二元光学元件

合集下载

二元光学

二元光学

二元光学述略X赵书安(南京师范大学,江苏南京210097)摘要:本文介绍了二元光学的基本概念与原理,说明了二元光学元件的设计和制作过程,并总结了近十年来二元光学的进展情况。

关键词:二元光学元件;衍射效率;光刻中图分类号:O431文献标识码:A文章编号:1672-755X(2004)03-0022-04Brief Introduction to Binary OpticsZHAO Shu-an(Nanjing Normal U niversity,N ajing210097,China)Abstract:The basic concept and principle of binary optics are briefly review d in this paper,as well as the illustration of the design and manufacture processing of binary optical elem ents.The develop-ment of this subject in the recent10years is also summarized.Key words:binary optical element;diffraction efficiency;photolithography1二元光学概念二元光学的概念源于20世纪80年代中期,率先由美国M IT林肯实验室威尔得坎普(W B Veld-kam p)领导的研究小组在设计新型传感器系统时提出的,/现在光学有一个分支,它几乎完全不同于传统的制作方式,这就是衍射光学,其光学元件表面带有浮雕结构;由于使用了本来是制作集成电路的产生方法,所用的掩模是二元的且掩模用二元编码形式进行分层,故引出了二元光学概念0[1,2]。

至今二元光学概念还没有统一的定义,一般认为二元光学是指基于光的衍射理论,利用计算机辅助设计并用大规模集成电路制作工艺在片基(或传统光学器件表面)上刻蚀产生两个或多个台阶深度的浮雕结构,形成多位相、同轴再现且具有极高衍射效率的一类衍射光学元件的光学理论与技术。

二元光学概述

二元光学概述
主要内容:
1.二元光学概述(含义发展背景,国内 外发展状况,特点)
2. 二元光学元件的设计方法 3. 二元光学元件的制作方法 4. 二元光学元件的应用(重点介绍) 5.深蚀刻二元光学元件 6. 结束语
2020/1/7
1.二元光学概述
传统光学 基于光波的折射和反射原理,利用透镜、
反射镜和棱镜等元件进行设计和实现各 种光学功能。 衍射效应总是导致光学系统的分辨率受 到限制,除了光波的色散性质可应用于 光谱学之外,传统光学总是尽量的避免 衍射效应造成的不利影响。
2020/1/7
3. 二元光学元件的制作方法
Preparing Mask 1 Subst rat e
Lithography Cleaning RIE Mask 2 Coating Mask 3 Coating
Examinat ion
2020/1/7
3. 二元光学元件的制作方法
Mask 1
substrate Mask 2
2020/1/7
1.二元光学概述
从1990年起,美国光学学会年会和国际 光学工程协会设有衍射光学与二元光学 专题讲座和衍射光学专题会议;美国和 欧洲的重要光学杂志分别出版衍射光学 专集。 作为一个新学科领域已经形成
2020/1/7
1.二元光学概述
1992年5月美国商业性杂志“ Photonics” 刊登一篇专题文章:“衍射光学大量产 生新一代的产品和拥有数百万美元的市 场” 表明:衍射光学产业正在形成
化、轻型化、可复制、价格低、可设计 产生任意形状的波前、 可把多种功能集 中于一个器件上等其他器件不可比拟的 特点。
发展迅猛,成为二十一世纪的前沿 学科。
2020/1/7
2. 二元光学元件的设计方法

