc”,前150个数据作为训练数据,其他数据作为测试数据,数据中“ + 1”“-1”分别表示正负样本。
2.使用代码中的C-SVC算法和默认参数来训练“分类数据集doc”中所有的数据(包括训练数据和测试数据),统计分类查准率。
3.在2的基础上使用k-折交叉验证思想来训练分类器并统计分类查准率。
4.使用2中的设置在训练数据的基础上学习分类器,将得到的分类器在测试数据上进行分类预测,统计查准率。
5.在4上尝试不同的C值("-c”参数)来调节分类器的性能并绘制查准率曲线。
6.尝试不同的kernel函数("-t”参数)来调节分类器的性能并绘制查准率曲线,对每种kernel函数尝试调节其参数值并评估查准率。
四. 实验操作采用提供的windows版本的libsvm完成实验。
1.文档“分类数据集.doc”改名为trainall.doc,前150组数据保存为train.doc 后120 组保存为test.doc2.使用代码中的C-SVC算法和默认参数来训练“分类数据集.doc” 中所有的数据(包括训练数据和测试数据),统计分类查准率。
用法:svm-scale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower =- 1, upper = 1,没有对y进行缩放)按实验要求这个函数直接使用缺省值就行了。
实验四虚拟机实验报告

实验四虚拟机实验报告一、实验目的本次实验的主要目的是深入了解虚拟机的工作原理和功能,通过实际操作掌握虚拟机的创建、配置、安装操作系统以及在虚拟机中进行各种应用程序的运行和测试。
同时,通过对虚拟机的使用,提高对计算机系统资源管理和分配的理解,以及解决在虚拟机使用过程中可能遇到的各种问题的能力。
二、实验环境1、操作系统:Windows 10 专业版2、虚拟机软件:VMware Workstation Pro 163、硬件配置:Intel Core i7 处理器,16GB 内存,512GB SSD 硬盘三、实验内容1、虚拟机软件的安装与配置首先,从官方网站下载 VMware Workstation Pro 16 安装程序,并按照安装向导进行安装。
在安装过程中,选择典型安装选项,并接受默认的安装路径和设置。
安装完成后,启动 VMware Workstation Pro 16,进行软件的初始配置,包括许可证密钥的输入和网络设置的选择。
2、创建虚拟机打开 VMware Workstation Pro 16,点击“创建新的虚拟机”按钮。
在“新建虚拟机向导”中,选择“典型(推荐)”配置类型。
接着,选择要安装的操作系统类型和版本,本次实验选择安装Windows Server 2019 操作系统。
为虚拟机指定名称和存储位置,并根据实际需求设置虚拟机的磁盘大小和存储方式。
3、虚拟机的配置在创建虚拟机后,对虚拟机的硬件进行配置,包括内存大小、CPU 核心数量、网络适配器类型、声卡和显卡等。
根据实验的需求和主机的硬件资源,合理分配虚拟机的硬件资源,以确保虚拟机能够流畅运行。
4、安装操作系统配置完成后,启动虚拟机,将 Windows Server 2019 操作系统的安装光盘镜像文件加载到虚拟机的光驱中。
在虚拟机中按照操作系统的安装向导进行安装,包括选择安装分区、设置管理员密码等操作。
等待操作系统安装完成,并进行必要的系统更新和驱动安装。
数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。
2. 运用MA TLAB 验证离散时间傅立叶变换的性质。
二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
例3.1 运用MA TLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。
实验报告 范文(四)

中毒事故后果模拟一、训练目的1.通过训练,学会使用PHAST软件对石油化工装置泄漏后可能发生的中毒事故进行分析,掌握使用PHAST软件建立相对模型,模拟分析中毒影响范围和严重程度。
2.掌握毒性物质致死概率。
二、训练内容要求毒性气体或液体泄漏后中毒事故的模拟三、训练仪器本训练所用实验软件为:PHAST6.7四、训练方法和步骤:1.了解毒性物质泄漏中毒的原理,学习使用Vessel/pipe source 模型模拟中毒事故的方法。
2.选择Vessel/pipe source 模型3.输入相关参数(硫化氢泄漏)4.分别对扩散结果和毒性结果进行分析⑴扩散浓度结合硫化氢毒性阈限值,根据模拟结果进行分析,给出造成轻伤、重伤和死亡等不同中毒效果的浓度范围。
⑵致死概率通过看图和查看毒性报告,找出不同毒性致死概率与对应的范围,对付这些区域进行分析。
五、气体泄漏扩散浓度计算1.阈限值(TLVs)美国政府工业卫生专家协会针对多种化学物质制定了极限剂量,称为阈限值。
阈限值是空气中一种物质的浓度,其所代表的工作条件是,几乎所有的工人长期在这样的暴露条件下工作时,不会有不良的健康影响。
工人只有在工作时间才会暴露于此种毒物中,即每天八小时,每周五天。
2.阈限值与允许暴露浓度美国职业安全与健康管理局制定了一套极限剂量,称为允许暴露浓度。
3.致死概率的计算个体致死概率可通过中毒事故后果模型计算出某一事故场景在位置处产生的毒物浓度数值,然后根据概率函数法计算得到。
六、实验体会通过本次实验学习使用了PHAST软件,并了解了毒性物质泄漏中毒的原理及相关计算。
压力容器认知训练一、训练目的及要求使学生了解并熟悉压力容器的分类、特点、安全管理及检测检验方法和事故原因分析。
掌握KZL4—13—AII型工业锅炉,LSG立式水直管锅炉安全管理及检测检验方法。
二、设备KZL4—13—AII型工业锅炉,LSG立式水直管锅炉.三、认知训练内容1.压力容器的分类和特点。
最新实验报告_实验四

