高等代数最重要地基本概念汇总情况

合集下载

高等代数知识点总结笔记

高等代数知识点总结笔记

高等代数知识点总结笔记一、集合论基础1. 集合的定义和表示2. 集合的运算:交集、并集、补集、差集3. 集合的基本性质:幂集、空集、自然数集、整数集等4. 集合的关系:子集、相等集、包含关系5. 集合的基本运算律:结合律、交换律、分配律二、映射和函数1. 映射的定义和表示2. 映射的类型:单射、满射、双射3. 函数的定义和性质4. 函数的运算:复合函数、反函数5. 函数的极限、连续性6. 函数的导数、几何意义三、向量空间1. 向量和向量空间的定义2. 向量的线性运算:加法、数乘、点积、叉积3. 向量空间的性质:线性相关、线性无关、维数、基和坐标4. 线性变换和矩阵运算5. 特征值和特征向量四、矩阵与行列式1. 矩阵的定义和基本性质:零矩阵、单位矩阵、方阵2. 矩阵的运算:加法、数乘、矩阵乘法、转置、逆矩阵3. 行列式的定义和性质:行列式的展开法则、克拉默法则4. 线性方程组的解法:克拉默法则、矩阵消元法、逆矩阵法五、线性方程组1. 线性方程组的定义和分类2. 线性方程组的解法:高斯消元法、矩阵法、逆矩阵法3. 线性方程组的特解和通解:齐次线性方程组、非齐次线性方程组4. 线性方程组的解的性质:解的唯一性、解空间六、特征值和特征向量1. 特征值和特征向量的定义和性质2. 矩阵的对角化和相似矩阵3. 特征值和特征向量的应用:矩阵的对角化、变换矩阵4. 矩阵的谱定理和矩阵的相似对角化5. 实对称矩阵和正定矩阵的性质七、多项式与代数方程1. 多项式的定义和性质:零次多项式、一次多项式、多项式的加减乘除2. 代数方程的解法:一元一次方程、一元二次方程、高次方程3. 代数方程的根与系数的关系:韦达定理、牛顿定理、斯图姆定理4. 代数方程的不可约性和可解性八、群、环、域1. 代数结构的定义和性质2. 群的定义和性质:群的封闭性、结合律、单位元、逆元3. 环的定义和性质:交换环、整环、域4. 域的定义和性质:有限域、无限域、极大理想以上就是高等代数的一些基本知识点总结,希望对大家有所帮助。

云南省考研数学复习资料高等代数重点概念解析

云南省考研数学复习资料高等代数重点概念解析

云南省考研数学复习资料高等代数重点概念解析高等代数是数学中的一个重要分支,是考研数学中的一门必考科目。

在高等代数的学习中,有一些重点的概念需要我们深入理解和掌握。

本文将对云南省考研数学复习资料中的高等代数重点概念进行解析。

一、向量空间向量空间是线性代数的基本概念之一,它是由向量所构成的集合,并满足一定的运算规律。

在考研数学中,我们常常需要研究向量空间的性质和运算规则,以解决相关问题。

1. 定义:向量空间是一个非空集合V,上面定义了加法运算和数乘运算,并满足一定的运算规律,包括封闭性、结合律、对称律、零元素和负元素等。

2. 子空间:若向量空间V中的一个非空子集W也是向量空间,并且包含加法单位元和对数元,则称W为V的子空间。

3. 线性相关与线性无关:向量组中的向量线性相关指的是存在不全为零的系数,使得线性组合等于零向量;向量组中的向量线性无关指的是除了零系数外,没有其他的系数能够使线性组合等于零向量。

