组合变形构件力学分析

合集下载

建筑力学 第9章 组合变形杆件的应力分析与强度计算

建筑力学 第9章 组合变形杆件的应力分析与强度计算
建筑力学
§9-1 组合变形的概念
一、组合变形的概念
前面几章研究了构件的基本变形: 轴向拉(压)、扭转、平面弯曲。
由两种或两种以上基本变形组合的情况称为组合变形
组合变形
斜弯曲 拉(压)弯组合变形 偏心拉伸(压缩)变形 弯扭组合变形
§9-1 组合变形的概念
斜弯曲:
压弯组合变形:
F
Fy
z
Fz
x
y
§9-1 组合变形的概念
M z max Wz
z
Fx x
Fy
y
F
设图示简易吊车在当小车运行到梁端D时,吊车横梁处于最 不利位置。已知小车和重物的总重量F=20kN, 钢材的许用应力[]=160MPa,暂不考虑梁的自重。 按强度条件选择横梁工字钢的型号。
C
2m
A
A
FAx FAy
30 3.46m
FBC
30 3.46m
解:1、横梁AD受力分析
z
F2
b
(最大拉应力)
l y
解:
h
z
l
F1
(最大压应力)y
§9-3 拉伸(压缩)与弯曲的组合变形
横向力与轴向力共同作用的组合变形 一、荷载分解
Fx F cos
z
Fx x
Fy
y
F
Fy F sin
§9-3 拉伸(压缩)与弯曲的组合变形
二、内力计算 a
z
Fx F cos
Fx Fy F sin
解:1、荷载分解
q
qy q cos 800 0.894 714 N / m A
B
L
qz q sin 800 0.447 358 N / m

材料力学组合变形

材料力学组合变形
第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力

材料力学组合变形

材料力学组合变形
z1
解:(1)计算横截面的形心、 面积、惯性矩
A 15000mm2
M FN
z0 75mm z1 125 mm I y 5.31107 mm4 (2)立柱横截面的内力
50
FN F
150
M F350 75103
50
150
0.425F
A 15000mm2
§6-2 拉伸(或压缩)与弯曲的组合
一、受力特点
作用在杆件上的外力既有轴向拉( 压 )力,还有横向力
二、变形特点
杆件将发生拉伸 (压缩 )与弯曲组合变形
示例1 F1 产生弯曲变形
F2
F2 产生拉伸变形 示例2 Fy 产生弯曲变形
Fx 产生拉伸变形
F1 F2
Fy
F
Fx
三、内力分析
横截面上内力
1.拉(压) :轴力 FN (axial force)
§6-1 组合变形与叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
组合变形:
构件在外载的作用下,同时发生两种或两种以上基本变形。
F2 F1
F
M F
z
x y
P q
hg
水坝
1、研究方法:
将复杂变形分解成基本变形; 独立计算每一基本变形的各自的内力、应力、应变、位移。
叠加
形成构件在组合变形下的内力、应力、应变、位移。
查型钢表,可选用16号钢,W 141 cm3, A 26.1cm2,
按弯压组合强度条件,可知C点左侧截面下边缘各点压应
力最大:
cmax
FN A
M max W
94.3MPa
说明所选工字钢合适。
例6.2 铸铁压力机框架,立柱横截面尺寸如图所示,

建筑力学课件 第十三章 组合变形

建筑力学课件 第十三章 组合变形

max
M
m
ax
cos Iz
ymax
s in
Iy
z
m
ax
【注】斜弯曲时,梁内剪应力很小 ,通常不予计算。
13.2 斜弯曲
三、强度条件
进行强度计算,首先要确定危险截面和危险点的位置。 对于图13-3所示的悬臂梁,固定端截面的弯矩值最大 ,是危险截面。对矩形、工字形等具有两个对称轴及 棱角的截面,最大正应力必定发生在角点上(图134d)。将角点坐标代入式(13-2)式便可求得任意截 面上的最大正应力值。
13.2 斜弯曲
由式(13-2)可见,应力σ是坐标y、z的线性函数,所以 它是一个平面方程。正应力σ在横截面上的分布规律 可用一倾斜平面表示(如图13-4d)。斜平面与横截
面的交线就是中性轴,它是横截面上正应力等于零的
各点的连线,这条连线也称为零线。零线在危险截面
上的位置可由应力σ = 0的条件确定,即:
与轴力FN (x)对应的正应力为
N
FN (x) A
与弯矩M(x)对应的弯曲正应力为
M
M (x)y Iz
13.3 压缩(拉伸)与弯曲组合
将两项应力叠加后得总应力,即
N
M
FN (x) M (x) y
A
Iz
(13-6)
叠加后的应力分布如图13-9(d)所示。显然,最大拉应力
发生在DD边,最大压应力发生在CC边。对于抗拉
3EI z
因Fz所引起的挠度为
fz
Fzl 3 3EI y
Fl3 sin
3EI y
由叠加原理,自由端的总挠度是两个方向挠度的矢量和(
如图13-6a),即 f
f
2 y
f

