1-实验四 半导体泵浦固体激光器综合实验

合集下载

半导体泵浦激光原理实验

半导体泵浦激光原理实验

半导体泵浦激光原理实验理工学院光信息2班贺扬10329064 合作人:余传祥【实验目的】1、了解与掌握半导体泵浦激光原理及调节光路方法。

2、掌握腔内倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等基本参数的方法。

【实验仪器】808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪【实验原理】激光的产生主要依赖受激辐射过程。

处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。

是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。

当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:式中均为与物质有关的系数,且逐次减小。

当E很大时,电场的平方项不能忽略。

,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。

在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。

激光技术实验报告

激光技术实验报告

实验一 氦氖激光系列实验一、实验内容:1、氦氖激光器的调节 2、氦氖激光器的输出功率 3、氦氖激光器发散角测量4、用共焦球面扫描干涉仪观察、分析、判断激光器的模式组成 二、实验仪器:氦氖激光器、调节板、谐振腔反射镜、半内腔氦氖激光器、激光功率指示仪、共焦扫描仪、示波器 三、实验原理及方法次为例)10/1010∑==i i P P其中:0P 为十次测量的平均值。

激光器功率漂移=η%100/0⨯∆P P 其中2/)(min max P P P -=∆固定输出镜,调至出光,旋转输出镜俯仰倾斜旋钮,结合功率计,将其输出调至最大。

打开激光器电源并预热20~30分钟,将激光器光束对准激光功率指示仪探头中心位置,每隔10分钟记录一次,测量氦氖激光器的输出功率随时间变化曲线。

3. 用刀口法可以测定光斑的大小和验证光斑的光强分布是高斯分布。

实验中使刀口平行于y 轴,沿垂直于x 轴方向移动当刀口缓慢推入光束时,设刀口挡住了a x ≤的所有点。

未被刀口挡住而通过的光功率P 用余误差函数表示为:)2(2),(0a Werfc P dxdy y x I P a==⎰⎰ 如果先用刀口把光束全部挡住,然后把刀口缓慢拉出时,未被刀口挡住而通过的光功率可用相应的误差函数表示。

)exp(),(2220σy x p y x I +-=)2(210σaerfc p p = 其中2/W =σ是数理统计中的标准偏差。

根据上式作出的归一化高斯分布和相对功率与刀口位置关系曲线如下图所示可以证明,相对功率为0.25和0.75的点分别位于高斯分布曲线极大值两侧,其距离σ6745.0=p e 。

所以从由实验得到的相对功率与刀口位置的关系曲线就可确定p e 的值。

算出σ值后就可计算P/0P 的理论值,进行曲线拟合。

如果拟合的好,就证明基横模光强是高斯分布。

用p e 的值可以计算光斑大小:)2(4826.1p e W = )2(7456.12/1p e D =如图所示,将刀口位于激光光斑边缘位置,并将功率计置于刀口后面来测量未被刀口挡住的激光光功率。

实验报告-半导体泵浦激光原理

实验报告-半导体泵浦激光原理

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。

E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

光的倍频是一种最常用的扩展波段的非线性光学方法。

激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。

当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。

单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。

电极化强度产生的极化场发射出次级电磁辐射。

当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。

P=ε0χE在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。

当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:P=αE+βE2+γE3+⋯式中α,β,γ,…均为与物质有关的系数,且逐次减小。

考虑电场的平方项E=E0cosωtP(2)=βE2=βE02cos2ωt=βE02(1+cos2ωt)出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:η=I2ωω∝βL2Iωsin2(Δkl/2)式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。

光信息专业实验报告:半导体泵浦激光原理实验

光信息专业实验报告:半导体泵浦激光原理实验

hvE21 (a)21(b)2E1(c)图1 光与物质作用的受激吸收过程光信息专业实验报告:半导体泵浦激光原理实验【实验目的】1.了解与掌握半导体泵浦激光的原理及调节光路的方法2.掌握腔内倍频技术,并了解倍频技术的意义3.掌握测量阈值、相位匹配等基本参数的方法【实验仪器】1.808nm半导体激光器P≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO4晶体3×3×1mm4.KTP倍频晶体2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪2μW~200mW 6挡【实验原理】一、光与物质的相互作用光与物质的相互作用可以归结为光子与物质原子的相互作用,有三种过程:受激吸收、自发辐射和受激辐射。