二、矩阵与行列式矩阵与行列式是高等代数中的另外两个重要概念,它们在线性代数的各个分支中都有广泛的应用。

在考研数学中,我们需要对矩阵与行列式的定义、性质和运算法则有一定的了解。

1. 矩阵:矩阵是由数按一定的规则排列成的矩形数表。

常见的矩阵类型有:行矩阵、列矩阵、方阵、零矩阵、单位矩阵等。

2. 矩阵的运算:包括矩阵的加法、数乘、乘法等运算。

矩阵加法满足交换律和结合律,数乘运算满足结合律和分配律。

矩阵乘法需要满足相乘的两个矩阵维数匹配的规则。

3. 行列式:行列式是一个按矩阵元素排列计算出来的一个数。

行列式在求解线性方程组、计算矩阵的逆矩阵等问题中有重要的应用。

三、线性方程组与特征值特征向量线性方程组是高等代数中的重要问题之一,它的解集和系数矩阵的性质有密切的关系。

特征值与特征向量是矩阵理论中的重要概念,在解决矩阵相似、对角化等问题时起到关键作用。

1. 线性方程组:线性方程组是由多个线性方程组成的方程组。

求解线性方程组涉及到方程的等价变换、高斯消元法、矩阵的秩等内容。

高等代数知识点总结

高等代数知识点总结

高等代数知识点高等代数是数学的一个分支学科,它研究代数结构与代数运算的一般理论。

在学习高等代数的过程中,我们会接触到一些重要的概念和知识点。

本文将对一些常见的高等代数知识点进行。

1. 线性代数线性代数是高等代数的一个重要分支,它研究向量空间、线性变换和线性方程组等内容。

1.1 向量空间向量空间是线性代数中最基本的概念之一,它是一个满足一定条件的集合。

向量空间具有以下特性:•闭合性:向量空间中的任意两个向量的线性组合仍然属于该向量空间。

•加法结合律:向量的加法满足结合律。

•加法交换律:向量的加法满足交换律。

•零向量存在性:向量空间中存在一个零向量,它和任意向量的加法得到的结果是原向量本身。

•加法逆元存在性:向量空间中的任意向量都有一个加法逆元。

1.2 线性变换线性变换是指保持向量空间中的线性运算不变的变换。

线性变换具有以下性质:•保持零向量不变:线性变换将零向量映射为零向量。

•保持向量加法:线性变换将向量加法映射为映射后的向量的加法。

•保持标量乘法:线性变换将标量乘法映射为映射后的向量的标量乘法。

1.3 线性方程组线性方程组是一组线性方程的集合。

求解线性方程组的关键是确定进行何种变换操作,使得方程组的解能够被简化。

常见的线性方程组解法包括高斯消元法、矩阵消元法等。

2. 群论群论是代数学中研究群的一个分支学科,它研究群的性质和结构。

2.1 群的定义群是一个集合和一个二元运算构成的代数结构。

群具有以下性质:•闭合性:群中的任意两个元素的运算结果仍然属于该群。

•结合律:群中的运算满足结合律。

•存在单位元:群中存在一个元素,使得该元素与群中的任意元素进行运算得到的结果等于该元素本身。

•存在逆元:群中的任意元素都存在一个逆元,使得该元素与其逆元进行运算得到的结果等于单位元。

2.2 群的性质群具有一些重要的性质,例如:•闭包性:群的闭包性指的是群中的任意两个元素的运算结果仍然属于该群。

•唯一性:群的单位元和每个元素的逆元都是唯一的。

高等代数最重要地基本概念汇总情况

高等代数最重要地基本概念汇总情况

第一章 基本概念1.5 数环和数域定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab都在S 内,那么称S 是一个数环。

定义2 设F 是一个数环。

如果(i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠,aF b∈,那么就称F 是一个数域。

定理 任何数域都包含有理数域,有理数域是最小的数域。

第二章 多项式2.1 一元多项式的定义和运算定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2012n n a a x a x a x ++++,是非负整数而012,,,n a a a a 都是R 中的数。

项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。

定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数为零的项,那么就说()f x 和()g x 就说是相等()()f x g x = 定义3 n n a x 叫作多项式2012n n a a x a x a x ++++,0n a ≠的最高次项,非负整数n 叫作多项式2012n n a a x a x a x ++++,0n a ≠的次数。

定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0max ,;f x g x f x g x ∂+≤∂∂()ii ()()()()()()()0f xg x f x g x ∂=∂+∂。

多项式的加法和乘法满足以下运算规则: 1) 加法交换律:()()()()f x g x g x f x +=+;2) 加法结合律:()()()()()()()()f xg xh x f x g x h x ++=++; 3)乘法交换律:()()()()f x g x g x f x =; 4) 乘法结合律:()()()()()()()()f xg xh x f x g x h x =; 5) 乘法对加法的分配律:()()()()()()()()f x g x h x f x g x f x h x +=+。