最新实验报告_实验四实验目的:本实验旨在探究特定条件下物质的热传导性能,并验证傅里叶定律在实际应用中的有效性。
通过实验测定不同温度梯度下的物质热传导率,加深对热传导现象的理解。
实验原理:热传导是热能通过物质内部分子振动和自由电子的碰撞传递的过程。
根据傅里叶定律,单位时间内通过单位面积的热量与温度梯度成正比,数学表达式为:q = -kAΔT/Δx,其中q是热流量,k是热传导率,A是传热面积,ΔT是温度差,Δx是传热距离。
实验设备:1. 恒温水浴2. 热传导率测量仪3. 标准样品(如铜、铝块)4. 温度传感器5. 保温材料6. 数据采集系统实验步骤:1. 准备实验设备,确保所有设备均处于良好工作状态。
2. 将标准样品放置在测量仪中央,确保样品与测量仪接触良好。
3. 使用恒温水浴设定两个不同的温度,分别作为实验的高温端和低温端。
4. 将温度传感器固定在样品的两端,以便准确测量温度差。
5. 开始实验,记录不同时间间隔的温度数据。
6. 根据温度数据和傅里叶定律计算热传导率。
7. 改变温度梯度,重复步骤5和6,获得不同温度梯度下的热传导率。
8. 使用数据采集系统整理和分析实验数据,绘制温度梯度与热传导率的关系图。
实验结果:实验数据显示,在一定范围内,随着温度梯度的增加,热传导率呈现上升趋势。
通过对比不同材料的实验结果,可以得出材料的热传导性能与其内部结构和分子振动特性有关。
结论:本次实验成功验证了傅里叶定律在描述热传导现象时的有效性,并通过对不同材料的热传导率进行测定,进一步理解了影响热传导性能的因素。
实验结果对于材料科学和热能工程领域具有一定的参考价值。
实验四 宇宙线缪子飞行时间测量实验报告

实验四宇宙线缪子飞行时间测量一、实验原理宇宙线缪子在穿过闪烁体时将沉积能量,从而产生信号。
缪子穿过两个相距一定距离的闪烁体产生的信号将会产生时间差,对这个时间差进行测量,再将两个闪烁体紧贴在一起,再次测量信号的时间差,将二者相减,就可以得到缪子飞过这段距离所用的飞行时间,进而得到缪子的速度。
二、实验内容及步骤1. 按图示中的A图搭建设备,两块闪烁体上下分开一米左右,测量A情况时间分布。
2. 按图示中的B图搭建设备,两块闪烁体紧贴在一起,测量B情况时间分布,估计两组探测器的固有时间差和时间分辨。
3. 测量闪烁体的三维尺寸,及A图中两块闪烁体的间距。
三、实验结果与思考1、当两个闪烁体紧贴在一起时:具体时间间隔记录如下:统计结果如下:统计直方图如下:2、当两个闪烁体相距1.11m时:具体时间间隔记录如下:统计结果如下:统计直方图如下:3、根据计算缪子射线的角度与其产生信号的时间差的关系大致为:t=(h/cosθ+h*tanθ)/v可得:cosθ=2*A*t/(A2*t2+1)(A=v/h)缪子的角分布为:I=I0*cos2θ故计数在不同时间差上的分布应该为:N=N0*(2*A*(t0-t)/(A2*(t-t0)2+1))2+N’用MATLAB中的cftool工具对两组数据进行拟合,可得:(1)当两个闪烁体紧贴在一起时:A=0.2087N0=5.083N’=1.551t0=1.152(2)当两个闪烁体相距1.11m时:A=1.986N0=3.832N’=2.41t0=1.229对于两组数据,θ=0,也就是计数最大点所对应的时间差分别为:t1=-1/0.2087+1.152=-3.640nst2=-1/1.986+1.229=0.725ns故缪子的飞行时间为:dt=t2-t1=0.725+3.640=4.365ns飞行速度为:dh/dt=1.11/(4.365*10-9)=2.54*108m/s可见缪子的飞行速度较为接近光速。
实验四313《等厚干涉应用》实验报告

