北京理工大学出版社矩阵分析习题解答

合集下载

北京理工大学矩阵分析第四章作业答案

北京理工大学矩阵分析第四章作业答案
A UDV H 1 0 0 2 0 1 0 0 1 0 0 1 . 0 i 0 0 1 0 0
2 2 0 A 8 2 a 0 0 6 是单纯矩阵, 求 a, 并且求矩阵 A的谱分解表达式.
T
2 6
1 6
T
Hale Waihona Puke G1 H 1 1

1 3 1 1 3 3 1 3
1 3
1 3 1 1 3 3 1 3
1 3 1 3 1 3
1 3 1 3 1 3
G2 2 2H 3 3H
4-1:求矩阵 A 的满秩分解
2 1 2 3 1 A 2 5 1 4 1 1 3 1 2 1
对A只进行初等行变换, 得行简化阶梯形,
1 0 0 8 5 2 5 0 1 0 1 5 1 5 0 0 1 1 5 4 5
1 3 1 2 1 6
1 3 1 2 1 6
1 3 0 2 6
4 -3( 2) 已知
求 B 的谱分解.
0 1 1 B 1 0 1 1 1 0
B B H , 所以 B 是正规矩阵.
I - B ( 1)2 ( 2)
m n
, 秩(A)= r
行简化阶梯形 J
A 初等行变换
设主元在 i1 , i2 ,
A 中的第 i1 , i2 ,
, ir 列,则选取 , ir 列组成矩阵 B
m r
r n
,
去掉 J 中的零行,剩下的组成 C A=BC
例:设矩阵的满秩分解为 A=BC, 证明:

矩阵分析

矩阵分析

矩阵分析课后习题答案第二章 内积空间14 . 设A , B 均为厄米特矩阵, 证明: AB 为厄米特矩阵的充要条件是AB = BA .证明: H A A =,H B B =()HH H AB AB B A AB =⇔=即 AB BA =17 . 证明:两个正规矩阵相似( 酉等价) 的充要条件是特征多项式相同.证明:设A , B 是两个n 阶的正规矩阵,如果A 与B 是酉等价的,则存在酉矩阵Q ,使得1H B Q AQ Q AQ -==()11E B E Q AQ Q E A Q E A λλλλ--⇒-=-=-=-即A , B 有相同的特征多项式反之,A , B 有相同的特征多项式,因而有相同的特征值集合{}12,,,n λλλA ,B 是正规矩阵,则存在酉矩阵1Q 及2Q ,使得1111122n Q AQ Q BQ λλλ2--⎡⎤⎢⎥⎢⎥==⎢⎥ ⎢⎥ ⎣⎦ 则有 ()()11111121121212B Q Q A Q Q Q QA Q QP A P------=== 易知,112p Q Q -=是酉矩阵,即A , B 是酉相似的。

第三章 矩阵的标准形6 . 在复数域上, 求下列矩阵的约当标准形:()11 -1 2 3 7 -3 3 0 8 4 5 -2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 3 -3 6 ; (2) -2 -5 2; (3) 3 -1 6; (4) -⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥2 -2 4-4 -10 3-2 0 -5⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥2 -2 1 ⎢⎥⎢⎥-1 -1 1⎣⎦解 (1) 特征矩阵为λλλ-1 1 -2⎡⎤⎢⎥-3 +3 - 6⎢⎥⎢⎥-2 2 -4⎣⎦所以行列式因子为()()121D D λλλ==,,()()232D λλλ=-不变因子为()()()()()()()()()231123121,D D d D d d D D λλλλλλλλλλλ== ==, ==-2全部初级因子为()2,,λλλ-故约当标准型为 2J 0 0⎡⎤⎢⎥=0 0 0⎢⎥⎢⎥0 0 0⎣⎦(2) 特征矩阵为λλλ -3 - 7 3⎡⎤⎢⎥ 2 +5 -2⎢⎥⎢⎥ 4 10 - 3⎣⎦所以行列式因子为()()211D D λλ==,()()31()()D i i λλλλ=--+不变因子为()()()()()()()()()231123121,1()()D D d D d d i i D D λλλλλλλλλλλ== ==1, ==--+全部初级因子为1,,i i λλλ- - +故约当标准型为 J i i 1 0 0⎡⎤⎢⎥=0 0⎢⎥⎢⎥0 0 -⎣⎦(3) 特征矩阵为5λλλ -3 0 -8⎡⎤⎢⎥ -3 +1 -6⎢⎥⎢⎥ 2 0 +⎣⎦所以行列式因子为()()()()1231,1,1D D D λλλλλ3= =+ =+不变因子为()()()()()()()()()2231123121,1D D d D d d D D λλλλλλλλλλ== ==+1, ==+全部初级因子为21,1)λλ+ (+故约当标准型为 J -1 0 0⎡⎤⎢⎥= 0 -1 0⎢⎥⎢⎥ 0 1 -1⎣⎦(4) 特征矩阵为λλλ -4 - 5 2⎡⎤⎢⎥ 2 +2 -1⎢⎥⎢⎥ 1 1 - 1⎣⎦所以行列式因子为()()211D D λλ==,()()331D λλ=-不变因子为()()()()()()()()()3231123121,D D d D d d D D λλλλλλλλλ== ==1, ==-1全部初级因子为()31λ-故约当标准型为 J 1 0 0⎡⎤⎢⎥=1 1 0⎢⎥⎢⎥0 1 1⎣⎦8 . 证明: ( 1)方阵A 的特征值全是零的充要条件是存在自然数m ,使得A m = 0; ( 2) 若A m = 0 , 则1A E +=.证明:(1) 如λ为A 的任一特征值,A 为n 阶方阵,则m λ为m A 的特征值,若0m A =则m n E A E λλλ-==,即A 的特征值为0。