工程力学-弯曲与扭转的组合变形

工程力学-弯曲与扭转的组合变形
洛 阳 职 业 技 术 学 院
洛 阳 职 业 技 术 学 院
第五单元 组合变形的强度计算
模块二 弯曲与扭转的组合变形
洛 阳 职 业 技 术 学 院
一、弯曲与扭转的组合变 形简介
构件在工作时机受弯曲的作用也受扭转的作用,这 样的情况我们称为弯曲和扭转组合变形,简称弯扭组合 变形。
洛 阳 职 业 技 术 学 院
z F2
M M
F F1 F2
F1
2)内力分析
在xy平面上弯曲变形的内力---弯矩
FL 9 103 800 M zc 1.8 106 Nm m 4 4
y 400 400 x MZ
FAy
1.8kN· m
FBy
x
扭转变形的内力---扭矩
T M 0.6KNm 0.6 106 Nmm
D 2
T M
T M
XY平面上弯曲的外力及内力
M EZ
Fr L Fr 2a Fa 4 4 2
ZY平面上弯曲的外力及内力
B Z MY MEY
E
C
X
Ft
X
M EY Ft L Ft 2a Ft a 4 4 2
求E点合弯矩M
ME M
2 EZ
M
2 EY
Fr a 2 Ft a 2 ( ) ( ) 2 2
3)强度校核
求出圆轴的WZ
WZ
d3
32
Hale Waihona Puke 21205 .8m m3
由第三强度理论

M2 T2 ( 1.8 2 0.6 2 ) 10 6 89.5 MPa [ ] 120 MPa W 21205 .8

材料力学 第7章 组合变形

材料力学 第7章 组合变形
y
1


z x


1


式中M——危险截面的弯矩 T——危险截面的扭矩

2

y


2


例 3 某齿轮传动轴上装有两个直圆柱齿轮,C轮的输入功
率NkC=15kW,不考虑功率损耗,轴的转速n=850r/min, 直径d=50mm,材料的[]=50MPa,两轮节圆直径分别为 D1=300mm, D2=120mm,压力角=20,试校核轴的强度。
FAx
800
.
D
.
A
.
. .
C
.
B 1500
2500
c max
FN M max A Wz
A FAy y
FC
FCx
FCy C
F B
F x
40 10 12 10 4 26.1 10 141 10 6
3 3
FN 40kN
12kNm M
100.5 MPa [ ]
第七章

作业


7-2 7-4 7-5 7-8 7-13 7-17 7-21
第七章
7.1 7.2
组合变形杆的强度
组合变形的概念 弯曲与拉伸(压缩)的组合
7.3
偏心压缩与截面核心
7.4 扭转与弯曲的组合 7.5 复合梁的强度计算
7.6
开口薄壁梁的切应力
组合变形杆的强度
7.1
组合变形概念
F
截面核心—— 在轴向压力作用下,使杆的横截面上只产 生压应力的载荷作用区域
偏心压缩与截面核心
五、截面核心
2.确定方法
压力作用区域。 当压力作用在此区域内时,横截面上无拉应力。 ay 截面核心 az

材料力学- 8组合变形

材料力学- 8组合变形
l/2 l/2
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m

建筑力学 第十二章 组合变形

建筑力学 第十二章 组合变形

图12.1
二、组合变形的分析方法及计算原理 处理组合变形问题的方法: 1.将构件的组合变形分解为基本变形; 2.计算构件在每一种基本变形情况下的应力; 3.将同一点的应力叠加起来,便可得到构 件在组合变形情况下的应力。 叠加原理是解决组合变形计算的基本原理 叠加原理应用条件:即在材料服从胡克定 律,构件产生小变形,所求力学量定荷载 的一次函数的情况下,


对于不同的截面形状, Wz/Wy 的比值 可按下述范围选取: 矩形截面: Wz/Wy = h/b=1.2~2; 工字形截面:Wz/Wy =8~10; 槽形截面: Wz/Wy =6~8。