上海市考研数学复习资料高等代数重点概念解析

上海市考研数学复习资料高等代数重点概念解析

上海市考研数学复习资料高等代数重点概念解析高等代数作为数学专业考研的重要科目之一,对于考研学子来说是一大考验。

为了帮助大家更好地复习高等代数,本文将对高等代数的重点概念进行解析。

通过对这些重点概念的理解和掌握,相信考生们在考试中能够更加游刃有余。

1. 向量空间向量空间是高等代数中的基本概念之一。

它是指具备一定代数性质的集合,其中的元素称为向量。

向量空间需要满足以下几个条件:向量的加法和数乘运算封闭性、满足结合律和可交换律、存在零元素和逆元素等。

同时,在向量空间中还有一些重要的子空间,例如零空间、列空间和核空间等。

在考研数学中,向量空间及其相关性质是较为重要的考点,考生需理解和掌握其定义和性质。

2. 线性方程组线性方程组是高等代数中的另一个重点概念。

它由一组线性方程组成,其中的方程满足线性关系。

求解线性方程组的常用方法有高斯消元法和矩阵的初等行变换等。

在解线性方程组时,我们需要关注其解的存在唯一性和可解性等性质,同时还需要理解线性方程组与向量空间之间的关系。

因此,对于线性方程组的掌握和理解,对于考生来说至关重要。

3. 矩阵和行列式矩阵和行列式是高等代数中的基础概念。

矩阵是由数个数排成的矩形数组,而行列式是一个具有特定性质的数。

矩阵和行列式在高等代数中有着广泛的应用,例如线性方程组的表示和求解、线性变换的描述等。

因此,对于矩阵和行列式的理解和计算方法的掌握是考生复习高等代数不可或缺的一部分。

4. 线性变换线性变换是指在向量空间中满足线性性质的变换。

它是高等代数中一个重要的概念,具有广泛的应用。

线性变换有一些基本性质,例如保持零向量不变、保持向量的线性组合、保持向量的和等。

对于线性变换的理解和掌握,对于高等代数的学习和应用具有重要意义。

5. 特征值和特征向量特征值和特征向量是矩阵和线性变换中的重要概念。

特征值是变换后的向量与原向量方向相同的常数倍关系,而特征向量是变换后的向量与原向量方向相同的非零向量。

考研数学高等代数重点整理

考研数学高等代数重点整理

考研数学高等代数重点整理高等代数是考研数学中的一门重要学科,它涉及到矩阵、向量、行列式等内容。

在考研中,高等代数的重要性不言而喻。

为了帮助考生更好地掌握高等代数的重点知识,本文将对高等代数的相关知识进行整理和总结。

一、矩阵矩阵是高等代数中的基础概念之一。

矩阵可以表示为一个矩形数组,其中每个元素都是一个数。

在考研中,我们需要了解矩阵的基本运算,包括加法、减法和乘法。

此外,还需要掌握矩阵的转置、逆矩阵以及特殊矩阵(如对角矩阵、零矩阵等)的性质。

二、向量向量是高等代数中的另一个重要概念。

向量可以表示为一个有方向和大小的量。

在考研中,我们需要了解向量的基本运算,包括加法、减法、数量乘法以及点积和叉积。

此外,还需要了解向量的模、方向角以及向量与矩阵的乘法等相关知识。

三、行列式行列式是高等代数中的重点内容之一。

行列式可以看作是一个数学对象,它可以用来描述一个矩阵的性质。

在考研中,我们需要了解行列式的定义和性质,包括行列式的计算方法、展开定理以及特殊矩阵的行列式。

此外,还需要掌握行列式的变换和性质,比如行列式的性质、克莱姆法则等。

四、特征值与特征向量特征值与特征向量是高等代数中的重要概念。

特征值与特征向量可以用来描述一个矩阵的性质。

在考研中,我们需要了解特征值与特征向量的定义和性质,包括特征方程的求解方法、实对称矩阵的对角化以及相似矩阵的性质等。

五、线性方程组线性方程组是高等代数中的常见问题之一。

在考研中,我们需要学会解线性方程组的方法,包括高斯消元法、克莱姆法则以及矩阵表示法等。

此外,还需要掌握线性方程组的解的性质,比如解的存在唯一性、解的个数等。

六、二次型二次型是高等代数中的重要概念之一。

二次型可以看作是一个二次齐次多项式,它与矩阵有密切的联系。

在考研中,我们需要了解二次型的定义和性质,包括矩阵的标准型、规范型以及二次型的正定性和负定性等。

以上是考研数学高等代数的重点整理。

通过对这些内容的学习和掌握,相信考生能够在考试中取得好成绩。

大一高等代数第一章知识点总结

大一高等代数第一章知识点总结

大一高等代数第一章知识点总结导读:在大一高等代数第一章学习中,我们了解了数学中的代数运算、集合论、函数与映射、二次函数等重要基础知识。