北京理工大学数学专业矩阵分析期末试题(MTH17075)

北京理工大学数学专业矩阵分析期末试题(MTH17075)

2011级数学学院矩阵分析期末试题B 卷一、(5分)求λ矩阵()()()()2332331A λλλλλλλ⎡⎤-⎢⎥⎢⎥=-⎢⎥-⎢⎥⎣⎦的初等因子和Smith 标准型。

二、(10分)求正规矩阵0110000i A i ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的谱分解。

三、(15分)已知2001206002A π⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。

(1)求矩阵A 的Jordan 标准形和最小多项式;(2)求矩阵函数sin ,cos A A 。

四、(10分)设A 是半正定Hermite 矩阵,A ≠O ,B 是正定Hermite 矩阵。

试证:A B B +>。

这里X 表示X 的行列式。

五、(20分)求矩阵2002i A i -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的奇异值分解和伪逆矩阵。

六、(10分)已知Hermite 二次型()1231113312233,,334f x x x x x ix x ix x x x x x =+-++,求酉变换X=UY ,并将其化成Hermite 二次型的标准型。

七、(10分)x =3上的向量范数?请说明理由。

八、(10分)已知()222000303te A t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求()()()22120,,x d A t dA t d A t dt dt dt dx -⎰。

九、(10分)已知,m m n n A B ⨯⨯∈∈,证明:,,A I A I B B A B A B e e I e I e e e e ⊗⊗⊕=⊗=⊗=⊗。

这里n m A B A I I B ⊕=⊗+⊗。

2013级矩阵分析期末试题B 卷一、(10分)求λ矩阵()()()32211A λλλλλλ⎡⎤⎢⎥=+⎢⎥⎢⎥+⎢⎥⎣⎦的初等因子组、Smith 标准型和各阶行列式因子。

二、(15分)已知211011013A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。

(1)求矩阵A 的Jordan 标准形和最小多项式;(2)求矩阵函数sin ,tAA e 。

矩阵分析第1章习题解

矩阵分析第1章习题解

第一章习题1、 试证:22R ⨯中的一组向量(矩阵)线性无关 1112212210010000,,,00001001E E E E ⎛⎫⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解:令1112123214220x E x E x E x E +++= 1234100000100000100010x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12340,0,0,0x x x x ⇔====2、 试证:所有n 阶对称矩阵组成(1)/2n n +维线性空间;所有n 阶反对称矩阵组成(1)/2n n -维线性空间。

解:所有n 阶对称矩阵组成维线性空间的基底是0000001,,();,(1,2,,)0,,i j ij ij jii i j j A a a a i j n i j ==⎧====⎨⎩其它共(1)/2n n +个。

3、 在4R 中,求向量(1,2,1,T α=在基1(1,1,1,1)T α=,2(1,1,1,1)Tα=--,3(1,1,1,1)T α=--,4(1,1,1,1)Tα=--下的坐标。

答: 化为解方程组 1 1 1 11 1 1 -1 -121 -1 1 -11 1 -1 -1 11X ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,用matlab 得 1.25000.2500 -0.2500 -0.2500 4、 在22R⨯中,求矩阵1203A ⎛⎫=⎪⎝⎭在 123411111110,,,11100000E E E E ⎛⎫⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭下的坐标。

解:11223344123412111111100311100000=+++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A x E x E x E x E x x x x转化为线性方程,再求解即可。

