【安徽省合肥市】2017年高考二模数学(文科)试卷

合集下载

高三数学(文)二模金卷分项解析:专题11-数学文化(含答案)

高三数学(文)二模金卷分项解析:专题11-数学文化(含答案)

【备战2017高考高三数学全国各地二模试卷分项精品】一、选择题【2017湖南娄底二模】我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的八等人和九等人两人所得黄金之和( )A. 多712斤B. 少712斤C. 多16斤D. 少16斤 【答案】D【解析】设这十等人所得黄金的重量从大到小依次组成等数列{}n a ,则123789104,3a a a a a a a ++=+++=,由等差数列的性质得28943,32a a a =+=, ()289431326a a a -+=-=-,故选D. 【2017重庆二诊】《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( )A. 10日B. 20日C. 30日D. 40日【答案】B【2017安徽黄山二模】在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯? ” (加增的顺序为从塔顶到塔底). 答案应为 ( )A. 6B. 5C. 4D. 3【答案】D【解析】设顶层有x 盏灯,根据题意得: 2481632643813x x x x x x x x ++++++=⇒=故选D.点睛:这一个等比数列的实际运用,认真审题然后分析列式即可【2017安徽池州4月联考】在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,六朝才得其关,”意思是某人要走三百七十八里的路程,第一天脚步轻快有力,走了一段路程,第二天脚痛,走的路程是第一天的一半,以后每天走的路程都是前一天的一半,走了六天才走完这段路程,则下列说法错误的是( )A. 此人第二天走了九十六里路B. 此人第一天走的路程比后五天走的路程多六里C. 此人第三天走的路程占全程的18D. 此人后三天共走了42里路【答案】C【2017安徽合肥二模】中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶()()()226n a c b c a d d b ⎡⎤++++-⎣⎦个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为( )A. 1260B. 1360C. 1430D. 1530【答案】B【解析】由题可知2,1,16,15,a b c d ====所以木桶的个数为()()15[221612162151413606⨯⨯+⨯+⨯+⨯+=,故本题选.B【河南郑州、平顶山。

【安徽省合肥市】2017年高考二模数学(文科)试卷-答案

【安徽省合肥市】2017年高考二模数学(文科)试卷-答案
23.解:(1)要使原函数有意义,则| ax 2 | 4 ,即 -4 ax-2 4 ,得 2 ax 6 ,
当 a 0 时,解得 2 x 6 ,函数 f (x) 的定义域为{x | 2 x 6} ;
aa
aa
当 a 0 时,解得 6 x 2 ,函数 f (x) 的定义域为{x | 6 x 2} .
由 0<e<1,则 e2=2﹣ ,
故选 C. 9.【考点】三角函数的化简求值;正弦函数的图象.
【分析】把已知函数解析式变形,由 f(x1)<f(x2),得 sin22x1>sin22x2,即|sin2x1|>|sin2x2|,再由 x1,
x2 的范围可得|2x1|>|2x2|,即|x1|>|x2|,得到
`
20.解:(1)由
xA

2

y
2 A

4
,故
2 pxA

4

p
1.
于是,抛物线 E 的方程为 y2 2x .
(2)设 C(
y12 2
,
y1)

D(
y22 2
,
y2 )
,切线 l1

y1

y2

k(x

y12 2
)

代入
y2
2x 得 ky2
2y 2y1
ky12
0 ,由△ 0 解得 k

【解答】解:f(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=

由 f(x1)<f(x2),得

∴sin22x1>sin22x2,即|sin2x1|>|sin2x2|,

(完整word)安徽省2017年高考文科数学试题和答案(Word版)(1)

(完整word)安徽省2017年高考文科数学试题和答案(Word版)(1)