二元衍射光学元件

二元衍射光学元件

二元衍射光学元件
二元衍射光学元件是一种基于光的干涉和衍射现象的光学元件,由两个或更多具有不同折射率或透振幅的层状结构组成。

它们可以通过使用二元掩膜制造,其中掩膜由二进制编码的形式进行分层,这使得元件的制造更加简单和高效。

二元衍射光学元件具有体积小、重量轻、易复制、造价低、衍射效率高、设计自由度多、材料可选性宽、色散性能独特等特点。

同时,它们能实现传统光学器件难以完成的整列化、集成化及任意波面变换的功能,这使得它们在以光学元件为基础的信息捕获、抽取、测量及控制等过程中具有极大的应用潜力。

在学术研究方面,二元光学的发展并不止于对现有光学器件的小型化和集成化。

实际上,其概念的提出为解决一些传统光学无法解决的问题提供了新的思路和方法。

例如,二元光学元件的特殊性质使得它在一些对精度和稳定性有极高要求的应用场景中具有显著的优势。

然而,尽管二元光学元件具有许多优点,但它们也有一些局限性。

例如,二元光学元件的设计和制造需要精确控制光的干涉和衍射过程,这需要高度的专业知识和先进的制造技术。

此外,虽然二元光学元件可以实现高精度的波前控制,但在一些需要高精度测量和控制的场合,还需要进一步改进和优化。

总的来说,二元衍射光学元件是一种具有很大潜力的光学元件,它在许多领域都有广泛的应用前景。

随着科学技术的不断发展和进步,我们有理由相信,二元光学将会在更多的领域得到应用和发展。

二元光学应用课件

二元光学应用课件

04
二元光学在传感领域的应 用
二元光学在传感系统中的作用
信号转换
二元光学能够将待测信号转换为光信号,实现非 光学量与光学量之间的转换。
提高灵敏度
通过二元光学技术,可以显著提高传感系统的灵 敏度,实现微弱信号的检测。
降低噪声
二元光学能够降低噪声干扰,提高信号的信噪比, 从而提高传感精度。
二元光学在传感中的优势
调制器
调制器是光通信中的核心元件之一,用于将信息 加载到光信号上。二元光学调制器具有调制速度 快、调制精度高和稳定性好的优点,能够实现高 速、大容量的光信号调制。
滤波器
二元光学滤波器是一种具有窄带滤波特性的光学 器件,能够实现光信号的过滤和选择。在光通信 中,二元光学滤波器可用于信道选择、噪声抑制 和信号解调等方面。
二元光学在成像中的优到各种成像系统中。
高效率
二元光学元件具有高反射 率和透射率,能够有效地 利用光能,降低能耗。
高稳定性
二元光学元件具有优异的 热稳定性和环境稳定性, 能够在各种恶劣条件下保 持稳定的性能。
二元光学在成像中的具体应用案例
激光雷达与遥感
通过二元光学元件实现激光雷达的高精度测距和目标识别,用于 地形测绘、环境监测和无人驾驶车辆的导航。
光学加密与信息保护
利用二元光学元件实现信息加密和防伪鉴别的高安全性,用于保 护信息安全和知识产权。
感谢您的观看
THANKS
二元光学应用课件
• 二元光学简介 • 二元光学在通信领域的应用 • 二元光学在成像领域的应用 • 二元光学在传感领域的应用 • 二元光学在其他领域的应用
01
二元光学简介
二元光学的基本概念
总结词
二元光学是一种利用二元结构(如光栅、透镜等)对光进行调控的技术。

二元衍射光学元件

二元衍射光学元件

二元衍射光学元件一、二元衍射光学元件简介1.定义与特点二元衍射光学元件(Binary Defractive Optical Elements,简称BDOs)是一种具有周期性结构的光学元件,其表面形貌由两个不同的周期性图案组成。

与传统的光学元件相比,二元衍射光学元件具有重量轻、厚度薄、高数值孔径等特点,因此在光学系统中具有广泛的应用前景。

2.应用领域由于其独特的性能,二元衍射光学元件广泛应用于光纤通信、光学成像、光谱分析等领域。

二、二元衍射光学元件的原理1.光栅方程二元衍射光学元件的光栅方程为:m * λ = β * (a + b)其中,m为光栅级数,λ为入射光波长,β为衍射效率,a和b分别为光栅的上下表面高度。

2.衍射效果二元衍射光学元件通过对入射光的衍射,可以实现对光的传播方向和相位的调控,从而达到聚焦、成像、分光等光学功能。

三、二元衍射光学元件的制备与性能优化1.制备方法常见的二元衍射光学元件制备方法有激光微加工、电子束曝光、光刻等。

2.性能指标二元衍射光学元件的性能指标主要包括衍射效率、像差、成像质量等。

3.优化策略为提高二元衍射光学元件的性能,可以采用以下优化策略:(1)优化光栅结构,如调整光栅级数、间距等参数;(2)采用适当的制备工艺,降低表面粗糙度、提高光刻精度;(3)引入相位补偿结构,降低像差。