>> E=[1 1 1 1;1 1 1 0;1 1 0 0;1 0 0 0] E =1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0>> A=[1 2 0 3] A =1 2 0 3>> z=E'\A' z = 3 -3 2 -15、 试证:在22R ⨯中矩阵123411111110,,,11011011E E E E ⎛⎫⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭线性无关,并求ab cd α⎛⎫=⎪⎝⎭在基1234,,,E E E E 下的坐标。

线性代数北京理工大学出版社习题集解答

线性代数北京理工大学出版社习题集解答

第一章行列式学习要求1.理解二阶与三阶行列式的概念,熟悉掌握二阶与三阶行列式的计算方法,会求二元、三元一次线性方程组的解:2.理解斤级全排列、逆序数的概念和排列的奇偶性;3.理解〃阶行列式的概念和刃阶行列式的等价定义,会用行列式的定义计算对角、三角行列式和一些简单的特殊的”阶行列式;4.掌握行列式的基本性质,会利用“化三角形”方法计算行列式;5.理解余子式、代数余子式的概念,掌握行列式按行(列)展开定理,会用降阶法计算行列式;6.掌握克莱姆法则,了解未知量个数与方程个数相同的方程组解的判定定理,会运用克莱姆法则讨论齐次线性方程组的解.§ 1.1二阶与三阶行列式1.计算二阶行列式:•X — ] 1 r 、r(5) , , =(x-l)(x: + x+l)-x2 = x3 -x2 -1;x~ x- +x + l2.计算三阶行列式:1 0 -1(2) 3 5 0 =5 + 0 + (-12)-0-0-0 = -7;0 4 1x 3 43.求解方程D= _1 x 0=0.0 X 1x 3 4解由一1 x 0 = x2 -4x+ 3 = (x- l)(x-3) = 0,故原方程的解为x = liiJU = 3.0 x 14.用行列式解下列方程组:6= 33 =-3 + 12 = 9,故所求的方程组有唯一解:再=7,匕=9・--4 -1・11 =一2 + 2-2 + 1 + 1-8 = -8工0,2x 26.当x 取何值时,1 x1 2x2 3 由 1 X 3 =3X-9X +6 = 3(X -1)(X -2)H O,解得XH1 且心 2.12 3§1-3 〃阶行列式的定义1. 写出四阶行列式中含有因子a 22a 54的项.解 利用〃阶行列式的定义来求解•行列式的阶数是四,每一项都要有4个元素相乘,题目已给出了两个已知因子,那么还有两个元素还未写出,由于因子①屮汩的行标已经取了2, 3,列标取2, 4,所以剩下因子的行标只能取1, 4,列标只能取1, 3,因此未写出的因 子为勺厲3和d/y 又因为r(1243) = l , “3241) = 4 ,所以四阶行列式中含有因子a 22a 54的 项为(i)W 匕內20,43 和(-1)^3241)«13«22^34^41 '即一坷1如他4。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

北京理工大学出版社矩阵分析习题解答[1]

2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。

(1)证明在上述定义下,n C 是酉空间;(2)写出n C 中的Canchy -Schwarz 不等式。

(1)证明:),(αβ=HA αβ=HHA )(βα=HA βα ,(βα,k )=),(βαβαk A k H=),(),()(),(γβγαγβγαγβαγβα+=+=+=+HHHA A AHA αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知c n是酉空间。

証毕。

(2)解: ∑∑==njnij ijiHy ax A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==njnij ij i y a y ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤njnij ij i njninjnij ijij ijiy a y x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=0000201于是ε1=(0,1,0)T 是A 的特征向量。

选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---52830631取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。

当λ=-1时,可得|λE- A 1|=21,于是,α1=( --52,51)T 是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152-,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。

矩阵分析所有习题及标准答案


证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1 =((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
注:可以不证 AA*=E; (E-(T+iS))(E+(T+iS))=(E+(T+iS))(E-(T+iS)) =(E+T+iS)(E-T-iS)
#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P*)-1BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,和det(A-1-B)=0的根全为实数(见例 3.9.1的相关证明)
习题3-13
#3-13:若AHnn,A2=A,则存在UUnn使得 U*AU=diag(Er,0),r=rank(A).
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. ∵ A2=A 和 A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U* ∴ i2=i,即i{0,1},i=1,…,n,. 取1,…,n的排列使特征值0全排在后面,则(*) 式即给出所需答案.

