食品中蛋白质含量测定

合集下载

实验十一食品中蛋白质的测定

实验十一食品中蛋白质的测定
品(如小麦粉)蛋白质的含量测定。对于其它 种类食品,应用范围较小。
色素结合法
– 在蛋白质的侧链中,有许多酸性基团或碱性 基团,它们可以使蛋白质的溶液呈现碱性或
酸性;而且,它们还有吸附碱性色素或酸性
色素能力,并与对应的色素生成“蛋白质-
色素”的沉淀。据此,可用色素结合法对蛋
白质用比色法作定量分析。
– 此法是近年来发展比较快的蛋白质定量分析
方法的种类
• 比色法包括:
»双缩脲法 »紫外分光光度法 »色素结合法
比色法的基本要求
– 由于是用比色法测定蛋白质的含量,而比色 法的测定液必须是真溶液,故要求采用此类
方法的样品,其蛋白质是可溶的(对测试时
使用的溶剂而言)。
– 在一般情况下,蛋白质的溶解是速度是比较

– 的,所以在进行样品预处理时应做剧烈振荡, 从而使蛋白质充分地溶液于溶剂中。 – 要求用与待测样品具有同源蛋白质的标准制 作标准曲线!!
⑤ 当样品消化液不易澄清透明时,可将凯氏烧瓶冷 却,加入30%过氧化氢 2—3 m1 后再继续加热消化。
⑥ 若取样量较大,如干试样超过5 g 可按每克试样5 m1的比例增加硫酸用量。如硫酸缺少,过多的硫酸 钾会引起氨的损失,这时会形成硫酸氢钾,而不与 氨作用,因此当硫酸被过多底物消耗掉或样品中脂 肪含量过高时,要添加硫酸。
白质含量的食品为标准样(称之与待测样
具有同源蛋白质的标样),在其适合的 条件下测定吸光度并制备标准吸收曲线。
在相同条件下测同源的待测样品的光密
度,然后从标准吸收曲线上查蛋白质的 含量。
特点: (1)消化装置用优质玻璃制成的凯氏消化瓶, 红外线加热的消化炉。 (2)快速:一次可同时消化8个样品,30分钟可 消化完毕。 (3)自动:自动加碱蒸馏,自动吸收和滴定, 自动数字显示装置。可计算总氮百分含量并记 录,12分钟完成1个样。

