非参数回归模型与半参数回归模型Word版

合集下载

金融计量经济第九讲无参数与半参数模型

金融计量经济第九讲无参数与半参数模型

一、无参数回归模型
• 设随机变量Y是被解释变量,p维向量X是解释 变量,它既可以是确定性的也可以是随机性的。 在无参数模型中,Y相对于X的回归函数可写成:
m( x ) = E (Y | X = x ) (6.1)
• (6.1)可以看成是条件回归函数,也就是X=x 时,用m(x)来表示Y的均值。如果x取不同的样 m 本(n组), (x) 实际上就是一个n维向量。 n {( X i , Yi )}下, • 无参数回归模型就是要在给定样本 i =1 m(x) 得到条件回归函数 (向量)的一个估计向 ˆ m( x ) 量 。
ቤተ መጻሕፍቲ ባይዱ
无参数回归模型的一般形式
• 一般的无参数模型可写成
Yi = m( X i ) + ε i
i = 1, L , n (6.2)
{ε i }in=1是相互独立、均值为0、方差为 • 其中
的序列 (白噪声)。 • 无参数回归模型的估计方法有三大类,一 是权函数方法,二是最小二乘估计,三是 稳健估计 ,权函数方法是最常用的一种。
n ~ g ( Z) = ∑ Wni (Z)Yi = ∑ Wni (Z)( y i − X i β * ) * i =1 i =1 n
由前面方法我们已知,W的求法与X、Y无关。
g * ( Z ) ,代入最初的模型,有: • 根据得到的
yi = X i β + g * ( Z i ) + u * i
金融计量经济第六讲
无参数与半参数模型
传统的参数函数模型与无参数模型的区别
• 传统的参数函数模型首先根据经济理论和样本数 据设定模型具体的函数关系 (如线性\对数线性等), 再利用样本数据估计关系参数并检验所设定的关 系 ,这是我们前面几块内容。实际上,参数函数 模型最关键的技术是如何求参数估计值(方法、 效果检验); • 无参数模型对变量之间具体的函数关系 没有要求, 解释变量和被解释变量的分布也很少限制,回归 的终极目的也不是为了求一个“好的”参数估计 值,而是直接求被解释变量的样本函数值。 • 简单地说,无参数估计实际上是一种特殊的加权 平均。

非参数回归模型资料

非参数回归模型资料

非参数回归模型非参数回归模型非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。

它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。

它不需要先验知识,只需要有足够的历史数据即可。

它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。

该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。

非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。

尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。

并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。

能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。

随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。

非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为:()()∑==n i i i i n Y X W X g 1其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。

由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。

K 近邻法Friedman 于1977年提出了K 近邻法。

其并不是让所有的数据都参与预测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。

可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下:Wki(X:X1,...,Xn)=ki,i=1,..,n将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为:()()()()K t V t V g t V K i i ∑=+==+111 其中,K 为所选取最邻近元素的个数,取值大小依赖于数据。

(整理)第七章非参数回归模型与半参数回归模型

(整理)第七章非参数回归模型与半参数回归模型

第七章 非参数回归模型与半参数回归模型第一节 非参数回归与权函数法一、非参数回归概念前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。

参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。

另一类回归,非参数回归,则与参数回归正好相反。

它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。

设Y 是一维观测随机向量,X 是m 维随机自变量。

在第四章我们曾引进过条件期望作回归函数,即称g (X ) = E (Y |X ) (7.1.1)为Y 对X 的回归函数。

我们证明了这样的回归函数可使误差平方和最小,即22)]([min )]|([X L Y E X Y E Y E L-=-(7.1.2)这里L 是关于X 的一切函数类。

当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。

细心的读者会在这里立即提出一个问题。

既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。

实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。

正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。

在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。

所以我们知道,参数回归与非参数回归的区分是相对的。

用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。

二、权函数方法非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。

这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。

也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式:∑==ni i i n Y X W X g 1)()((7.1.3)其中{W i (X )}称为权函数。