本文将对这些知识点进行总结和归纳,帮助读者更好地理解和掌握这些概念。

一、代数运算1. 代数运算的基本性质:加法和乘法运算的结合律、交换律和分配律。

这些性质是进行代数运算的基础,通过它们可以将复杂的代数式简化,或将代数式转换为更方便计算的形式。

2. 代数运算的逆元:对于加法运算,零是唯一的单位元,每个元素都有唯一的相反元;对于乘法运算,一是唯一的单位元,每个非零元素都有唯一的倒数。

3. 代数方程与不等式:代数方程是由字母和数构成的等式,通过方程解的求解过程,可以得到含有未知数的具体数值;不等式则是不等关系构成的不等式。

二、集合论1. 集合的概念:集合是由一定规则约定所组成的一种对象的整体。

2. 集合的运算:包括交集、并集、补集和差集等。

运用这些运算可以对集合元素进行组合或筛选,从而得到满足一定条件的集合。

3. 集合的表示方法:包括列举法、描述法、乘积集和无穷集等。

不同的表示方法适用于不同的问题求解。

三、函数与映射1. 函数的概念:函数是两个集合之间的一种对应关系,每个自变量对应唯一的因变量。

2. 函数的性质:包括定义域、值域、单调性、奇偶性等。

这些性质描述了函数的基本特征,可以帮助我们更好地理解和分析函数。

3. 映射的概念:映射是一种更广义的函数,它可以是一对一的、多对一的或一对多的关系。

四、二次函数1. 二次函数的概念与性质:二次函数是一种具有二次项和一次项的一元多项式函数。

它的图像呈现抛物线形状,关键点包括顶点、焦点和对称轴等。

2. 二次函数的图像与方程:通过观察二次函数的图像可以了解其方程的特征,反之也可以通过方程描述二次函数的图像。

3. 二次函数的应用:二次函数在实际生活中有广泛应用,如物体抛出运动、摄影中焦距的调整等。

通过掌握二次函数的性质和应用,能够更好地理解和解决相关实际问题。

河南省考研数学复习资料高等代数重要知识点总结

河南省考研数学复习资料高等代数重要知识点总结

河南省考研数学复习资料高等代数重要知识点总结高等代数是考研数学中的重要一部分,复习高等代数的重要知识点对于考生来说至关重要。

本文将对河南省考研数学复习资料中的高等代数知识点进行总结,帮助考生进行有针对性的复习。

一、线性空间线性空间是高等代数的基本概念,它是指在一组向量集合上定义了向量加法和数量乘法运算,同时满足一定的运算规则。

常见的线性空间有实数空间、复数空间等。

1.1 线性空间的定义线性空间的定义包括8个基本条件,首先是非空集合的定义,集合中的元素称为向量。

其次是定义了向量加法和数量乘法运算,且满足封闭性、交换律、结合律、零元素等运算规则。

还需要定义了向量的逆元素、标量乘法的结合律和分配律。

1.2 子空间子空间是线性空间中的一个重要概念,它是指在一个线性空间中的一个非空集合,在该集合上仍然满足线性空间的所有定义和运算规则。

判断一个集合是否是子空间需要验证其非空性、封闭性和满足向量加法和数量乘法的运算规则。

1.3 线性无关与线性相关线性无关是指一个向量组中的向量之间不存在线性相关关系,每个向量都不能表示成其他向量的线性组合。

线性相关则相反,存在向量之间的线性相关关系。

判断线性相关或线性无关的方法包括线性方程组的解唯一性和行列式的值判断等。

二、矩阵与行列式矩阵与行列式是高等代数中重要的研究对象,矩阵用于表示线性映射,行列式则用于求解线性方程组的结果。

2.1 矩阵的基本操作矩阵的基本操作包括矩阵的加法、数乘、乘法和转置等。

矩阵的加法是指对应位置的元素相加,数乘是指矩阵中每个元素与一个常数相乘,矩阵的乘法是指两个矩阵相乘得到一个新的矩阵,转置是指将矩阵的行列互换。

2.2 矩阵的行列式矩阵的行列式是一个标量,用于表示矩阵的性质和求解方程组的结果。

行列式的定义包括二阶行列式和三阶行列式,可以通过展开定理来求解更高阶的行列式。

行列式的性质包括交换性、线性性和代数性等。

三、特征值与特征向量特征值与特征向量是矩阵和线性映射的重要性质,它们在高等代数中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 基本概念1.5 数环和数域定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab都在S 内,那么称S 是一个数环。