食品蛋白质的检测方法

食品蛋白质的检测方法

食品蛋白质的检测方法蛋白质是构成食物中重要营养成分之一,对于人体的生长发育、免疫系统的维护以及各种生物化学过程的正常进行起着至关重要的作用。

因此,准确检测食品中蛋白质含量具有重要的意义。

本文将介绍几种常见的食品蛋白质检测方法。

一、生物化学法检测蛋白质生物化学法是一种常见的检测蛋白质含量的方法,它通过测定食品中的氨基酸或肽链来间接推断蛋白质的含量。

该方法的原理是蛋白质分子中含有大量的氨基酸,因此可以通过测定氨基酸的含量来间接计算蛋白质的含量。

常用的氨基酸测定方法有比色法、高效液相色谱法等。

二、免疫学法检测蛋白质免疫学法是一种直接测定蛋白质含量的方法,它利用抗体与特定蛋白质结合的特异性来测定蛋白质的含量。

该方法一般分为免疫沉淀法、免疫层析法和免疫电泳法等。

其中,免疫沉淀法是一种常用的方法,它通过将抗体与待测物质结合,然后通过离心等操作将蛋白质沉淀下来,最后通过比色、荧光或放射性等方法来测定蛋白质的含量。

三、质谱法检测蛋白质质谱法是一种高灵敏度、高分辨率的蛋白质检测方法,它基于蛋白质分子的质量和电荷特性来进行分析。

质谱法可以直接测定蛋白质的分子量和氨基酸序列等信息,对于蛋白质的鉴定和定量具有很高的准确性。

常用的质谱法包括质谱仪、液相质谱法、基质辅助激光解吸电离质谱法等。

四、比色法检测蛋白质比色法是一种简便、快速的蛋白质检测方法,它通过测定蛋白质与染料之间的吸光度差异来推测蛋白质的含量。

该方法常用的染料有布拉德福棕、科尔斯奇蓝等。

比色法操作简单,成本低廉,适用于大规模食品蛋白质含量的快速检测。

五、高效液相色谱法检测蛋白质高效液相色谱法是一种常用的蛋白质分析方法,它通过蛋白质与色谱柱相互作用的特性来分离和测定蛋白质的含量。

该方法可以对蛋白质进行分子量、含量和结构的分析,常用于食品中蛋白质的定性和定量分析。

食品蛋白质的检测方法主要包括生物化学法、免疫学法、质谱法、比色法和高效液相色谱法等。

每种方法都有其独特的优势和适用范围,可以根据实际需要选择合适的方法进行蛋白质检测。

食品中蛋白质的含量测定

食品中蛋白质的含量测定

蛋白质的测定方法测定食品中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。

一.凯氏微量法有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。

1.原理蛋白质是含氮的有机化合物。

食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。

然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。

2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O(NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO42.方法本法参照GB 5009.5 -85适用于各类食品及饲料中蛋白质的测定3.试剂所有试剂均用不含氨的蒸馏水配制。

试剂均为分析纯。

3.1硫酸铜3.2硫酸钾3.3浓硫酸3.4 2%硼酸溶液(或1%的硼酸)3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。

也可用2份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。

3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。

3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录)4.仪器消化炉凯氏定氮蒸馏装置万分之一电子天平凯氏定氮蒸馏装置:如图所示5. 操作步骤5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml 或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。

食品中蛋白质的测定方法

食品中蛋白质的测定方法

食品中蛋白质的测定方法食品中蛋白质的测定是一项重要的分析工作,因为蛋白质是构成生物体的重要组成部分,具有多种生理功能。

在食品分析中,蛋白质的测定可以帮助确定食品的营养价值、质量和安全性。

目前常用的食品中蛋白质测定方法主要包括化学方法、生物方法和光谱法等。

化学方法是常用的测定蛋白质含量的方法之一。

常见的化学方法有碱式溴酸法、Lowry法、比色法和生物素-亲和素ELISA法等。

碱式溴酸法是一种常用的测定蛋白质含量的方法,其原理是根据蛋白质与碱式溴酸反应产生溴化物,通过溴离子与物质之间的比色测定来确定蛋白质的含量。

此方法操作简便、操作范围较宽,但其并不是选择性很高的方法,也不能区分不同的蛋白质。

Lowry法是一种常用的反应性蛋白质测定方法,其基本原理是根据酚与蛋白质或肽链中的酰化基团的反应,在碱性条件下生成一种可变色的络合物,并使用多肽键和酰化基团的浓度作为测定蛋白质含量的依据。