四、二元衍射光学元件在各领域的应用1.通信领域二元衍射光学元件在光纤通信中可作为光波导、光分路器等关键器件,实现光信号的传输和切换。

2.成像领域在光学成像系统中,二元衍射光学元件可作为成像元件,实现高质量成像。

如应用于微型摄像头、夜视仪等设备。

3.光谱分析领域二元衍射光学元件在光谱分析领域具有广泛应用,如用于光谱仪、色散器等设备。

4.其他领域此外,二元衍射光学元件还应用于激光加工、照明系统、生物医学成像等领域。

综上所述,二元衍射光学元件具有广泛的应用前景。

基于免疫遗传算法的二元光学元件的位相设计

基于免疫遗传算法的二元光学元件的位相设计

关键词:二元光学元件;免疫算法;遗传算法;免疫疫苗;位相设计
中图分类 号:T 5 N2 6 文献标 识码 :A
De i n o sg fpha ed s rbu i n o n r p isee e s s iti to fbi a y o tc lm nt
b s d o m m un e e i l rt a e ni e g n tc a go ihm
提取 的 劣化 疫 苗对 抗体 群进 行反 向接种 ,减 少算法 的重 复运 算 ,极 大地-  ̄ 了群体 退化 ;采用 B、  ̄ 0 e c
T细胞的作用机制,保持群体在进化过程中的多样性,很大程度上抑制 了算法未成熟收敛 。运算 结果表明,免疫遗传算法较遗传算法具有更高的算法效率和 更强的寻优 能力。最后考虑到 实际加 工,对最优解做适当调整得到 了更适合于实际加工的二元光学元件的位相分布。
s le p sdrgo ,h e em it nfr dtru hBn r pi l ns B )I re t mal x oe i tel r a a s me o g ia O t s e e n s a b sr o h y c E me t ( OE .nod ro
免疫遗传算法中采取变频率的交叉操作、变异操作,克服 了遗传算法在局部搜 索解空间上效率差
的缺 点 ,并使 算 法跳 出局 部 极 大值 的能 力得 到 了增 强 。采取 由正 向记 忆 细胞 库 提取 的免疫 疫苗对
抗体群进行接种,使群体的进化方向得到引导,提 高了算法的进化效率;采取 由反向记忆细胞库
d t r n h h e d sr u in o e e mi e t e p a i i t f BOE n i s tb o ,a mmu e g n t lo i m s a o t d t e in BOE n e e i a g r h i d p e o d sg c t .

二元光学元件的制造技术

二元光学元件的制造技术

二元光学元件的制造技术一.概述二元光学是基于光波衍射理论发展起来的一个新兴光学分支,是光学与微电子技术相互渗透、交叉而形成的前沿学科。

基于计算机辅助设计和微米板加工技术制成的平面浮雕型二元光学器件具有质量轻、易复制、造价低等特点,并能实现传统光学难以完成的微小阵列、集成及任意波面变换等新功能,从而使光学工程与技术在诸如空间技术、激光加工技术与信息处理光纤通信及生物医学等现代国防、科学技术与工业等诸多领域中显示出前所未有的重要作用及广阔前景。

20世纪80年代中期,美国MIT林肯实验室率先提出,衍射光学元件的表面带有浮雕结构,使用了制作集成电路的生产方法,所用的掩模是二元的,而且掩模用二元编码形式进行分层,故引出了“二元光学”的概念。

随后加拿大、德国、俄罗斯等国也相继开展了这一领域的工作。

20世纪90年代初期,国际上兴起研究二元光学的热潮,并引起学术界和工业界的极大兴趣和青睐。

与此同时,我国也开始了该方面的研究。

经过十几年的研究,二元光学元件在设计理论、制作工艺和应用等方面取得了突破性进展。

(一)二元光学元件的结构二元光学元件是以光的衍射理论和计算机技术作为设计基础,以现代微电子技术作为加工和测量手段发展起来大的。

设计人员应用衍射理论和计算机数值计算,设计出满足一定功能的二元光学元件的位相分布,然后通过制造掩模、光刻、离子蚀剂、镀膜等各种细微加工方法,在玻璃、硅片或晶体片基上形成由亚微米级离散像素构成的浮雕型结构。