安徽省2017年高考文科数学试题及答案(Word 版)要求的。

1 .已知集合A= x|x2 , B= x|3 2x0,则3A . A l B= x|x2 3 C. A U B x|x -2 B . A l B D . A U B=R 2 .为评估一种农作物的种植效果, 选了 n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x i , X 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A . x i , X 2,…,X n 的平均数 C. X i , X 2,…,X n 的最大值 3 •下列各式的运算结果为纯虚数的是 2 A . i (1+i ) B 2C. (1+i )DB . X i , X 2,…,X n 的标准差 D. X i , X 2,…,X n 的中位数 2 .i (i-i) .i(i+i)如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中的黑色部分和白色部分关于正方形 的中心成中心对称•在正方形内随机取一点,则此点取自黑色部分的概率是 i A.— 4D.2已知F 是双曲线C : x 2-乞=i 的右焦点,3P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(i,3).则厶APF的面积为 i A.- 31 B.- 2如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M, N, Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNC 不平行的是、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目x 3y 3,7 .设x, y满足约束条件x y 1,则z=x+y的最大值为y 0,A. 0B. 1C. 2D. 38..函数y Sin2x的部分图像大致为1 cosxA. f (x)在(0,2 )单调递增B. f (x)在(0,2 )单调递减C. y= f (x)的图像关于直线x=1对称D. y= f (x)的图像关于点(1,0 )对称10•如图是为了求出满足3n 2n 1000的最小偶数和匚二]两个空白框中,可以分别填入CW)厂/^人』尸o/A=V-2fl[ 是n,那么在O叫/输出丹/(W)二、填空题:本题共 4小题,每小题5分,共20分。

2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)

2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)

2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。

合肥市高三下学期第二次教学质量检测数学试题(文科)含答案

合肥市高三下学期第二次教学质量检测数学试题(文科)含答案

合肥市2017高三下学期第二次教学质量检测数学试题(文)第I卷(共60 分)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的1.已知 i 为虚数单位,2.已知集合则口 (3 i2 i x 2 4 ,1 2i -A. (1,2)• [1,2)(1,2)1,2)3.已知命题R,x 2 0,则( A.命题q : R,x 2 0为假命题命题 q : x R, x 20为真命题 C.命题q :R , x 2为假命题命题 q :x R, x 2 0为真命题4.设变量x yy 满足约束条件 x y,则目标函数z x 2 y 的最大值为(132.120A. 5B(D.6 C.6.设向量a,b满足a b 4, a b 1,则a b ( )A. 2B.2.3C.3 D . 2.. 57.1已知-是等差数万[[曰a11,a44,则a10( ) 是等差数列,且a nA.454D13• 1B C.541342 28.已知椭圆x y2 21(ab0)的左,右焦点为F1, F2,离心率为e. P是椭圆上一点,a2 b2满足PF? F1F2,点Q在线段PF i上,且F1Q2QP.若RP F?Q 0 ,则e2( )A. 2 1B.2-、、2C. 2 - . 3D.5 29.已知函数f(x).4 4sin x cos x, x [,],若4 4f(X1)f(X2),则一定有()2 2 2 2A x1x2B.x1x2 C.x-1 x2D.x-1 x210. 中国古代数学有着很多令人惊叹的成就•北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术•隙积术意即:将木捅一层层堆放成坛状,最上一层长有a个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶n[(2a c)b (2c a)d (d b)].假设最上层有长2宽1共2个木桶,每一层的6长宽各比上一层多一个,共堆放15层.则木桶的个数为()A. 1260 B . 1360 C. 1430 D . 153011. 锐角ABC中,内角A , B , C的对边分别为a , b , c,且满足a b sin A sin B c b sinC,若a ,3,则b2 c2的取值范围是()A.5,6B3,5 C.3,6 D . 5,612.已知函数f(x)1 xe a 2 x(a1)x a(a 0),其中e为自然对数的底数.若函数e2y f(x)与y f[f(x)]有相同的值域,则实数a的最大值为()A. e B . 2 C. 1 D .-2第U卷(共90分)、填空题(每题5分,满分20分,将答案填在答题纸上)2 213.已知双曲线冷爲1(a 0,b 0)的离心率为,3,则该双曲线的渐近线方程a b为14.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是15. 几何体三视图如图所示,其中俯视图为边长为1的等边三角形,则此几何体的体积为__________ .216. 已知数列a n中,a1 2,且也4(a n 1a n)(n N),则其前9项的和S9 _________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f (x) sin x cos x( 0)的最小正周期为(1)求函数y f (x)图像的对称轴方程;(2)讨论函数f (x)在[0,?]上的单调性.18.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关附:K22n ab beabedacbd,其中n a bed.P K2k。