非参数回归的介绍

非参数回归的介绍

非参数回归的介绍非参数回归是一种机器学习方法,用于建立数据之间的关系模型,而不依赖于预设模型的形式。

与传统的线性回归相比,非参数回归不对模型的形状施加任何限制,而是根据数据本身的分布情况来估计模型。

这使得非参数回归能够更好地适应各种类型的数据,包括非线性、非正态分布等等。

非参数回归的核心思想是基于样本数据的分布情况来估计目标函数。

传统的线性回归假设目标函数是线性的,并且通过最小二乘法来拟合数据和估计参数。

然而,这种假设可能无法满足真实世界中复杂的非线性关系,因此非参数回归通过灵活的模型拟合方法来解决这个问题。

在非参数回归中,我们通常使用核函数来逼近目标函数。

核函数是一个局部加权回归方法,它将目标函数估计为一些核函数在样本点附近的加权线性组合。

核函数的具体形式可以是高斯核、三角核、Epanechnikov核等。

这些核函数都有一个特点,即在样本点附近有较高的权重,而在样本点远离的地方权重则较低。

另一个非参数回归的优点是它不需要预先假设数据的分布。

线性回归通常假设数据是正态分布的,但在现实中往往无法满足这个假设。

非参数回归可以通过直接根据数据本身的分布情况进行估计,而不需要预设模型的形式。

这使得非参数回归更对真实数据的特点进行建模。

非参数回归还经常用于探索性数据分析和模型评估。

通过非参数回归,我们可以揭示变量之间的复杂关系,获得对目标函数的更深入的理解。

此外,在模型评估中,非参数回归可以用作基准模型,以便与其他模型进行比较和评估。

然而,非参数回归也存在一些局限性。

首先,非参数回归可能需要大量的计算资源,特别是对于大规模的数据集来说。

由于没有预设模型的形式,非参数回归需要在整个数据集上进行计算以估计模型参数,这在计算上是非常昂贵的。

此外,由于非参数回归没有对模型进行约束,可能容易出现过拟合问题。

为了解决这些问题,可以采取一些方法来提高非参数回归的性能。

一种方法是将非参数回归与其他技术结合使用,例如局部加权回归、岭回归等。

非参数回归的介绍

非参数回归的介绍

X
x
xn x
Y1 Y 2 Y Y n
20
局部回归
得到加权最小二乘估计
L P E T 1 T ˆ ˆ m ( xX ) ( xX ) ( X W X ) X W Y h x x xxx xx
s i
s i 1
G-M估计是卷积形式的估计,P-C估计可看成G-M估计的近似: 当K连续 x (si1, si )
P C ˆ( ˆ m x ) Y ( s s )( K x xm ) ( x ) i i i 1h h i 1 G M h n
12
局部回归
核估计存在边界效应,边界点的估计偏差较大, 以N-W估计为例,如下图
i 1
n
ii
tr(L) 为有效自由度
8
光滑参数的选取
其他标准 (1)直接插入法(Direct Plug-In , DPI) (2)罚函数法(penalizing function)
(3)单边交叉验证(One Sided Cross Validation,OSCV) (4)拇指规则(Rule Of Thumb)
使上式最小化可以得到系数的估计120得到加权最小二乘估计1可以看到局部线性回归的渐近方差和nw估计相同而渐近偏差却比nw回归小说明局部线性多项式可以减少边界效应局部线性估计由于nw估计21局部多项式光滑可以很好的减少边界效应22检验函数doppler函数2123使用gcv选取最优带宽h0017权函数为tricube核函数24使用gcv选取最优带宽h0017权函数为tricube核函数253
非参数回归简介
A brief introduction to nonparametric regression