图1给出三种不同类型的二元光学元件剖面示意图。

其中图a为二值型,只包含0, 两个位相等级;图b为多值型,包含有N=2n个位相等级(图中n=2);图c为混合型,它由一个折射光学元件和一个二元光学元件组合而成。

图(1)(a)二值型元件;(b)多值型元件;(c)混合型元件(二)二元光学元件特点二元光学元件除具有体积小、质量轻、容易复制等优点外,还具有如下许多独特的功能和特点:1.高衍射效率二元光学元件是一种纯相位衍射光学元件,为得到高衍射效率,可做成多位相等级的浮雕结构。

二元光学

二元光学

二元光学元件的设计以及制造
几 种 典 型 的 二 元 光 学 器 件
二元光学元件的设计问题是去构造一个 新的分布函G(u),G(u)=|G(u)|. exp(i. f(u)) 它满足以下三个条件: (1) |G(u)|=1,(纯相位型元件,振幅为 常数); (2) f(u)是L 等级量化的(二元光学元件 ); (3) G(u)的夫琅和费衍射花样g(x)= FT{G(u)}的强度分布|g(x)|2 以高精 度地逼 近已知的强度信号| f (x)|2
二元光学元件的设计步骤
(1) 编码过程 将原先振幅分布中所携带的信 息,尽可能多的编码到相位分布中去。 (2) 量化处理 对连续分布的相位进行分级量 化处理。 主要有:G-S 算法、Y-G 算法及SA( Simulation Annealing)算法。 普通光学零件的面形是用研磨、抛光方法加 工而成的,而二元光学元件的面 形是用与超大规 模集成电路制造技术相同的方法加工的。 由于制 造技术仍是制约二元光学元件发展的关键问题, 所以改进制造技术是 一个主要的研究领域。
2
3 消反射的衍射元件
为了抑制光学表面的菲涅尔反射,通常采用镀膜方法,即在光学
表面镀一层 具有梯度射射率的薄膜,使得两种介质界面的光学性质近似
的连续变化,从而获 得极低的反射率。由于镀膜中常用的化学萃取和共 蒸发方法都要用到各向异性材料,因而不可避免的带来热学和力学性能
不均匀等问题,使得高质量镀膜难以成功的制作 。
7
其它应用
莱福枪上的夜视仪 ,具有可宽带使用、大数值口径、携带方便、低 成本和大量复制等特点。
飞行员头上的平视显示仪 ,具有重量轻、光能损失小、单色显示且
显示清晰等优点。 达曼光栅分束器,其光束利用率极高,各光束强度均匀性好。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
二元光学( Binary Optics )是衍射 光学、微光学的主要分支学科,是光 学与微电子、微计算机相互融合、渗 透而形成的前沿交叉学科。是研究微 米、亚微米级特征尺寸光学元件的设 计、微细加工技术及利用该元件以实 现光束的发射、聚焦、传输、成象、 分光、图象处理、光计算等一系列功 能的理论和技术。
2
二、二元光学元件的结构
γ d x
闪耀光栅 光栅周期d,闪耀角γ
相位轮廓化
多阶相位轮廓光栅 γ d Δh x 光栅常数d/N,阶梯深度Δh
h
d sin , N
N 2n
3
折射透镜到二元菲涅尔透镜的演变过程
4
三、二元光栅夫朗和费衍射强度分布及特点
由图得以下关系:
A O B Δh d'
2
6
四、二元光学元件的制作方法
掩膜
刻蚀
刻蚀
刻蚀
光学光刻制作8台阶衍射微光学元件的原理
7 下一节
I sin m / N sin m I 0 m sin m 1 / N
2
1、衍射效率与台阶的数目N和衍射级次m有关;
2、台阶的数目N越大,+1级的衍射效率越高。当N 趋于无穷时,能量将全部集中到+1级上。此时
I sin / N I0 / N
第七节 二元光学元件
(Binary Optical Element,BOEs )
一、概念
基于光波的衍射理论,运用计算机辅助设计, 并运用超大规模集成电路制作工艺,在片基上刻蚀 产生两个或多个台阶深度的浮雕结构,形成纯相位、 同轴再现、具有极高衍射效率的一类衍射光学元件。
随之形成的一门新的学科分支,称二元光学 。
N 2 ,
n
d sin h , N
d d ' N
经计算得二元相位闪耀光栅的 闪耀条件和衍射效率:
2d sin
d 台阶数为N,光栅常数为d'

I sin m / N sin m I 0 m sin m 1 / N
2
5
讨论

相关文档
最新文档