【安徽省合肥市】2017年高考二模数学(文科)试卷-答案

【安徽省合肥市】2017年高考二模数学(文科)试卷-答案

17.解:(1)∵π()sin cos )4f x x x x w w w =--,且πT =,∴2w =.于是π())4f x x =-,令ππ2π42x k -=+,得π3π()28k x k =+∈Z , 即函数()f x 的对称轴方程为π3π()k x k =+∈Z .注意到[0,]2x ∈,令0k =,得函数()f x 在π[0,]上的单调增区间为3π[0,];18.解:(1)从高一年级学生中随机抽取1人,抽到男生的概率约为105718012=.(2)根据统计数据,可得列联表如下:2180(60453045)36 5.1429 5.0241057590907K ⨯⨯-⨯==≈>⨯⨯⨯,所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.19.证明:(1)在CDE △中,∵CD ED ==,5cos 7EDC ∠=,∴由余弦定理得225(7)(7)27727CE =+-⨯⨯⨯=. 连接AC ,∵2AE =,60AEC ∠=o ,∴2AC =. 又∵3AP ,∴在AE △中,222PA AE PE +=, 即AP AE ⊥. 同理,AP AC ⊥,∵AC ABCE ⊂平面,AE ABCE ⊂平面, 且AC AE A =I , 故AP ABCE ⊥平面;(2)∵AB CE ∥,且CE PCE ⊂平面,AB PCE ⊄平面, ∴AB PCE ∥平面,又平面PAB PCE l =I 平面, ∴AB l ∥.`20.解:(1)由2A x =得24A y =,故24A px =,1p =.于是,抛物线E 的方程为22y x =.(2)设211(,)2y C y ,222D(,)2y y ,切线1l :2112()2y y y k x -=-,代入22y x =得2211220ky y y ky -+-=,由0=△解得11k y =, ∴1l 方程为1112y k x y =+,同理2l 方程为2212y y x y =+, 联立11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121222y y x y y y ⎧=⎪⎪⎨+⎪=⎪⎩g ,易得CD 方程为008x x y y +=,其中0x ,0y 满足22008x y +=,[2,22]x ∈,联立方程20028y xx x y y ⎧=⎪⎨+=⎪⎩得2002160x y y y +-=,则0120120216y y y x y y x ⎧+=-⎪⎪⎨⎪=-⎪⎩g ,∴()M x y ,满足0008x x y y x ⎧=-⎪⎪⎨⎪=⎪⎩,即点M 为0008(,)y x x --.点M 到直线CD :008x x y y +=的距离222088|88|161616y y x x d ----++-+===关于0x 单调减,21.解:(1)∵()ln f x x x m =-+,∴1()1f x x=-,由'()0f x =得1x =, 且01x <<时,'()0f x >,1x >时,'()0f x <.故函数()f x 的单调递增区间为(01),,单调递减区间为(1,)+∞. 所以,函数()f x 的极大值为(1)1f m =-,无极小值. (2)由()()ln()g x f x m x m x =+=+-, ∵1x ,2x 为函数()g x 是两个零点,∴1122ln()ln()x m x x m x +=⎧⎨+=⎩,即1212xx x m e x m e⎧+=⎪⎨+=⎪⎩, 令()h x ex x =-,则()h x m =有两解1x ,2x . 令'()10h x ex =-=得0x =,∴0m x -<<时,()0h x '<,当0x >时,()0h x '>, ∴()h x 在(,0)m -上单调递减,在(0,)+∞上单调递增. ∵()h x m =的两解1x ,2x 分别在区间(,0)m -和(0)+∞,上, 不妨设120x x <<, 要证120x x +<,考虑到()h x 在(0,)+∞上递增,只需证21()()h x h x <-,由21()()h x h x =知,只需证11()()h x h x <-, 令()()()e 2e x x r x h x h x x -=--=--, 则1()20x xr x e e '=+-≥, ∴()r x 单调递增,∵10x <,∴1()(0)0r x r <=,即11()()h x h x <-成立, 即120x x +<成立.22.解:(1)由4cos r q =得24cos r r q =,即2240x y x +-=,即圆C 的标准方程为22(2)4x y +=-.当0a >时,解得26x a a-≤≤,函数()f x 的定义域为26{|}x x a a -≤≤;当0a <时,解得62x a a≤≤-,函数()f x 的定义域为62{|}x x a a ≤≤-.