该方法具有较高的选择性和灵敏度,广泛应用于食品中蛋白质含量的测定。

比色法是一种常用的定量分析方法,可以通过测定浓度与溶液的吸光度之间的关系来确定溶液中蛋白质的含量。

其中一种常用的比色法是布拉德福德法,原理是将蛋白质与染料交换的方式,根据染料与蛋白质之间的作用力来测定蛋白质的含量。

这种方法需要一定量的标准蛋白质作为参照物,但是不同的蛋白质可能对染料的亲和力不同,因此需要根据具体情况进行一定的修正。

生物素-亲和素ELISA法是近年来发展起来的一种新的测定蛋白质含量的方法,其原理是利用免疫学的方法来检测样品中的蛋白质含量。

这种方法需要特异性抗体与特定蛋白质结合,然后用辣根过氧化物酶二抗体与结合的抗体结合,最后根据酶的活性来测定蛋白质的含量。

这种方法可以用于测定食品中特定蛋白质的含量,并且具有较高的选择性和敏感性,但需要较长的实验时间和昂贵的试剂。

除了化学方法外,生物方法也可以用于食品蛋白质的测定。

生物方法主要指的是生物学指标法,根据生物体内生物学分子的活性来测定样品中物质的含量。

[精品]食品中蛋白质的测定实验报告

[精品]食品中蛋白质的测定实验报告

[精品]食品中蛋白质的测定实验报告
实验原理:
蛋白质是组成细胞的主要成分之一,也是组成食物的重要营养成分之一。

蛋白质在酸性条件下,能与双氨基苯酚(Folin-Ciocalteu试剂)反应,在蓝色复合物的形成下吸光度增加。

利用这一现象可以测定蛋白质的含量。

实验步骤:
1. 食品的预处理
取适量的食品,如鸡蛋、瘦肉、豆腐等,先将食品在研钵中打碎,然后加入适量的蒸馏水,混合均匀,并将混合液倒入过滤纸筒中,收集澄清液并备用。

2. 制备标准曲线
取不同浓度的牛血清蛋白标准溶液(0.1ug/mL、0.2ug/mL、0.4ug/mL、0.6ug/mL、0.8ug/mL),各加入1mL NaOH(0.1mol/L)及2.5mL双氨基苯酚溶液,室温下混合放置,15min后加入 2mLNa2CO3溶液(0.2mol/L),混合均匀,最后用蒸馏水定容至25mL。

利用分光光度计测定吸光度值,制备标准曲线。

3. 测定样品
4. 计算样品中蛋白质的含量
根据标准曲线求出样品中蛋白质的含量。

实验结果:
样品 | 吸光度值 | 蛋白质含量(g/100g)
---|---|---
鸡蛋 | 0.21 | 12.56
瘦肉 | 0.55 | 20.00
豆腐 | 0.45 | 8.90
通过该实验,我们成功地测定了食品中蛋白质的含量,结果表明瘦肉的蛋白质含量最高,豆腐的蛋白质含量最低。

这有助于我们选择更健康的食物。

同时,我们还注意到样品的吸光度值与蛋白质含量呈正相关,这也说明了利用双氨基苯酚对蛋白质进行测定的可行性。

食品中蛋白质含量测定解释

食品中蛋白质含量测定解释

食品中蛋白质含量测定解释食品中蛋白质含量测定解释导言:蛋白质是组成生物体的重要营养成分之一,对于人体健康具有重要意义。

蛋白质在体内起着结构构建、调节代谢、免疫防御以及传递信息的作用。

因此,了解食品中蛋白质的含量对于人们合理膳食以及健康管理具有重要意义。

本文将详细介绍食品中蛋白质含量的测定方法,以及各种方法的原理和操作步骤。

一、食品中蛋白质的测定方法1. 总氮测定法总氮测定法是一种常用的测定食品中蛋白质含量的方法。

因为蛋白质是由氮元素组成的,所以通过测定食品中的总氮含量,可以近似地计算出蛋白质的含量。

总氮测定法的常用方法有几种:凯氏方法、微量法、Kjeldahl 法等。

凯氏方法是一种经典的总氮测定方法,其原理是利用硫酸的氧化性将蛋白质中的氨基酸氧化为硝酸盐离子,然后用硫化汞与硝酸盐反应生成化合物,通过光度计或滴定法测定硝酸盐离子的含量,从而计算出总氮含量。

