2018届高三理科数学一轮复习试题选编2:函数的定义域与值域、解析式及图像(学生版)

2018届高三理科数学一轮复习试题选编2:函数的定义域与值域、解析式及图像(学生版)
2018届高三理科数学一轮复习试题选编2:函数的定义域与值域、解析式及图像(学生版)

2014届高三理科数学一轮复习试题选编2:函数的定义域与值域、解析式及图像

一、选择题

1 .(北京四中2013届高三上学期期中测验数学(理)试题)函数的定义域为 ( )

A .

B .

C .

D .

2 .(北京市海淀区2013届高三上学期期中练习数学(理)试题)已知函数

1,0,

()1,0,

x f x x -

≥?则不等式(1)1xf x -≤的解集为

( )

A .[1,)-+∞

B .(,1]-∞

C .[1,2]

D .[1,1]-

3 .(2013广东高考数学(文))函数

lg(1)

()1

x f x x +=

-的定义域是

( )

A .(1,)-+∞

B .[1,)-+∞

C .(1,1)(1,)-+∞U

D .[1,1)(1,)-+∞U

4 .(2012年高考(山东文))函数21

()4ln(1)

f x x x =

+-+的定义域为

( )

A .[2,0)(0,2]-U

B .(1,0)(0,2]-U

C .[2,2]-

D .(1,2]-

5 .(北京北师特学校203届高三第二次月考理科数学)函数21

y

x =-的定义域是(,1)[2,5)-∞U ,则其值域

( ) A .1(,0)(,2]2

-∞U B .(,2]-∞

C .1(,)[2,)2

-∞+∞U

D .(0,)+∞

6 .(北京北师特学校203届高三第二次月考理科数学)已知函数2

y ax bx c =++,如果a b c >>且

0a b c ++=,则它的图象可能是

7 .已知???>-≤-=0

,230,2)(2x x x x x f ,若ax x f ≥|)(|在]1,1[-∈x 上恒成立,则实数a 的取值范围是

( )

A .),0[]1,(+∞--∞Y

B .]0,1[-

C .]1,0[

D .)0,1[-

8 .(2013江西高考数学(理))

函数)y x =-的定义域为

( )

A .(0,1)

B .[0,1)

C .(01]

D .[0,1]

10.函数()2()log 6f x x =

-的定义域是

A {}|6x x >

B {}|36x x -<< {}|3x x >- D {}|36x x -<≤

11.(2012年广西北海市高中毕业班第一次质量检测数学(理)试题及答案)函数||x y =的定义域为A ,值域

为B ,若}1,0,1{-=A ,则B A I 为 ( )

A .}0{

B .}1{

C .}1,0{

D .}1,0,1{-

12.(2012年黔东南州第一次高考模拟考试试题(理))函数

mx x x f -+-=1|2|)(的图象总在x 轴的上方,

则实数m 的取值范围是

A .)21,1[-

B .)21,1(-

C .]21,1(-

D .]2

1

,1[-.

13.(浙江省温州中学2011学年第一学期期末考试高三数学试卷(文科)2012.1)函数)(x f =2012

2012

11x

x +-的值域是

( )

A .[-1,1]

B .(-1,1]

C .[-1,1)

D .(-1,1)

14.(2013届北京市高考压轴卷理科数学)已知函数9

()4(1)1

f x x x x =-+

>-+,当x=a 时,()f x 取得最小值,则在直角坐标系 中,函数1

1()()

x g x a

+=的大致图象为

15.(2013山东高考数学(文))

函数

()f x = ( )

A .(-3,0]

B .(-3,1] C

(,3)(3,0]

-∞--U

D .(,3)(3,1]-∞--U

16.(2011年高考(北京理))根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)

,

()x A f x x A

<=≥

(,A c 为常数),已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是

( )

A .75,25

B .75,16

C .60,25

D .60,16

17.(2013北京高考数学(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x

关于y 轴对称,则

f (x )= ( )

A .1

e

x +

B .1

e

x -

C .1

e

x -+

D .1

e

x --

18.(2012年高考(福建文))设1,()0,1,f x ???

=??-??0(0)(0)

x x x >=<,1,()0,g x ??=???()(x x 为有理数为无理数)

,则(())f g π的值为

( )

A .1

B .0

C .1-

D .π

19.若10,01a b -<<<<,则函数1

y b x a

=+

-的图象为

20.(2013重庆高考数学(文))函数21

log (2)

y

x =

-的定义域为

( )

A .(,2)-∞

B .(2,)+∞

C .(2,3)(3,)+∞U

D .(2,4)(4,)+∞U

21.(2013湖北高考数学(文))

小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶

时间加快速度行驶. 与以上事件吻合得最好的图象是

22.(2012北京市高考压轴卷)已知函数???><=,

,0,ln 0,)(x x x e x f x 则=)]1

([e f f

( )

A .

e

1

B .e

C .e

1-

D .e -

23.(2013陕西高考数学(理))设全集为R,

函数()f x =M, 则M R e为

( )

A .[-1,1]

B .(-1,1)

C .,1][1,)(∞-?+∞-

D .,1)(1,)(∞-?+∞-

二、填空题

24.(广东省执信中学2012届高三上学期期末考试数学理科试卷)规定符号“*”表示一种两个正实数之间

的运算,

即a b a b *=+,则函数()1f x x =*的值域是___________.