非参数回归分析

非参数回归分析

非参数回归分析非参数回归分析是一种无需对数据分布做出假设的统计方法,它通过学习数据的内在结构来建立模型。

与传统的参数回归分析相比,非参数回归分析更加灵活,适用于各种复杂的数据分布。

本文将介绍非参数回归分析的基本原理和应用场景,并通过实例来说明其实际应用。

一、非参数回归分析的原理非参数回归分析是通过将目标变量与自变量之间的关系建模为一个未知的、非线性的函数形式,并通过样本数据来估计这个函数。

与参数回归分析不同的是,非参数回归模型不需要表示目标变量与自变量之间的具体函数形式,而是通过样本数据来学习函数的结构和特征。

在非参数回归分析中,最常用的方法是核密度估计和局部加权回归。

核密度估计使用核函数对数据进行平滑处理,从而得到目标变量在不同自变量取值处的概率密度估计。

局部加权回归则是通过在拟合过程中给予靠近目标变量较近的样本点更大的权重,从而对目标变量与自变量之间的关系进行拟合。

二、非参数回归分析的应用场景1. 数据分布未知或复杂的情况下,非参数回归分析可以灵活地适应不同的数据分布,从而得到较为准确的模型。

2. 非线性关系的建模,非参数回归分析可以对目标变量与自变量之间的非线性关系进行拟合,从而获得更准确的预测结果。

3. 数据量较小或样本信息有限的情况下,非参数回归分析不需要对数据分布做出假设,并且可以通过样本数据来学习模型的结构,因此对数据量较小的情况下也具有一定的优势。

三、非参数回归分析的实际应用为了更好地理解非参数回归分析的实际应用,以下通过一个实例来说明。

假设我们有一组汽车销售数据,包括了汽车的价格和其对应的里程数。

我们希望通过这些数据预测汽车的价格与里程数之间的关系。

首先,我们可以使用核密度估计方法来估计汽车价格与里程数之间的概率密度关系。

通过对价格和里程数进行核密度估计,我们可以得到一个二维概率密度图,显示了不同价格和里程数组合的概率密度。

接下来,我们可以使用局部加权回归方法来拟合汽车价格与里程数之间的关系。

非参数回归方法

非参数回归方法

非参数回归方法非参数回归是一种灵活的建模技术,它不依赖于对数据分布的假设,因此适用于各种类型的数据分析问题。

本文将介绍非参数回归的基本原理和常用方法,包括局部线性回归、核回归和样条回归等。

1. 非参数回归的基本原理非参数回归可以看作是对自变量与因变量之间的关系进行拟合的过程,而不需要对关系的具体形式进行假设。

与参数回归不同,非参数回归方法不直接对某个函数形式进行建模,而是通过对数据进行适当的拟合,从中获取自变量与因变量之间的关系。

2. 局部线性回归局部线性回归是一种常用的非参数回归方法,它假设在自变量附近的小区域内,自变量与因变量之间的关系可以近似为线性关系。

具体而言,局部线性回归通过在每个数据点附近拟合一个线性模型来进行预测。

这种方法可以有效地捕捉到数据的非线性关系。

3. 核回归核回归是另一种常见的非参数回归方法,它利用核函数对自变量进行加权来进行拟合。

核函数通常具有类似正态分布的形状,在自变量附近的数据点被赋予更大的权重,而离自变量远的数据点则被赋予较小的权重。

核回归可以灵活地适应不同的数据分布和关系形式。

4. 样条回归样条回归是一种基于样条函数的非参数回归方法,它将自变量的取值范围划分为若干个区间,并在每个区间内拟合一个多项式函数。

样条函数的拟合可以采用不同的方法,例如样条插值和样条平滑等。

样条回归能够更精确地捕捉到数据中的非线性关系。

5. 非参数回归的优势和应用领域与参数回归相比,非参数回归具有更高的灵活性和鲁棒性。

非参数回归方法不依赖于对数据分布和关系形式的假设,适用于各种类型的数据分析问题。

非参数回归广泛应用于经济学、统计学、金融学等领域,用于探索变量之间的关系、预测未知观测值等。

结论非参数回归方法是一种适用于各种类型数据分析问题的灵活建模技术。

本文介绍了非参数回归的基本原理和常用方法,包括局部线性回归、核回归和样条回归等。

非参数回归方法能够更准确地捕捉数据中的非线性关系,具有更高的适应性和鲁棒性。

非参数回归模型及半参数回归模型

非参数回归模型及半参数回归模型

非参数回归模型及半参数回归模型非参数回归模型是一种可以适应任意数据分布的回归方法。

在非参数回归中,不对模型的具体形式进行假设,而是利用样本数据去估计未知的函数形式。

这个函数形式可以用其中一种核函数进行近似,通过核函数的变换,使得样本点在空间中有一定的波动,从而将研究对象与有关因素的关系表达出来。

常见的非参数回归模型有局部加权回归(LOESS)和核回归模型。

局部加权回归是一种常见的非参数回归方法。

它通过给样本中的每个点分配不同的权重来拟合回归曲线。

每个点的权重根据其距离目标点的远近来确定,越近的点权重越大,越远的点权重越小。

这种方法在回归分析中可以较好地处理非线性关系和异方差性问题。

核回归模型是另一种常见的非参数回归方法。

它基于核函数的变换,通过将样本点的权重表示为核函数在目标点的取值,来拟合回归曲线。

核函数通常具有对称性和非负性的特点,常用的核函数有高斯核、Epanechikov核和三角核等。

核回归模型在处理非线性关系和异方差性问题时也具有较好的性能。

相比之下,半参数回归模型是在非参数回归的基础上引入一些参数的回归模型。

它假设一些参数具有一定的形式,并利用样本数据进行估计。

半参数模型可以更好地描述数据之间的关系,同时也可以提供关于参数的统计推断。

半参数回归模型有很多不同的形式,其中一个常见的半参数回归模型是广义加性模型(GAM)。

广义加性模型是通过将各个变量的函数关系进行加总,构建整体的回归模型。

这些函数关系可以是线性的也可以是非线性的,可以是参数化的也可以是非参数化的。

广义加性模型在回归分析中可以同时考虑到线性和非线性关系,广泛应用于各个领域。

在实际应用中,选择使用非参数回归模型还是半参数回归模型需要根据具体情况来决定。

非参数回归模型适用于对数据分布没有先验假设,并且希望对数据进行较为灵活的建模的情况。

半参数回归模型适用于对一些参数有一定假设的情况,可以更好地描述数据之间的关系,并提供统计推断的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 非参数回归模型与半参数回归模型第一节 非参数回归与权函数法一、非参数回归概念前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。