矩阵分析_第三章 北京理工大学


(4) ( , ki i ) ki ( , i )
i 1 i 1
t
酉空间的性质:
(1) ( , k ) k ( , ), (k , ) k ( , ) (2) ( , ) ( , ) ( , ) (3) ( ki i , ) ki ( i , )

b
2
a
f ( x) d ( x)

b
2
a
g ( x) d ( x)
定义:设 V 为欧氏空间,两个非零向量 , 的夹角定义为
, : arccos
于是有
( , )

2
0 ,

定理:
,

2
( , ) 0
因此我们引入下面的概念; 定义:在酉空间 V 中,如果 称 与 正交。
(1) ( , ) ( , ) (2) (k , ) k ( , ) (3) ( , ) ( , ) ( , ) (4) ( , ) 0
k 这里 , , 是 V 中任意向量, 为任意复数
,只有当 0 时 ( , ) 0 ,我们称带有 这样内积的 n 维线性空间 V 为酉空间。 欧氏空间与酉空间通称为内积空间。
1 2i 3i 6 1 2i (2) 9 1 i 3i 1 i 7
1 2i 3i 1 2i 3i 6 6 1 2i 1 2i 9 1 i 9 1 i 3i 1 i 7 3i 1 i 7
n
2
维线性空间
n n
酉空间。
内积空间的基本性质:
欧氏空间的性质:

北京理工大学出版社矩阵分析习题解答

2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。

(1)证明在上述定义下,nC 是酉空间;(2)写出nC 中的Canchy -Schwarz 不等式。

(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。

証毕。

(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=000000201于是ε1=(0,1,0)T是A 的特征向量。

选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---520830631 取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。

当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,51)T是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152 -,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。

(1)证明在上述定义下,nC 是酉空间;(2)写出nC 中的Canchy -Schwarz 不等式。

(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。

証毕。

(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=000000201于是ε1=(0,1,0)T是A 的特征向量。

选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---520830631 取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。

当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,51)T是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152 -,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。

证明:令1)(),(---=++=iS T E C iS T E B ,BC iS T E iS T E A =--++=))((,==A BC A A **)(1**1**))(()())((----++++--=iS T E iS T E iS T E iS T E A B C ,又S ,T 分别是实对称矩阵和反实对称矩阵,即有T T S S -==**,,则有,)()())((**1**iS T E iS T E iS T E A B C ++++--=-111))()(()()(-----++--++=--iS T E iS T E iS T E iS T E iS T E ,因为))((iS T E iS T E ++--))((iS T E iS T E --++=显然有E A A =*,同理可得E AA =*,即E AA A A ==**,即证。

3-12 设A 、B 均是正规矩阵,试证:A 与B 酉相似的充要条件是A 与B 的特征值相同。

证明:(1)必要性:因为A ,B 是正规矩阵,所以存在n n U U ⨯∈1使得=1*1AU U),,,(21n diag λλλ ,存在n n U U ⨯∈2使得),,,(''2'12*2n diag BU U λλλ =又因为A 酉相似于B ,所以存在nn UU ⨯∈,使得AU U B *=所以)()(2*22**22*2UU A UU AUU U U BU U ==又因为nn UU ⨯∈n n U U ⨯∈2,所以),,(212*22n n n diag BU U U UU λλλ =⇒∈⨯可记为:n n λλλλλλ==='2'21'1,,, 即A 与B 特征值相同。

(2)充分性:存在n n U U ⨯∈1使得=1*1AU U ),,,(21n diag λλλ ,存在n n U U ⨯∈2使得===⇒=----121*112*12211*2212*2)(),,,()(),,,(U AU U U U diag U B diag BU U n n λλλλλλ )()(121*121--U U A U U 因为n n n n U U U U ⨯-⨯∈∈121,所以n n U U U ⨯-∈121即A 酉相似于B 。

3-13设A 是Hermite 矩阵,且A A =2,则存在酉矩阵U ,使得⎥⎦⎤⎢⎣⎡=000*r E AU U 证明: A 是Hermite 矩阵,则存在mm UU ⨯∈,使得U1-AU=diag (1`λ,2λ,……n λ)则A=()HU 1-⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤n λλλ21()1-U ,由2A =A 可得A 2=()HU 1-⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤n λλλ21()1-U =()H U 1-⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤n λλλ21()1-U =()H U 1-⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤n λλλ21()1-U ⇒ 121λλ=, ……,n n λλ=2,从而可知0,1是A 的特征值,取(){}00,0,11,1,1 =A σ,得出U 1-AU=⎢⎣⎡⎥⎦⎤000r E ,题目得证。

3-14设A 是Hermite 矩阵,且E A =2,则存在酉矩阵U ,使得⎥⎦⎤⎢⎣⎡-=-r n r E E AU U 00*。

证明:A 是Hermite 矩阵,则存在mm U U ⨯∈,使得=⇒=-2211),,,(A diag AU U nλλλE U U n r =⎪⎪⎪⎪⎪⎭⎫⎝⎛*2221λλλ 则122221====n λλλ ,则-1和1为A 的特征值,可记121===r λλλ , 11-==+n r λλ ,即有U H AU=⎥⎦⎤⎢⎣⎡--r n r E E 题目得证。