δ=2(e+a)+λ/2=(2k+1) λ/2
即
e=kλ/2-a
将(3)式代入得:
r2=kRλ-2Ra
(5)
取 m、n 级暗环,则对应的暗环半径为rm,rn,由(5)式可得:
rm2=mRλ-2Ra rn2=nRλ-2Ra
八、 思考题
1、此实验的注意事项有哪些? 答:①在调节读数显微镜的过程中要防止玻璃片与牛顿环、劈尖等元件相碰。
②在测量牛顿环直径的过程中,为了避免出现“空程”,只能单方向前进,不能
中途倒退后再前进。
2、牛顿环的中心在什么情况下是暗的?在什么情况下是亮的? 答:牛顿环是光的干涉现象,干涉光为上下两个表面的反射光。 暗是振动
2、利用劈尖干涉测定头发丝直径 将叠在一起的两块平板玻璃的一端插入一个薄片或细丝,则两块玻璃板间即
形成一空气劈尖,当用单色光垂直照射时,和牛顿环一样,在劈尖薄膜上下两表 面反射的两束光也将发生干涉,呈现出一组与两玻璃板交接线平行且间隔相等、 明暗相间的干涉条纹,这也是一种等厚干涉。
①将被测薄片或细丝夹于两玻璃片之间,用读数显微镜进行观察,描绘劈尖 干涉的图像。
d/cm 4.5255 10-3 5.0409 10-3 4.6589 10-3 4.7418 10-3
七、 误差分析
本实验的误差主要存在以下几点: ①仪器不准或精度不够,制作粗糙(牛顿环和劈尖)所造成的系统误差等。 ②由于牛顿环的暗纹很细,视野不是很明亮叉丝难以对准,内切外切很难对 到,造成误差。 ③劈尖干涉条纹也很细,不易测量,存在误差。 ④条纹太多,可能存在数错的情况。 ⑤测量时前后移动时有可能中途有回测的情况,会产生一定的空程误差。 ⑥劈尖干涉中头发丝的摆放位置不够直,导致在用游标卡尺测量 l 时也会存 在一定的误差等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四利用其他分类方法进行人、车分类与特征评估
智能1201 王自琰201208070121
一、实验目的
1、熟悉并掌握近邻法、决策树与随机森林、罗杰斯特回归以及
Adaboost等其他分类方法,选取其中一种方法用于人、车背景分类实验。
2、熟悉一些常用的特征,如颜色特征、梯度特征、LBP特征、边
缘特征、Haar-like特征以及SIFT特征等,从中选取一种以上的特征(不同于实验三使用的特征)进行人、车分类实验。
3、针对实验三与本实验中选择的分类器与特征,进行交叉人、车
分类实验,统计分别使用不同的分类器与不同的特征的实验结果,并根据实验结果分析与评估不同分类器与特征在此次人、车分类实验中的性能差异,给出自己的解释与总结。
二、实验环境
硬件:计算机
软件:WIN7操作系统或更高
应用软件:Matlab,C++或JAVA
三、实验内容及步骤
1、样本数据采集(人、车与背景各100个样本)。
2、根据所需要提取的特征对样本进行预处理。
3、分别对于行人与车辆分类器选择合适的特征并进行特征提取,并根据样本标签及提取的特征对分类器进行训练。
4、利用训练好的行人分类器对人与背景图片(测试样本验收时提供)进行分类识别,利用车辆分类器对车与背景图片进行分类识别。
5、得出识别率,分析实验结果。
6、分别使用实验三与实验四用到的两种分类器与两种特征两两组合进行人、车分类实验,对比四组实验结果进行分析。
7、选择一种特征评价准则(基于类内类间距离的可分性判据、基于概率分布的可分性判据等)对所使用的特征进行评估。
1、选取特征:HOG(颜色梯度直方图)分类器(KNN最近邻方法)
人与背景分离结果:
车与背景分离结果:其中选取3 个最近邻邻居
2、选取特征:LBP(轮廓特征)分类器(KNN最近邻方法,选择5 个最近邻邻居)
人与背景分离结果:
车与背景分离结果:
3、选取特征:HOG(颜色梯度直方图)分类器(SVM支持向量机)
人与背景分离结果:
车与背景分离结果:
4、选取特征:LBP(轮廓特征)分类器:SVM(支持向量机)人与背景分离结果:
车与背景分离结果:
四、思考题
1、通过实验结果分析所选分类器在人、车背景分类中的性能。
2、根据交叉对比实验结果分析不同的特征与分类器在本次实验中的性能。
3、实验结果中特征表现的性能与你特征评价的结果符合吗,为什么?
五、实验结果提交
(1)以小组为单位提交:整个实验过程中的实验代码与课后的实验报告打包按每组以“班级+姓名+学号”命名发到邮箱“42103901@”。
(2)以个人为单位提交:每位同学都要提交自己的实验总结分析报告,内容包括人、车分类的多种分类器与多种特征交叉实验,实验结果统计分别,分类器与特征性能差异的分析与评估,自己的解释与总结,格式字数不限。
注意:该报告单独评分。