(2)|()123|f x ax ≥⇔-≤,记|()2|g x ax =-,∵1[]0,x ∈,∴需且只需(0)3(1)3g g ≤⎧⎨≤⎩,即23|2|3a ≤⎧⎨-≤⎩,解得15a -≤≤,又0a ≠,∴15a ≤≤-,且0a ≠.安徽省合肥市2017年高考二模数学(文科)试卷解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:1i(1i)(3i)24i12i3-i(3-i)(3i)105+++++===+.故选:D.2.【考点】交集及其运算.【分析】解不等式化简集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|1<x2<4}={x|﹣2<x<﹣1或1<x<2},B={x|x﹣1≥0}={x|x≥1},则A∩B={x|1<x<2}=(1,2).故选:A.3.【考点】命题的否定.【分析】本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式写出命题的否定,再进行判断即可.【解答】解:∵命题q:∀x∈R,x2>0,∴命题¬q:∃x∈R,x2≤0,为真命题.故选D.4.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+2y为y=﹣.由图可知,当直线y=﹣过A时,直线在y轴上的截距最大,z有最大值为.故选:C.5.【考点】程序框图.【分析】先根据已知循环条件和循环体判定循环的规律,然后根据运行的情况判断循环的次数,从而得出所求.【解答】解:第一次循环,s=1,a=5≥3,s=5,a=4;第二次循环,a=4≥3,s=20,a=3;第三次循环,a=3≥3,s=60,a=2,第四次循环,a=2<3,输出s=60,故选:C.6.【考点】平面向量数量积的运算.【分析】可以得到,这样代入即可求出的值,从而得出的值.【解答】解:===16﹣4=12;∴.故选:B.7.【考点】等差数列的通项公式.【分析】根据题意,设等差数列{}的公差为d,结合题意可得=1,=,计算可得公差d的值,进而由等差数列的通项公式可得的值,求其倒数可得a10的值.【解答】解:根据题意,{}是等差数列,设其公差为d,若a1=1,a4=4,有=1,=,则3d=﹣=﹣,即d=﹣,则=+9d=﹣,故a10=﹣;故选:A.8.【考点】椭圆的简单性质.【分析】由题意求得P点坐标,根据向量的坐标运算求得Q点坐标,由=0,求得b4=2c2a2,则b2=a2﹣c2,根据离心率的取值范围,即可求得椭圆的离心率.【解答】解:由题意可知:PF2⊥F1F2,则P(c,),由,(x Q+c,y Q)=2(c﹣x Q,﹣y Q),则Q(,),=(2c,),=(﹣,),由=0,则2c×(﹣)+×=0,整理得:b4=2c2a2,则(a2﹣c2)2=2c2a2,整理得:a4﹣4c2a2+c4=0,则e4﹣4e2+1=0,解得:e2=2±,由0<e<1,则e2=2﹣,故选C.9.【考点】三角函数的化简求值;正弦函数的图象.【分析】把已知函数解析式变形,由f(x1)<f(x2),得sin22x1>sin22x2,即|sin2x1|>|sin2x2|,再由x1,x2的范围可得|2x1|>|2x2|,即|x1|>|x2|,得到.【解答】解:f(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=.由f(x1)<f(x2),得,∴sin22x1>sin22x2,即|sin2x1|>|sin2x2|,∵x1∈[﹣],x2∈[﹣],∴2x1∈[﹣,],2x2∈[﹣],由|sin2x1|>|sin2x2|,得|2x1|>|2x2|,即|x1|>|x2|,∴.故选:D.10.【考点】等差数列的前n项和.【分析】由已知条件求出a,b,c,d,代入公式能求出结果.【解答】解:∵最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.∴最底层长有c=a+15=17个,宽有d=b+15=16个则木桶的个数为:=1 530.故选:D.11.【考点】正弦定理;余弦定理.【分析】由已知利用正弦定理可得b2+c2﹣a2=bc.再利用余弦定理可得cosA,进而可求A,利用正弦定理,三角函数恒等变换的应用化简可得b2+c2=4+2sin(2B﹣),利用B的范围,可求2B﹣的范围,利用正弦函数的图象和性质可求其范围.【解答】解:∵(a﹣b)(sinA+sinB)=(c﹣b)sinC,由正弦定理可得:(a﹣b)(a+b)=(c﹣b)c,化为b2+c2﹣a2=bc.由余弦定理可得:cosA===,∴A为锐角,可得A=,∵,∴由正弦定理可得:,∴可得:b2+c2=(2sinB)2+[2sin(﹣B)]2=3+2sin2B+sin2B=4+2sin(2B﹣),∵B∈(,),可得:2B﹣∈(,),∴sin(2B﹣)∈(,1],可得:b2+c2=4+2sin(2B﹣)∈(5,6].