参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。

另一类回归,非参数回归,则与参数回归正好相反。

它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。

设Y 是一维观测随机向量,X 是m 维随机自变量。

在第四章我们曾引进过条件期望作回归函数,即称g (X ) = E (Y |X ) (7.1.1)为Y 对X 的回归函数。

我们证明了这样的回归函数可使误差平方和最小,即22)]([min )]|([X L Y E X Y E Y E L-=-(7.1.2)这里L 是关于X 的一切函数类。

当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。

细心的读者会在这里立即提出一个问题。

既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。

实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。

正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。

在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。

所以我们知道,参数回归与非参数回归的区分是相对的。

用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。

二、权函数方法非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。

这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。

也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式:∑==ni i i n Y X W X g 1)()((7.1.3)其中{W i (X )}称为权函数。

这个表达式表明,g n (X )总是Y i 的线性组合,一个Y i 对应个W i 。

不过W i 与X i 倒没有对应关系,W i 如何生成,也许不仅与X i 有关,而且可能与全体的{X i }或部分的{X i }有关,要视具体函数而定,所以W i (X )写得更仔细一点应该是W i (X ;X 1,…,X n )。

这个权函数形式实际也包括了线性回归。

如果i i i X Y εβ+'=,则Y X X X X X ii '''='-1)(ˆβ,也是Y i 的线性组合。

在一般实际问题中,权函数都满足下述条件:1),,;(,0),,;(111=≥∑=n ni i n i X X X W X X X W(7.1.4)如果考虑在第五章介绍的配方回归与评估模型曾有类似条件,不妨称之为配方条件,并称满足配方条件的权函数为概率权。

下面我们结合具体回归函数看权函数的具体形式。

1.核函数法选定R m 空间上的核函数K ,一般取概率密度。

如果取正交多项式则可能不满足配方条件。

然后令∑=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=n i n in in i a X X aX X K X X X W 11/),,;( (7.1.5)显然∑==ni iW11。

此时回归函数就是i ni nj n i n i n i i i Y a X X K a X X K Y X W X g Y ∑∑∑===⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-===111)()((7.1.6)2.最近邻函数法首先引进一个距离函数,用来衡量R m 空间中两点u = (u 1,…,u m ) 和v = (v 1,…,v m ) 的距离‖u -v ‖。

可以选欧氏距离∑=-=-ni i iuu 122)(||||υυ,也可以选||||max ||||1i i ni u u υυ-=-≤≤。

为了反映各分量的重要程度,可以引进权因子C 1,…,C n ,使{C i }也满足配方条件。

然后将距离函数改进为∑=-=-ni i i i u C u 122)(||||υυ(7.1.7) ||max |||12i i i ni u C u υυ-=-≤≤(7.1.8)现在设有了样本(Y i ,X i ),i =1,…,n ,并指定空间中之任一点X ,我们来估计回归函数在该点的值g (X )。

将X 1,…,X n 按在所选距离‖·‖意义下与X 接近的程度排序:||||||||||||21X X X X X X n k k k -<<-<-(7.1.9)这表示点1k X 与X 距离最近,就赋以权函数k 1;与X 距离次近的2k X 就赋予权函数k 2。

…,等等。

这里的n 个权函数k 1,…,k n 也满足配方条件,并且按从大到小排序,即∑==>≥≥≥ni i n k k k k 1211 ,0(7.1.10)就是n i k X X X W i n k i ,,1 ,),,;(1 ==(7.1.11)若在{‖X i -X ‖, i =1,…,n }中有相等的,可将这n 个相等的应该赋有的权取平均。

比如若前两名相等,‖X 1-X ‖=‖X 2-X ‖, 就令W 1 = W 2=)(2121k k +。

这样最近邻回归函数就是∑∑∑=======ni ni ni i i i i i n i Y X k Y k Y X X X W X g Y 1111)(),,;()((7.1.12)k i 尽管是n 个常数,事先已选好,但到底排列次序如何与X 有关,故可记为k i (X )。