1.受激吸收如果一个原子,开始时处于基态,在没有外来光子的情况下,它将保持不变。

如果一个能量为hv21的光子接近,则它吸收这个光子,跃迁上激发态E2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能被吸收。

2.自发辐射处于激发态的原子寿命很短(一般为10-8~10-9秒),在不受外界影响时,它们会自发地返回到基态,并释放出光子,辐射光子能量为hv=E2-E1。

自发辐射过程与外界作用无关,是一个随机过程,各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。

3.受激辐射处于激发态的原子,在外界光场的作用下,会吸收能量为E 2-E 1的光子,从而由高能态向低能态跃迁,并向外辐射出两个光子。

只有当外来光子的能量正好等于激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

二、激光器的组成激光器主要由工作物质、泵浦源、谐振腔三部分组成,如果要实现激光倍频,还需要在谐振腔内部加入倍频晶体。

固体激光原理与技术综合实验

固体激光原理与技术综合实验

固体激光原理与技术综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是了解并掌握半导体泵浦固体激光器的工作原理、构成和调试技术,以及调Q、倍频等激光技术的原理和应用。

实验一半导体泵浦光源特性测量实验【实验目的】1.掌握半导体泵浦激光器的原理2.掌握半导体泵浦激光器的使用方法【实验仪器】半导体泵浦激光器、激光功率计、机械调整部件【实验原理】上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式,如下:(图1)直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

间接耦合:指先将半导体激光器输出的光束进行准直、整形,再进行端面泵浦。

本实验采用间接耦合方式,间接耦合常见的方法有三种,如下:a 组合透镜系统耦合:用球面透镜组合或者柱面透镜组合进行耦合。

b 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

实验1NdYAG固体激光器实验

实验1NdYAG固体激光器实验

hv21(a) 2 1 (b) 2 E 1(c) 图1、光与物质作用的吸收过程Nd :YAG 固体激光器实验一、 实验内容与器件1、了解半导体激光器的工作原理和光电特性2、掌握半导体泵浦固体激光器的工作原理和调试方法二、 实验原理概述1. 激光产生原理光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。

自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

hv 21 2 E 1(a) E 2E 1(b)hv 21 hv 21图2、光与物质作用的受激辐射过程泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。

E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

实验报告-半导体泵浦激光原理

实验报告-半导体泵浦激光原理
(3)光路调节不够准直,主要器件的光轴不在同一条水平线上。
(4)激光未能在增益介质膜中多次振荡便出射,光强增益放大不足。
(5)光功率计数值显示不稳定,LD激光输出本身也不十分稳定,测量读数会有一定误差。
再将升序、降序(对电流而言)测得的功率值以激励电流为横坐标,导入Origin8.5,并拟合为平滑曲线如下图:
最为关键和主要的步骤是光路的准直校准,具体步骤如下:
1、将小孔光屏置于轨道上,打开准直He-Ne激光光源。将光屏从靠近He-Ne光源一端向远端移动,直至准直光能全部透过小孔。(物镜、输出镜、KTP晶体等独立非固定器件先不放在光轨上)
2、将物镜放置在离泵浦光源距离为50mm左右的位置(物镜靠LD侧贴膜 实为增益介质)。打开泵浦光源(实验设置为300mA输出电流),观察光斑是否在物镜正中心,注意中心光斑应为白色或亮黄色,区别于其他的红色反射光点。可调节物镜四维调节架旋钮使最亮光点严格在透镜中心。固定物镜关闭LD光源并再打开准直光源,细调物镜使激光反射点与光阑中心重合。实际实验中反射光点并未能完全与小孔重合。
3、将输出镜放上轨道,打开准直光源进行校准。根据光点随输出镜旋钮扭动方向的移动,判断物镜与输出镜是否严格平行。关闭He-Ne准直光源。
4、将倍频晶体KTP放上轨道,尽量靠近物镜(增益介质),也用He-Ne光源进行准直调节。
5、关闭准直光源,打开LD泵浦光源,在输出镜与小孔间放上滤光片(滤红外);旋动KTP晶体直至出现绿色激光。细调KTP、输出镜等的调节架可使绿激光功率尽可能达到最大值。
在激光区的线性拟合度不是很高,尤其在220mA附近。这是由于光功率计示数不稳定且波动较大,而且外光源(如台灯,走廊灯等)的影响也较大,但是不改变曲线的整体趋势。
表2激励源电流与532nm绿色激光光功率关系及转换效率