定义2 设F 是一个数环。

如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠,aF b∈,那么就称F 是一个数域。

定理 任何数域都包含有理数域,有理数域是最小的数域。

第二章 多项式2.1 一元多项式的定义和运算定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式()1 2012nn a a x a x a x ++++L ,是非负整数而012,,,n a a a a L 都是R 中的数。

项式()1中,0a 叫作零次项或常数项,ii a x 叫作一次项,一般,i a 叫作i 次项的系数。

定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数为零的项,那么就说()f x 和()g x 就说是相等()()f x g x =定义3 n n a x 叫作多项式2012nn a a x a x a x ++++L ,0n a ≠的最高次项,非负整数n 叫作多项式2012nn a a x a x a x ++++L ,0n a ≠的次数。

定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0max ,;f x g x f x g x ∂+≤∂∂()ii ()()()()()()()000f x g x f x g x ∂=∂+∂。

多项式的加法和乘法满足以下运算规则: 1) 加法交换律:()()()()f x g x g x f x +=+; 2) 加法结合律:()()()()()()()()f x g x h x f x g x h x ++=++;3)乘法交换律:()()()()f x g x g x f x =; 4) 乘法结合律:()()()()()()()()f x g x h x f x g x h x =;5) 乘法对加法的分配律:()()()()()()()()f x g x h x f x g x f x h x +=+。

推论2.1.1 ()()0f x g x = 当且仅当()f x 和()g x 中至少有一个是零多项式 推论2.1.2 若()()()()f x g x f x h x =,且()0f x ≠,那么()()g x h x =2.2 多项式的整除性设F 是一个数域。

[]f x 是F 上一元多项式环定义 令()f x 和()g x 是数域F 上多项式环[]f x 的两个多项式。

如果存在[]f x 的多项式()h x ,使()()()g x f x h x =,我们说,()f x 整除(能除尽)()g x 。

多项式整除的一些基本性质:1) 如果()()f x g x |,()()g x h x |,那么()()f x h x |2) 如果()()h x f x |,()()h x g x |,那么()()()()h x f x g x |±3) 如果()()h x f x |,那么对于[]f x 中的任意多项式()g x 来说,()()()h x f x g x |4) 果()(),1,2,3,,,i h x f x i t |=L 那么对于[]f x 中任意()1,2,3,,,i g x i t ,=L ()()()()()()()()1212i i h x f x g x f x g x f x g x |±±±L 5) 次多项式,也就是F 中不等于零的数,整除任意多项式。

6) 每一个多项式()f x 都能被()cf x 整除,这里c 是F 中任意一个不等于零的数。

7) 如果()()f x g x |,()()g x f x |,那么()()f x cg x =,这里c 是F 中的一个不等于零的数设()f x ,()g x 是两个任意的多项式,并且()0g x ≠。

那么()f x 可以写成以下形式()()()()f x g x q x r x =+,这里()0r x =,或者()r x 的次数小于()g x 的次数。

定理2.2.1 设()f x 和()g x 是[]f x 的任意两个多项式,并且()0g x ≠。

那么在[]f x 中可以找到多项式()q x 和()r x ,使 (3)()()()()f xg x q x r x =+这里或者()0r x =,或者()r x 的次数小于()g x 的次数,满足以上条件的多项式()()q x r x 和只有一对。

设数域F 含有数域F 而()f x 和()g x 是[]f x 的两个多项式,如果在[]f x 里()g x 不能整除()f x ,那么在[]F x 里()g x 也不能整除()f x 。

1) 定义1 假定()h x 是()f x 和()g x 的任一公因式,那么由2) ()()()()()()()()()()()32112111,,k k k k k k k k k k r x r x q x r x r x r x q x r x r x r x q x -------+=+=+=3) 中的第一个等式,()h x 也一定能整除()1r x 。