故选:A.12.【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导数,得到函数f(x)的值域,问题转化为即[1,+∞)⊆[,+∞),得到关于a的不等式,求出a的最大值即可.【解答】解:f(x)=﹣(a+1)x+a(a>0),f′(x)=•e x+ax﹣(a+1),a>0,则x<1时,f′(x)<0,f(x)递减,x>1时,f′(x)>0,f(x)递增,而x→+∞时,f(x)→+∞,f(1)=,即f(x)的值域是[,+∞),恒大于0,而f[f(x)]的值域是[,+∞),则要求f(x)的范围包含[1,+∞),即[1,+∞)⊆[,+∞),故≤1,解得:a≤2,故a的最大值是2,故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【考点】双曲线的简单性质.【分析】运用离心率公式和a,b,c的关系,可得b==a,即可得到所求双曲线的渐近线方程.【解答】解:由题意可得e==,即c=a,b==a,可得双曲线的渐近线方程y=±x,即为y=±x.故答案为:y=±x.14.【考点】极差、方差与标准差.【分析】根据平均数与方差的计算公式,计算即可.【解答】解:五次考试的数学成绩分别是110,114,121,119,126,∴它们的平均数是=×=118,方差是s2=[2+2+2+2+2]=30.8.故答案为:30.8.15.【考点】由三视图求面积、体积.【分析】几何体为四棱锥,棱锥的高为俯视图三角形的高,底面为直角梯形.【解答】解:由三视图可知,几何体为四棱锥,棱锥的高为俯视图中等边三角形的高,棱锥的底面为直角梯形,梯形面积为(1+2)×1=.∴V==.故答案为.16.【考点】数列的求和.【分析】由题意整理可得:a n+1=2a n,则数列{a n}以2为首项,以2为公比的等比数列,利用等比数列的前n项和公式,即可求得S9.【解答】解:由题意可知a n+12=4a n(a n+1﹣a n),则a n+12=4(a n a n+1﹣a n2),a n+12﹣4a n a n+1+4a n2=0整理得:(a n+1﹣2a n)2=0,则a n+1=2a n,∴数列{a n}以2为首项,以2为公比的等比数列,则前9项的和S9===1 022.故答案为:1 022.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的周期性求得ω,可得其解析式,利用正弦函数的图象的对称求得函数y=f(x)图象的对称轴方程.(2)利用正弦函数的单调性求得函数f(x)在上的单调性.18.【考点】独立性检验的应用.【分析】(1)根据从高一年级学生中随机抽取180名学生,其中男生105名,求出抽到男生的概率;(2)填写2×2列联表,计算观测值K2,对照数表即可得出结论.19.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)在△CDE中,由已知结合余弦定理得CE.连接AC,可得AC=2.在△PAE中,由PA2+AE2=PE2,得AP⊥AE.同理,AP⊥AC,然后利用线面垂直的判定可得AP⊥平面ABCE;(2)由AB∥CE,且CE⊂平面PCE,AB⊄平面PCE,可得AB∥平面PCE,又平面PAB∩平面PCE=l,结合面面平行的性质可得AB∥l.20.【考点】抛物线的简单性质.【分析】(1)由2px A=4,p=1.即可求得p的值,求得抛物线方程;(2)分别求得直线l1,l2方程,联立,求得交点M坐标,求得足,,利用点到直线的距离公式,根据函数的单调性即可求得点M到直线CD距离的最大值.21.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)利用导数判断f(x)的单调性,得出f(x)的极值;(2)由g(x1)=g(x2)=0可得,故h(x)=e x﹣x有两解x1,x2,判断h(x)的单调性得出x1,x2的范围,将问题转化为证明h(x1)﹣h(﹣x1)<0,在判断r(x1)=h(x1)﹣h(﹣x1)的单调性即可得出结论.22.【考点】简单曲线的极坐标方程.【分析】(1)由ρ=4cosθ得ρ2=4ρcosθ,即可求出圆C的直角坐标方程;(2)l:y=2x关于点M(0,m)的对称直线l'的方程为y=2x+2m,而AB为圆C的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,即可求实数m的最大值.23.【考点】函数恒成立问题;函数的定义域及其求法.【分析】(1)由根式内部的代数式大于等于0,求解绝对值的不等式,进一步分类求解含参数的不等式得答案;(2)把不等式f(x)≥1恒成立转化为|ax﹣2|≤3,记g(x)=|ax﹣2|,可得,求解不等式组得答案.11/ 11。