半导体激光器特性及调制特性实验

半导体激光器特性及调制特性实验

(操作性实验)课程名称:激光原理与技术实验题目:半导体激光器特性及调制特性实验指导教师:班级:学号:学生姓名:一、实验目的和任务1.掌握半导体泵浦固体激光器的工作原理,测量泵浦LD经快轴压缩后的阈值电流和输出特性曲线。

2.用辅助激光器法,构造固体激光器谐振腔,并使其发光。

3.选用不同透过率腔镜,测试不同LD电流下的激光输出功率,结合LD的功率-电流关系,计算两种耦合输出下的激光斜效率和光光转换效率。

二、实验仪器及器件1、半导体激光器2、耦合系统3、Nd:YAG晶体4、输出镜5、功率计6、探测器三、实验内容及原理1、LD安装及系统准直将LD电源接通。

通过上转换片观察LD出射光近场和远场的光斑。

测量LD经快轴压缩后的阈值电流和输出特性曲线。

2、半导体泵浦固体激光器实验用大功率的808nmLD泵浦Nd:YAG晶体,通过不同输出镜并调节腔镜产生1064nm的红外光。

测试不同LD电流下的激光输出功率;根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。

1、半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四半导体泵浦固体激光器综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及倍频的原理和技术。

一、实验目的1.掌握半导体泵浦固体激光器的工作原理和调试方法;2.了解固体激光器倍频的基本原理;3.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量。

(选做)二、实验原理1.半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。

常见的方法有:组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。

自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

光纤耦合:指用带尾纤输出的LD进行泵浦耦合。

优点是结构灵活。

本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。

本实验的压缩和耦合如图 2所示。

LD激光晶体LD 激光晶体组合透镜激光晶体自聚焦透镜LD LD 光纤激光晶体1. 2. 3. 4.图 1半导体激光泵浦固体激光器的常用耦合方式 1.直接耦合 2.组合透镜耦合 3.自聚焦透镜耦合4.光纤耦合Nd:YAGLD 耦合系统电源TEC 和散热片图 2 本实验LD 光束快轴压缩耦合泵浦简图2.激光晶体图 3 Nd:YAG 晶体中Nd 3+吸收光谱图 激光晶体是影响DPL 激光器性能的重要器件。

为了获得高效率的激光输出,在一定运转方式下选择合适的激光晶体是非常重要的。

目前已经有上百种晶体作为增益介质实现了连续波和脉冲激光运转,以钕离子(Nd 3+)作为激活粒子的钕激光器是使用最广泛的激光器。

其中,以Nd 3+离子部分取代Y 3Al 5O 12晶体中Y 3+离子的掺钕钇铝石榴石(Nd:YAG ),由于具有量子效率高、受激辐射截面大、光学质量好、热导率高、容易生长等的优点,成为目前应用最广泛的LD 泵浦的理想激光晶体之一。