微量法是一种便捷而精确的总氮测定方法,其原理是根据样本中亚硝酸根离子的发色反应,利用光度计测定亚硝酸根离子的含量,从而计算出总氮含量。

Kjeldahl 法是一种金标准的总氮测定方法,其原理是将蛋白质样品加入硫酸中加热,使蛋白质氮转化为氨气,然后利用盐酸滴定法测定氨气的含量,从而计算出总氮含量。

2. 生物化学方法生物化学方法是一种直接测定食品中蛋白质含量的方法。

这种方法利用蛋白质与某些特定试剂在特定条件下发生反应产生可测定的物质,从而得到蛋白质含量的测定结果。

常用的生物化学方法有低里氏法和酪蛋白试剂法。

低里氏法是一种常用的测定尿液中蛋白质含量的方法,但也可以应用于食物中蛋白质的测定。

该方法利用琼脂胶的胶体颗粒状结构吸附蛋白质,然后根据蛋白质与琼脂胶的吸附量的差异来测定蛋白质的含量。

酪蛋白试剂法是一种用于测定食品中蛋白质含量的简单而有效的方法。

该方法基于酪蛋白与碱性染料(如亚甲基蓝)之间的络合反应,通过测定络合物的吸光度来计算样品中蛋白质的含量。

3. 免疫学方法免疫学方法是一种基于蛋白质与特定抗体之间的免疫反应测定蛋白质含量的方法。

食品中蛋白质含量的测定

食品中蛋白质含量的测定

❖ 5.滴定
❖ 用 0.1mol/L 盐酸标准滴定溶液滴定收集液至 刚刚出现紫红色为终点。 同一试样做两次平 行试验,同时做空白试验。
❖ 6.计算 ❖ 计算比较简单,此处不再做详细的叙述。
❖ 计算结果允许差:
同一样品两次测定值之差: 蛋白质含量小 于1%时,不得超过平均值的 10%;
蛋白质含量大于或等于 1%时,每 100g 样 品不得超过 5g。
四.国标法中凯氏定氮法测量的优缺点 分析
❖ 1.优点: ❖ 干扰少
❖ 操作较为简单,可同时测定多个样品
❖ 可用于所有动、植物食品的分析及各种加工 食品的分析,可应用于各类食品中蛋白质含 量测定
❖ 2.缺点:
❖ 太粗略,不准确
❖ 费时,需 8~10小时
❖ 凯氏定氮法只是一个氧化还原反应,把低价 氮氧化并转为氨盐来测定,而不能把高价氮 还原为氮盐Байду номын сангаас形式,所以不可以测出物质中 所有价态的氮含量.
三.实验步骤
❖ 1.试剂和溶液
所有试剂均为分析纯;水为蒸馏水或同等纯度的 水。 ❖ 硫酸铜(GB 665);硫酸钾(HG 3—920);
硫酸(GB 625); 95%乙醇(GB 679); 40%氢氧化钠溶液:称取 40g 氢氧化钠(GB629)
溶于 60mL 蒸馏水中; 4%硼酸溶液:称取 4g 硼酸(GB 628)溶于蒸馏 水中
3.1.2 液体试样:取 10~20±0.05mL 试样(使试 样中含氮 30~40mg),移入凯氏烧瓶中,蒸发至近 干。
4.2 消化 :向凯氏烧瓶中依次加入硫酸铜0.4g、硫 酸钾10g、硫酸20mL 及数粒玻璃珠。将凯氏烧瓶斜 放(45°)在电炉上,缓慢加热。待起泡停 止,内 容物均匀后,升高温度,保持液面微沸。当溶液呈 蓝绿色透明时,继续加热 0.5~1h。取下凯氏烧瓶 冷却至约 40℃,缓慢加入适量水,摇匀。冷却至室 温。

食品中蛋白质的测定方法

食品中蛋白质的测定方法

食品中蛋白质的测定方法蛋白质是生物体内重要的营养成分之一,对于健康的维持和生物体正常的生理功能发挥起着重要的作用。

因此,准确测定食品中的蛋白质含量对于评价食品质量、合理膳食结构以及检测合成食品中的掺假成分等方面都具有重要的意义。

目前,食品中蛋白质的测定方法主要有定量分析法、质谱法和免疫学方法等。

定量分析法是一种直接测定食品中蛋白质含量的方法,常用的有凯氏方法、比色法和浊度法等。

其中,凯氏方法是一种经典的蛋白质含量测定方法,原理是利用碱性铜溶液与蛋白质中含有的酪蛋白酸等氨基酸结合,生成紫色的蛋白铜络合物。

该方法具有操作简便、结果可靠、灵敏度高的优点,但不适用于含有硅酸盐和糖类等干扰物质的样品测定。

比色法和浊度法主要是通过向样品中加入试剂,利用比色计或浊度计测量产生的色素或浊度的变化来间接测定蛋白质含量。

这两种方法具有操作简便、费用低廉的优点,适用范围广,但精确度和灵敏度相对较低。

质谱法是一种利用质谱技术测定蛋白质含量的方法,在分析中得到了广泛的应用。

如MALDI-TOF质谱法和液相色谱-串联质谱法(LC-MS/MS)等。

其中,MALDI-TOF质谱法是一种常用的快速测定蛋白质含量的方法,它通过将蛋白质样品与基质光吸收物质共结晶,然后利用激光辐射样品,样品分子经过光化学过程后,产生多个带电的离子分子。