三、权函数估计的矩相合性首先解释矩相合性的概念。

如果对样本 (Y i ,X i ),i =1,…,n 构造了权函数W i = W i (X )=W I (X ;X 1,…,X n ),有了回归函数g (X )的权函数估计∑==ni ii n YW X g 1)(,当Y 的r 阶矩存在(E |Y |r <∞)时,若0|)()(|lim =-∞→r n n X g X g E(7.1.13)则称这样的权函数为矩相合的权函数。

在什么样的条件下构造的权函数是矩相合的呢? Stone(1977)提出了很一般的,几乎是充分必要的条件。

下面我们考虑其充分性条件,并限于考虑概率权。

定理7.1.1 设概率权{W i }满足下述条件: (1)存在有限常数C ,使对R m 上任何非负可测函数(连续函数与分段连续函数是最常见的可测函数)f , 必有)()(1X CEf X f W E n i i i ≤⎪⎭⎫⎝⎛∑= (7.1.14)(2)∀ε>0, 当n →∞时,01)||(||−→−∑=≥-Pni X X i i IW ε(7.1.15)(3)当n →∞时,0max 1−→−≤≤Pi ni W (7.1.16)则{W i }是矩相合的权函数。

定理条件可以作一些直观解释。

条件(1)可以作如下理解,因为权函数是概率权,必有|W i |<1,i =1,…,n 。

于是∑∑∑∑=====≤≤⎪⎭⎫⎝⎛n i n i ni i i i i n i i i X f E X f E X f W E X f W E 1111)()()()((7.1.17)这里取的是C =1。

因此条件(1)可以说不叫做一个条件。

条件(2)是说,与X 的距离超过一定值的那些X i ,对应算出来的权函数之和很小,也就是说,权函数的值主要取决于那些与X 邻近的X i 的值。

这个条件合理。

条件(3)是说,当n 越来越大时,各个权系数将越来越小,这也是合理的要求。

在证明本定理之前,先证两个引理。

引理7.1.1 设概率权函数{W i }适合定理7.1.1的条件(1)及(2),又对某个r , E |f (X )|r <∞,则0)()()(lim 1=⎪⎭⎫⎝⎛-∑=∞→r i n i i n X f X f X W E (7.1.18)证明 先设f 在R m 上有界且一致连续,则任给η>0,存在ε>0,当‖u -v ‖≤ε时,|f (u )-f (v )|≤(η/2)1/r 。

于是εη>-==∑∑+≤-)(||11)()2(2)()()(X X ni irrini ii IX W M X f Xf X W (7.1.19)其中)(sup X f M X=,此处X 表示具体取值。

由条件(2),上式右边第二项依概率收敛于0且不大于1。

依控制收敛定理有0)(lim 1)(||=⎪⎭⎫⎝⎛∑=>-∞→n i X X i n i I X W E ε (7.1.20)故存在n 0,使当n ≥n 0时,有2)(1)(||ηε≤⎪⎭⎫ ⎝⎛∑=>-n i X X i i I X W E(7.1.21)因此当n ≥n 0时,有η≤⎪⎭⎫⎝⎛-∑=n i r i i X f X f X W E 1|)()(|)((7.1.22)于是对这种一致连续的f ,引理得证。

证毕对一般的函数f ,取一个在R m 上连续,且在一有界域之外为0的函数f ~,使∞<2)(~X f E ,且η<-r X f X f E )(~)(,这里η是事先指定的。

因为⎭⎬⎫⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎩⎨⎧⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛-∑∑∑∑===-=r ni i r i i ni i r i ni i r r i n i i X f X f X W E X f X f X W E X f X f X W X f X f X W E |)()(~|)(|)()(~|)( |)(~)(|)(3)()()(11111 (7.1.23)右边括号里第三项等于η<-r X f X f E )()(~;第一项根据条件(1)不超过ηC X f X f CE r <-)()(~;因为f ~在R m 上有界且一致连续,由前面已证结果知当n →∞时,第二项将趋于0。

因此η)1(3|)()(|)(lim 11+≤⎪⎭⎫⎝⎛--=∞→∑C X f X f X W E r r i n i i n (7.1.24) η是任意的,故引理得证。

证毕引理7.1.2 设{W i }为满足定理7.1.1三个条件的概率权,函数f 非负且∞<)(X Ef ,则0)()(lim 12=⎪⎭⎫⎝⎛∑=∞→i n i i n X f X W E (7.1.25)证明 定义一组新的概率权函数2i i W W =',由于0≤W i ≤1, 故0≤i W '≤1。

相关文档
最新文档