Nd:YAG 晶体的吸收光谱如图 3所示。

从Nd:YAG 的吸收光谱图我们可以看出,Nd:YAG 在807.5nm 处有一强吸收峰。

我们如果选择波长与之匹配的LD 作为泵浦源,就可获得高的输出功率和泵浦效率,这时我们称实现了光谱匹配。

但是,LD 的输出激光波长受温度的影响,温度变化时,输出激光波长会产生漂移,输出功率也会发生变化。

因此,为了获得稳定的波长,需采用具备精确控温的LD 电源,并把LD 的温度设置好,使LD 工作时的波长与Nd:YAG 的吸收峰匹配。

另外,在实际的激光器设计中,除了吸收波长和出射波长外,选择激光晶体时还需要考虑掺杂浓度、上能级寿命、热导率、发射截面、吸收截面、吸收带宽等多种因素。

3.端面泵浦固体激光器的模式匹配技术图 4是典型的平凹腔型结构图。

激光晶体的一面镀泵浦光增透和输出激光全反膜,并作为输入镜,镀输出激光一定透过率的凹面镜作为输出镜。

这种平凹腔容易形成稳定的输出模,同时具有高的光光转换效率,但在设计时必须考虑到模式匹配问题。

图 4 端面泵浦的激光谐振腔形式如图 4所示,则平凹腔中的g 参数表示为:1111,L g R =-= 221L g R =- 根据腔的稳定性条件,1201g g <<时腔为稳定腔。

故当2L R <时腔稳定。

同时容易算出其束腰位置在晶体的输入平面上,该处的光斑尺寸为:0w =本实验中,R 1为平面,R 2=200mm ,L=80mm 。

由此可以算出0w 大小。

所以,泵浦光在激光晶体输入面上的光斑半径应该0w ≤,这样可使泵浦光与基模振荡模式匹配,在容易获得基模输出。

5.半导体激光泵浦固体激光器的被动调Q 技术(选做)目前常用的调Q 方法有电光调Q 、声光调Q 和被动式可饱和吸收调Q 。

本实验采用的Cr 4+:YAG 是可饱和吸收调Q 的一种,它结构简单,使用方便,无电磁干扰,可获得峰值功率大、脉宽小的巨脉冲。

Cr 4+:YAG 被动调Q 的工作原理是:当Cr 4+:YAG 被放置在激光谐振腔内时,它的透过率会随着腔内的光强而改变。

在激光振荡的初始阶段,Cr4+:YAG的透过率较低(初始透过率),随着泵浦作用增益介质的反转粒子数不断增加,当谐振腔增益等于谐振腔损耗时,反转粒子数达到最大值,此时可饱和吸收体的透过率仍为初始值。

随着泵浦的进一步作用,腔内光子数不断增加,可饱和吸收体的透过率也逐渐变大,并最终达到饱和。

此时,Cr4+:YAG的透过率突然增大,光子数密度迅速增加,激光振荡形成。

腔内光子数密度达到最大值时,激光为最大输出,此后,由于反转粒子的减少,光子数密度也开始减低,则可饱和吸收体Cr4+:YAG的透过率也开始减低。

当光子数密度降到初始值时,Cr4+:YAG的透过率也恢复到初始值,调Q脉冲结束。

6.半导体激光泵浦固体激光器的倍频技术光波电磁场与非磁性透明电介质相互作用时,光波电场会出现极化现象。

当强光激光产生后,由此产生的介质极化已不再是与场强呈线性关系,而是明显的表现出二次及更高次的非线性效应。

倍频现象就是二次非线性效应的一种特例。

本实验中的倍频就是通过倍频晶体实现对Nd:YAG输出的1064nm红外激光倍频成532nm绿光。

常用的倍频晶体有KTP、KDP、LBO、BBO和LN等。

其中,KTP晶体在1064nm光附近有高的有效非线性系数,导热性良好,非常适合用于YAG激光的倍频。

KTP晶体属于负双轴晶体,对它的相位匹配及有效非线性系数的计算,已有大量的理论研究,通过KTP的色散方程,人们计算出其最佳相位匹配角为:θ=90°,φ=23.3°,对应的有效非线性系数d eff=7.36×10-12V/m。