通过将这些离子分子质荷比与已知质荷比的蛋白质标准品进行比较,即可得到样品中蛋白质的含量信息。

LC-MS/MS是一种结合了液相色谱和质谱技术的方法,具有高灵敏度和高专属性的优点。

该方法通过将食品样品中的蛋白质经过酶切反应,获得特定肽段,并利用液相色谱-串联质谱系统对这些肽段进行定量测定。

该方法不仅能够准确地对蛋白质含量进行测定,还可以对样品中的特定肽段进行鉴定和定量,进一步了解食品样品中蛋白质的成分和结构。

免疫学方法是一种利用蛋白质与其对应的特异性抗体进行免疫反应,并通过检测免疫反应产生的信号来测定蛋白质含量的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一食品中蛋白质含量测定(凯氏定氮法)
一、目的与要求
1、学习凯氏定氮法测定蛋白质的原理。

2、掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。

二、实验原理
1、消解:蛋白质是含氮的化合物。

食品与浓硫酸在催化剂作用下共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵而留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。

因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。

NH2(CH2)2COOH+13H2SO4=(NH4)2SO4+6CO2+12SO2+16H2O
浓硫酸将有机物炭化后为碳、氢与氮,将形成的碳氧化:
2H2SO4+C(Δ)=CO2+2H2O+2SO2↑
生成的二氧化硫将氧化态的氮还原为氨而自身被氧化为三氧化硫,氨随之与硫酸反应生成硫酸铵,
H2SO4+2NH3=(NH4)2SO4
在消解试验中,为了加速蛋白质的分解,缩短消解时间,常常加入下列物质:
(1)硫酸钾:一般浓硫酸的沸点为340℃,但加入硫酸钾后,硫酸不断分解,水不断溢出引起硫酸钾浓度不断增加,沸点因此而增加。

K2SO4+H2SO4=KHSO4
KHSO4(Δ)=K2SO4+H2O↑+SO3
但硫酸钾浓度不能太大,否则消化温度过高会引起铵盐的热分解而释放出氨,
(NH4)2SO4(Δ)=(NH4)2SO4+NH3↑
2KSO4(Δ)=2H2O+2NH3↑+2SO3↑
除了可以添加硫酸钾之外,也可以加入硫酸钠、氯化钾等以提高溶液温度,但效果要差于硫酸钾。

(2)硫酸铜:硫酸铜可以催化反应。

可以采用的催化剂除了硫酸铜外,还可以加入氧化汞、汞、硒粉以及二氧化钛等,但考虑效果、价格以及污染等原因外,最常用的还是硫酸铜,同时可以加入少量的过氧化氢、次氯酸钾等作为氧化剂以加速有机物的氧化,反应机理为:
2CuSO4(Δ)= Cu2SO4+O2↑+SO2↑
C+CuSO4(Δ)= Cu2SO4+CO2↑+SO2↑
H2SO4+Cu2SO4(Δ)= 2CuSO4+2H2O↑+SO2↑
此反应不断进行,如溶液没有褐色生成(Cu2SO4颜色)而呈现清澈的蓝绿色,说明有机物已经全部被消解完毕。

因此,在试验过程中,硫酸铜不但能够催化反应,而且能够指示反
应的进行程度。

2、碱化蒸馏:在消解完全的样品溶液中加入过量的浓的氢氧化钠溶液使溶液呈现碱性,加热蒸馏而放出氨气:
2NaOH+(NH4)2SO4(Δ)= Na2SO4+2H2O+2NH3↑
3、吸收与滴定:将加热蒸馏释放出来的氨利用硼酸溶液进行吸收,因硼酸属于弱酸,其后再用盐酸进行滴定:
2NH3+4H3BO3=(NH4)2B4O7+5H2O
(NH4)2B4O7+5H2O+2HCl=2NH4Cl+4H3BO3
除此之外,也可以用过量的盐酸或者硫酸吸收整流而出的氨气,然后再用氢氧化钠进行回滴。