同理,由第二个等式,()h x 也一定能整除()2r x 。

如此逐步推下去,最后得出()h x 能整除()k r x ,这样,()k r x 的确是()f x 和()g x 的一个最大公因式,这种求最大公因式的方法叫做展转相除法。

4) 定义2 设以()g x x a =-除()1110nn n n f x a x a xa x a --=++++L 时,所得的商()121210n n n n q x b x b x b x b ----=++++L 及余式()0r x c =,比较()()()()f xg x q x r x =+两端同次幂的系数得1n n b a -=,211n n n b a ab ---=+,…011b a ab =+,000c a ab =+,这种计算可以排成以下格式()120112112300))))n n nn n n n n n a a a a a aab ab ab ab b a b b b c -------++++=∣L L L5) 用这种方法求商和余式(的系数)称为综合除法。

6) 2.3 多项式的最大公因式7) 设F 是一个数域。

[]f x 是F 上一元多项式环8) 定义1 令设()f x 和()g x 是[]f x 的任意两个多项式,若是[]f x 的一个多项式()h x 同时整除()f x 和()g x ,那么()h x 叫作()f x 与()g x 的一个公因式。

9) 定义2 设()d x 是多项式()f x 与()g x 的一个公因式。

若是()d x 能被()f x 与()g x 的每一个公因式整除,那么()d x 叫作()f x 与()g x 的一个最大公因式。

10)定理2.3.1 []f x 的任意两个多项式()f x 与()g x 一定有最大公因式。

除一个零次因式外,()f x 与()g x 的最大公因式是唯一确定的,这就说,若()d x 是()f x 与()g x 的一个最大公因式,那么数域F 的任何一个不为零的数c 与()d x 的乘积c ()d x 也是()f x 与()g x 的一个最大公因式;而且当()f x 与()g x 不完全为零时,只有这样的乘积才是()f x 与()g x 的最大公因式。

11) 从数域F 过度渡到数域F 时,()f x 与()g x 的最大公因式本质上没有改变。

12)定理2.3.2 若()d x 是[]f x 的多项式()f x 与()g x 的最大公因式,那么在[]f x 里可以求得多项式()()u x x 和v ,使以下等式成立: 13) (2)()()()()()f x u xg x x d x +v =。

14)注意:定理2.3.2的逆命题不成立。

例如,令()(),f x x g x x ==+1,那么以下等式成立:()()()22221x x x x x x ++=+-+1-1但2221x x +-显然不是()f x 与()g x 的最大公因。

15)定义3 如果[]f x 的两个多项式除零次多项式外不在有其他的公因式,我们就说,这两个多项式互素。

16)定理2.3.3 []f x 的两个多项式()f x 与()g x 互素的充要条件是:在[]f x 中可以求得多项式()()u x x 和v ,使 17) (4) ()()()()1f x u x g x x +v =18) 从这个定理我们可以推出关于互素多项式的以下重要事实:19)若多项式()f x 与()g x 都与多项式()h x 互素,那么乘积()()f x g x 也与()h x 互素。

20)若多项式()h x 整除多项式()f x 与()g x 的乘积,而()h x 与()f x 互素,那么()h x 一定整除()g x 。

21)若多项式()g x 与()h x 都整除多项式()f x ,而()g x 与()h x 互素,那么乘积()()g x h x 也整除()f x最大公因式的定义可以推广到()2n n >个多项式的情形:若是多项式()h x 整除多多项式()()()12,,,n f x f x f x L 中的每一个,那么()h x 叫作这n 个多项式的一个公因式。

若是()()()12,,,n f x f x f x L 的公因式()d x 能被这n 个多项式的每一个公因式整除,那么()d x 叫作()()()12,,,n f x f x f x L 的一个最大公因式。

若()0d x 是多项式()()()121,,,n f x f x f x -L 的一个最大公因式,那么()0d x 是多项式()n f x 的最大公因式也是多项式()()()121,,,n f x f x f x -L 的最大公因式。

若多项式()()()12,,,n f x f x f x L 除零次多项式外,没有其他的公因式,就是说这一组多项式互素。

2.4 多项式的分解定义1 []f x 的任何一个多项式()f x ,那么F 的任何不为零的元素c 都是()f x 的因式,另一方面,c 与()f x 的乘积c ()f x 也总是()f x 的因式。

相关文档
最新文档