倍频技术通常有腔内倍频和腔外倍频两种。

腔内倍频是指将倍频晶体放置在激光谐振腔之内,由于腔内具有较高的功率密度,因此较适合于连续运转的固体激光器。

腔外倍频方式指将倍频晶体放置在激光谐振腔之外的倍频技术,较适合于脉冲运转的固体激光器。

三、实验内容及步骤1.LD安装及系统准直将LD电源接通。

通过上转换片观察LD出射光近场和远场的光斑。

测量LD经快轴压缩后的阈值电流和输出特性曲线。

将耦合系统、激光晶体、输出镜、Q开关、准直器等各元器件安装在调整架和滑块上;将准直器安装在导轨上,利用直尺将其调整成光束水平出射,中心高度50mm,水平并且水平入射在激光晶体中心位置;通过调整架旋钮微调耦合系统的倾斜和俯仰,使晶体反射光位于准直器中心,并且准直光通过晶体后仍垂直进入LD;通过调整架旋钮微调Nd:Y AG晶体的倾斜和俯仰,重复上一步的调节步骤。

在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。

2.半导体泵浦固体激光器实验实验装置图Nd:YAG 耦合系统准直器探测器散热片图 5 半导体泵浦固体激光器实验装置图在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。

根据实验装置图设置其与晶体之间的距离。

打开LD 电源,缓慢调节工作电流到1.3A 。

微调输出镜倾斜和俯仰使系统出光,然后微调激光晶体、耦合系统,使激光输出得到最大值; 将LD 电流调到最小,然后从小到大渐渐增大LD 电流,从激光阈值电流开始,每格0.2A 测量一组固体激光器系统输出功率。

结合LD 的功率-电流关系,在实验报告上绘出激光输出功率-泵浦功率曲线;1. 更换为T2输出耦合镜,重复3.b 、3.c 的步骤,测试不同LD 电流下的激光输出功率;2. 根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。

3.半导体泵浦固体激光器调Q 实验实验装置图Nd:YAG 耦合系统输出镜准直器探测器Cr 4+:YAG LD 电源TEC 和散热片图 6调Q 实验装置图安装Cr 4+:YAG 晶体,在准直器前准直后放入谐振腔内。

LD 电流调到1.7A ,观察输出的平均功率,微调调整架,使激光输出平均功率最大;降低LD 电流到零。

然后从小到大缓慢增加,测量1.7A 、2.0A 、2.3A 时输出脉冲的平均功率;安装探测器,取三个不同的LD 工作电流(1.7A 、2.0A 、2.3A ),分别测量输出脉冲的脉宽、重频;计算不同功率下的峰值功率,对不同功率下的输出脉冲进行对比,并作简要分析。

4.半导体泵浦固体激光器倍频实验实验装置图Nd:YAG 输出镜准直器KTP LD 耦合系统电源TEC 和散热片图 7 倍频实验装置图将输出镜换为短波通输出镜,微调调整架使其反射光点在准直器中心。

打开LD 电源,取工作电流1.7A ,微调输出镜、激光晶体、耦合系统的旋钮,使输出激光功率最大; 安装KTP 晶体(或LBO ),在准直器前准直后放入谐振腔内,倍频晶体尽量靠近激光晶体。

调节调整架,使得输出绿光功率最亮;然后旋转KTP 晶体(或LBO ),观察旋转过程中绿光输出有何变化;四、注意事项1. 半导体激光器(LD )对环境有较高要求,因此本实验系统需放置于洁净实验室内。

实验完成后,应及时盖上仪器罩,以免LD 沾染灰尘。

2. LD 对静电非常敏感。

所以严禁随意拆装LD 和用手直接触摸LD 外壳。

如果确实需要拆装,请带上静电环操作,并将拆下的LD 两个电极立即短接。

3. 不要自行拆装LD 电源。

电源如果出现问题,请与产家联系。

同时,LD 电源的控制温度已经设定,对应于LD 的最佳泵浦波长,请不要自行更改。

4. LD 、耦合系统、激光晶体,两两滑块之间距离大约为32mm 、8mm ,经调整好以后最好不要随意变动,以免影响实验使用。

相关文档
最新文档