三、仪器与试剂
(一)试剂
1、硫酸铜(CuSO4·5H20)
2、硫酸钾
3、浓硫酸(密度为1.84g/ml)
4、硼酸溶液(20g/L)
5、氢氧化钠溶液(400g/L)
6、0.01mol/L 盐酸标准滴定溶液。

7、混合指示试剂:0.1%甲基红乙醇溶液液:0.1%溴甲酚绿乙醇溶液=1:5。

(二)仪器
微量定氮蒸馏装置:凯氏烧瓶,如图所示。

四、实验步骤
1、样品消化
称取固体样品0.2-2.0g (半固体2-5g ,液体样品10-20ml ),移入洁净干燥的500mL 凯氏烧瓶中,加入0.5g 硫酸铜、5g 硫酸钾与10ml 浓硫酸,稍摇匀后瓶口放一小漏斗,将瓶以45° 角斜支于有小孔的石棉网上,使用电炉,在通风橱中(不能瓶口对人)小火慢慢加热消化,开始时用低温加热,待内容物全部炭化,泡沫停止后,再升高温度保持微沸,消化至液体呈蓝绿色澄清透明后,继续加热0.5h ,取下放冷。

2、蒸馏与吸收
将凯氏定氮仪按图示连接,凯氏瓶中加入数粒玻璃珠(或沸石)以防暴沸,小心加10mL 水,放冷后再加入70ml 的NaOH 溶液,在吸收瓶中加入30ml 的硼酸吸收液并加入2-3滴混合指示剂,开始加热,打开冷凝水,设置蒸馏时间为210s 。

将冷凝管下端提离液面,并用蒸馏水冲洗管口。

3、将上述吸收液用0.1000mol/L 的盐酸标准溶液进行滴定,溶液由蓝色变为微红即为终点,记录盐酸用量。

做空白试验,记录相应消耗的盐酸体积。

五、结果计算
%1001000)((%)21⨯⨯-=F m
CM V V X 式中 X ——样品蛋白质百分含量(%);
V 1——样品滴定消耗盐酸标准溶液体积(mL );
V 2——空白滴定消耗盐酸标准溶液体积(mL );
c ——盐酸标准滴定溶液浓度(mol/L )
F 为氮换算为蛋白质的系数,0.1055mol/L
M 为氮的摩尔质量,14.0g/mol
计算结果保留三位有效数字。

六、注意事项及说明
1、消化时,若样品含糖高或含脂及较多时,注意控制加热温度,以免大量泡沫喷出凯氏烧瓶,造成样品损失。

可加入少量辛醇或液体石蜡,或硅消泡剂减少泡沫产生。

2.消化开始时,不能用强火,应该慢慢加热,防止暴沸或样品粘附于瓶壁而消解不完全。

为此,消化时应注意旋转凯氏烧瓶,将附在瓶壁上的碳粒冲下,对样品彻底消化。

3、若样品不易消化至澄清透明,可将凯氏烧瓶中溶液冷却,加入数滴过氧化氢后,再继续加热消化至完全。

4、蒸馏装置不能漏气,蒸馏完毕后,应将冷凝管下端提离液面并清洗管口,继续蒸馏一分钟后再停止加热,否则可能造成倒吸。

5、硼酸吸收液的温度不应超过40℃,否则氨吸收减弱,造成检测结果偏低。

可把接收瓶置于冷水浴中。

6、混合指示剂在碱性条件下呈绿色,中性条件下呈灰色,酸性溶液中呈现红色。

七、思考题
1、预习凯氏定氮法测定蛋白质的原理及操作。

2、蒸馏时为什么要加入氢氧化钠溶液?加入量对测定结果有何影响?
3、实验操作过程中,影响测定准确性的因素有哪些?。

相关文档
最新文档