【安徽省合肥市】2017年高考二模数学(理科)试卷(附答案)

【安徽省合肥市】2017年高考二模数学(理科)试卷(附答案)

安徽省合肥市2017年高考二模数学(理科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,题目要求的.i为虚数单位,若复数(l+mi)(i+2)是纯虚数,则实数m=()£2只有一项是符合1.A.1B.-1C.D.22. A.己知人=[1,+8),B=(xeR||<x<2a-l),B.[|,H若A B尹0,则实数1的取值范围是()3.A. 4.[l,+oo) C.「2、L-,+°o) D.(1,+8)已知变量工,y满足约束条件B.1x-y>2x+y<4,y>-l则目标函数z=x-2y的最小值为()-1若输入«=4,执行如图所示的程序框图,C.3D.7输出的s=(A.10B.16C.20D.355.若中心在原点,焦点在y轴上的双曲线离心率为右,则此双曲线的渐近线方程为()A.y=±x72F-B.y=-C.y-±yJ2xD.y=±—x26.等差数列{%}的前〃项和为S,,且$3=6,$6=3,则关二()A. 7.110一个几何体的三视图及其尺寸如图所示,则该几何体的体积为(B.0C.TOD.-15B2成D.22+6a/3.38.对函数/(x),如果存在此力0使得/(x o)=-/(-^o)>则称(x0>/(x0))与(-A:0,/(-x0))^函数图象的一组奇对称点.若f(x)=ex-a(e为自然数的底数)存在奇对称点,则实数。

的取值范围是()A.(-oo,l)B.(1,+8)C,(e,+oo) D.[!,+<»)9.若平面a截三棱锥所得截面为平行四边形,则该三棱锥与平面。

平行的棱有()A.0条B.1条C.2条D.1条或2条10.己知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为x,则Ex=()712A.3B.-C.—D.42511.锐角/XABC中,内角A,B,。

(2021年整理)合肥市2017年高三第二次教学质量检测试卷及答案

(2021年整理)合肥市2017年高三第二次教学质量检测试卷及答案

(完整)合肥市2017年高三第二次教学质量检测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)合肥市2017年高三第二次教学质量检测试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)合肥市2017年高三第二次教学质量检测试卷及答案的全部内容。

合肥市2017年高三第二次教学质量检测数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i为虚数单位,若复数()()12mi i++是纯,则实数m=( )A.1 B.1- C.12- D.22.已知[)1,A=+∞,1|212B x x a⎧⎫=∈≤≤-⎨⎬⎩⎭R,若A Bφ≠,则实数a的取值范围是()A.[)1,+∞ B.1,12⎡⎤⎢⎥⎣⎦C.2,3⎡⎫+∞⎪⎢⎣⎭D.()1,+∞3.已知变量x,y满足约束条件241x yx yy-≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y=-的最小值为()A.1- B.1 C.3 D.74.若输入4n=,执行如图所示的程序框图,输出的s=()A .10B .16C 。

20D .355。

若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双曲线的渐近线方程为( ) A .y x =± B .2y x =±C.2y x =± D .12y x =± 6。

等差数列{}n a 的前n 项和为n S ,且36S =,63S =,则10S =( ) A .110B .0 C.10- D .15- 7.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A .283B .2823。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B =(
A .5
B .20
C .60 6.设向量a ,b 满足||4a b +=,1a b =,则||a b -=( 1
}是等差数列,且
10a b >>()
的左,右焦点为1,上,且12FQ QP =.若120FQ F Q =,则ππ
2
1e e 2
x a x +-
16.已知数列{}n a 中,1a =三、解答题(本大题共5
小题,共17.已知函数()sin cos (0)f x x x =->的最小正周期为π. (1)求函数()y f x =图象的对称轴方程; 18.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名. (1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?
60,CD ,得到四棱锥P
(1)求证:AP ABCE ⊥平面;
(2)记平面PAB 与平面PCE 相交于直线l ,求证:AB l ∥.
20.如图,已知抛物线E :220y px p =>()与圆O :228x y +=相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点00()P x y ,作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线
1l ,2l ,1l 与2l 相交于点M .
(1)求抛物线E 的方程;
(2)求点M 到直线CD 距离的最大值.
21.已知()ln f x x x m =-+(m 为常数). (1)求()f x 的极值;
(2)设1m >,记()()f x m g x +=,已知1x ,2x 为函数()g x 是两个零点,求证:120x x +<. [选修4-4:坐标系与参数方程]
22.在直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为
4cos =.
(1)求出圆C 的直角坐标方程;
(2)已知圆C 与x 轴相交于A ,B 两点,直线l :2y x =关于点(0,)(0)M m m ≠对称的直线为'l .若直线'
l
上存在点P 使得90APB ∠=,求实数m 的最大值. [选修4-5:不等式选讲]
23.已知函数()0)f x a =≠. (1)求函数()f x 的定义域;
(2)若当1[]0,x ∈时,不等式()1f x ≥恒成立,求实数a 的取值范围.。

相关文档
最新文档