3-16设A ,B 均是Hermite 矩阵,且A 正定,试证:AB 与BA 的特征值都是实数。

证明:令2/1A P =,显然P 为Hermite 矩阵而且正定唯一,A 正定⇒A 的特征值全大于0。

所以A 可逆,P可逆2/12/12/12/12/12/1~--==BAA A BA A ABA AAB ;所以AB 与BA 相似BA AB ~,则AB 与BA 的特征值相同)()(BA AB λλ=,2/12/1*2/12/1BA A BA A =)(,2/12/1BA A 也为H 矩阵⇒2/12/1BA A 的特征值为实数,BA BA A AB ~~2/12/1,所以AB ,BA 的特征值都是实数3-19设A 是正定Hermite 矩阵,且A ∈U nn ⨯,则A=E 。

证明:由E A A UA nn =⇒∈⨯*,A A H A n n =⇒∈⨯*,所以E A =2,由题3-14可知,A 的特征值为1=i λ又A 是正定的,所以A 的特征值全部为1,则存在E AU U U U n n =⇒∈⨯*所以可得E UEU A ==* 即证。

3-20 试证:(1)两个半正定Hermite 矩阵之和是半正定的;(2)半正定Hermite 矩阵与正定Hermite 矩阵之和是正定的。

证明:(1)令A ,B 为半正定Hermite 矩阵,则存在nC x ∈,使得,0,0**≥≥Bx x Ax x 又由Hermite 矩阵的简单性质,)(B A +为Hermite 矩阵,且存在nC x ∈,使得0)(***≥+=+Bx x Ax x x B A x ;则B A +为半正定Hermite 矩阵。

(2)令A 为半正定Hermite 矩阵,B 为正定Hermite 矩阵,则有nC x ∈,使得,0,0**>≥Bx x Ax x 又由Hermite 矩阵的简单性质,)(B A +为Hermite 矩阵,且存在nC x ∈,使得0)(***>+=+Bx x Ax x x B A x ;则B A +为正定Hermite 矩阵。

3-22设A ,B 是n 阶正规矩阵,试证:A 与B 相似的充要条件是A 与B 酉相似。

证明:充公条件:因为A ,B 是n 阶正规矩阵,则存在,n n U U⨯∈n n U V ⨯∈,使得),,,(,),,,(21*21*n n diag BV V diag AU U μμμλλλ ==,其中n λλλ,,,21 ;n μμμ,,,21 分别是A 与B 的特征值。

又因为A 与B 相似,所以其对应的特征值相同。

则有B AUV U V BV V AU U =⇒=--1*1***)(。

令1-=UV W ,则B AW W =*,因为U 、V 是酉矩阵,则W 也是酉矩阵。

所以A 与B 酉相似。

必要条件:因为A 与B 酉相似,则∃,n n U U⨯∈使得B AU U =*,又由于,nn U U ⨯∈ 则E U U =*⇒ 1-*=U U B AU U AU U ==⇒-1*,因而A 与B 相似。

3-23 设A H=A ,试证总存在t>0,使得A+tE 是正定Hermite 矩阵,A-tE 是负定Hermite 矩阵。

证明:H 1Rt t>0min t>0t>0Hermite H H A A A A A λλλλ=∴∈∴∃∴∃ ()的特征值(A )又A+tE 的特征值(A+tE )=(A )+总使得(A )+又有(A+tE )=+tE =+tE总使得A+tE 为正定矩阵H2Rtt>0min t<0t>0Hermite H H A A A A A λλλλ=∴∈∴∃∴∃ ()的特征值(A )又A -tE 的特征值(A -tE )=(A )-总使得(A )-又有(A-tE )=-tE =-tE总使得A-tE 为负定矩阵3-26 设A 为n 阶正规矩阵,λ1,λ2,…λn 为A 的特征值,试证:A HA 的特征值为|λ1|2,|λ2|2,…|λn |2。

证明:n 12n H 12n H H12n H H H 12n 12n 222H12n 222H H 12n 2H 12n U U U AU diag A=Udiag U A Udiag U A A=Udiag U Udiag U Udiag U U A A U diag A A A λλλλλλλλλλλλλλλλλλλλλλλ∴∃∈∴∴∴ 为阶正规矩阵,使得=(,)(,)=(,)(,)(,)=(,)()=(,)即的特征值为,22n λ 。

相关文档
最新文档