【例12.1】跨度l=4m的吊车梁,用32a号工字钢制成, 材料为A3钢,许用应力[σ]=160MPa。作用在梁上的 集中力P=30kN,其作用线与横截面铅垂对称轴的夹角 φ=15°,如图12.3所示。试校核吊车梁的强度。 【解】(1) 荷载分解图11.9
(2) 计算横梁的内力 横梁在Ry、P和Ny的作用下产生平面弯曲,横梁中 点截面D的弯矩最大,其值为 Mmax= Pl/4 = 15.5×3.4/4 kN· m=13.18kN· m 横梁在Rx和Nx作用下产生轴向压缩,各截面的轴 力都相等,其值为 N=Rx=17.57kN (3) 选择工字钢型号 由式(12.7),有 σymax=|- N/A - Mmax/Wz|≤[σ]
§12.2 斜弯曲
• 对于横截面具有对称轴的梁,当横 向力作用在梁的纵向对称面内时,梁变 形后的轴线仍位于外力所在的平面内, 这种变形称为平面弯曲。 • 如果外力的作用平面虽然通过梁轴 线,但是不与梁的纵向对称面重合时, 梁变形后的轴线就不再位于外力所在的 平面内,这种弯曲称为斜弯曲。
变形后,杆件的轴线弯成一空间曲线称为斜弯 曲。斜弯曲可分解为两个平面弯曲。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
N
M max
=
Fp A
FPe Wz
例10.5 下图所示两根木柱,荷载及尺寸均已
知。若木材的许用应力为 =10MPa ,试校核
两根木柱的强度,并比较之。
360kN
360kN
1
1
200
1
1
z
100 200
200
200
重点回顾:
1、单向偏心压缩杆件的强度计算。 2、截面核心的概念。
LOGO
[例] 矩形截面木檩条如图,跨L=3.6m,受集度为
q=1kN/m的均布力作用, []=10MPa,b=90mm,
h=140mm,校核强度。
yq
z
a =26°34´
q=1kN/m
q
A
B
L
教学回顾:
1、组合变形杆件的强度计算方法: 2、斜弯曲变形的特点是什么?
6.2 拉伸(压缩)与弯曲组合变形的强度计算
12
§6.1 斜弯曲
斜弯曲:杆件产生弯曲变形,但弯曲后,挠曲线与外力(横
向力)不共面。
一、分解荷载
B
z
K
A
b
B
K
z
++
x
- - Mz
C
m
D
l-x
x
l
y
h
-
K +
y
- + My
D
二、内力计算
B
z
A C
D
x
b
B
K
K
++
x
- - Mz
m Fz
l-x
F
Fy h
-
K +
- + My
D
三、应力计算 四、强度条件
e—偏心距; FP—偏心荷载。
(1)荷载简化 (2)内力分析
N = FP M z = M = FPe
e FPz
o
y
FP
m=FPe o
z y
a d
Kb c
(3)应力计算
N
=
N A
M
=
Mzy Iz
总应力为
k
=N
M
=
N A
Mzy Iz
(4)强度条件
max
=N
M max
=
Fp A
FPe Wz
max
工学项目6 组合变形构件力学分析
2
组合变形 :在复杂外荷载作用下,构件同时发生两种或两种以 上基本变形,这类构件的变形称为组合变形。
P
P z
R
x
M
y
P
6
P
hg
8
P q
hg
水坝
10
组合变形的研究方法 —— 叠加原理 ①外力分析:外力向形心(或弯心)简化并沿形心主惯性轴分解 ②内力分析:求每个外力分量对应的内力方程和内力图,确 定危险面。 ③应力分析:画危险面应力分布图,叠加,建立危险点的强 度条件。
= = N M zmaxy
A
Iz
4. 强度条件
max
=
N A
M zmax Wz
若材料的 ,则强度条件为
max
=
N A
M zmax Wz
max
=
N M zmax A Wz
二、偏心受压(拉)杆件的强度计算
e FP
❖ 如图示
荷载作用线与杆件 的轴线平行但不重合, 这种变形称为偏心压缩( 拉伸)。
❖ 一、拉伸(压缩)与弯曲组合变形的强度计算
z
y
1. 荷载分解
z Fx x
θ Fy
F
l
y
Fx = F cos
Fy = F sin
2. 内力分析
❖ 轴力
弯矩
N = Fx = F cos
M z max = Fyl = Fl sin
3. 正应力计算
= N
A
= M z max y
Iz
则危险截面上任一点的正应力为
相关文档
最新文档