25.(吉林省实验中学2012届高三第六次模拟(数学文))设函数33,0()log ,0

x x f x x x ?≤=?>?,则

1

(())2

f f -=___________________.

26.(北京市朝阳区2013届高三上学期期中考试数学(理)试题)已知函数()y f x =

满足:(1)=f a (01a <≤),

且()1

,()1,()

(1)2(),()1,

f x f x f x f x f x f x -?>?

+=??≤?

则(2)=f _____________(用a 表示),若1

(3)=

(2)

f f ,则a =_____________.

27.(2012年高考(四川文))

函数()f x =

____________.(用区间表示) 28.(2013安徽高考数学(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01

x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.

29.函数221

23

x y x x -=--的值域为___________________.

30.(2013浙江高考数学(文))

已知函数()f x =

若()3f a =,则实数a = ____________.

31.(2013上海春季数学(理))函数2log (2)y x =+的定义域是_______________

北京市2014届高三理科数学一轮复习试题选编2:函数的定义域与值域、解析式及图像参考答案

一、选择题

1. D 【解析】要使函数有意义,则有23400x x x ?--+≥?≠?,即2+3400x x x ?-≤?≠?,解得41x -≤≤且0x ≠,选D.

2. D

3. C 由题意知10

10x x +>??

-≠?

,解得1x >-且1x ≠,所以定义域为()()1,11,-+∞U ;

4. 解析:要使函数

)(x f 有意义只需???≥-≠+0

40

)1ln(2

x x ,即???≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.

5. A 【解析】当

1x <时,10x -<,此时2

=

01

y x <-.当25x ≤<时,114x ≤-<,此时11

141

x <≤-,12221x <

≤-,即122y <≤,综上函数的值域为1(,0)(,2]2-∞U ,选A. 6. D 【解析】由

a b c >>且0a b c ++=,得0,0a c ><,所以抛物线开口向上,排除A,C.又

(0)0y f c ==<,所以排除B,选D.

7. B 提示:画出函数在]1,1[-∈x 的图像,然后画出过原点的直线ax y =,从图像上观察得到答案B.

8. B 解析:由0

0110x x x ≥??≤?

9. D 【解析】2

2

=66(3)3y x x x -+=--,所以对称轴为3x =,当343x +=-时,7

3

x =-

,所以要使互不相等的实数321,,x x x 满足)

()()(321x f x f x f ==,则有

1233()()()4

f x f x f x -<==<,不妨设

123

x x x <<,则有1703x -<<,233,2

x x +=,236x x +=,所以1237

663x x x -+<++<,即12311

63

x x x <++<,所以123x x x ++的 取值范围是11(,6)3

,选D,如图

10. D

11. C

12. A 本题考察数形结合及分类讨论思想,可分2

1-≥mx 恒成立的问题,结合图象即可;

13. B 14. B

【解析】9941+511y x x x x =-+

=+-++,因为1x >-,所以910,01

x x +>>+,所以由均值不等式

得91+

5511y x x =+-≥-=+,当且仅当911

x x +=+,即2(1)9x +=,所以13,2x x +==时取等号,所以

2a =,所以

11

11()()()

2

x x g x a ++==,又

1

1

11(),1

1()()

2

2

2,1x x x x g x x +++?≥-?==??<-?

,所以选B.

15. A 解析:

要使函数()f x =有意义,只须120

30x x ?-≥?+>?,解得30x -<≤,.答案:A. 16. 【答案】D

【命题立意】本题考查了一个分段函数的实际问题,注意弄清变量间的关系,以及使用解析式的前提条

件,利用函数与方程思想和分类讨论思想解答问题.

【解析】若4A ≤,

50=

15=无解.

若4A >,

30=

15=,解得60,16c A == ,所以选择D.

17. D 依题意,

()f x 向右平移一个单位之后得到的函数应该是x y e =,于是()f x 相当于x y e =向左平移

一个单位的结果,所以1

()x f x e

--=

18. 【答案】B

【解析】因为()0g π= 所以(())(0)0f g f π==. B 正确

19. B

20. C.[解析] 由题可知?

????x -2>0,

x -2≠1,所以x >2且x ≠3,故选C.

21. C 可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的

距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交

通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B. 故选C.

22. A 【解析】∵f (

1e )=1ln e =—1< 0; ∴=)]1([e f f f (—1)=11e e

-=.

23. D 解:),1()1,(],1,1[.11,0-12

∞--∞=-=≤≤-∴≥Y ΘM

R C M x x 即,所以选D 二、填空题

24. (1,)+∞; 25. 1

2

-

26. 2a

1

27. [答案](2

1-,∞)

[解析]由分母部分的1-2x>0,得到x∈(2

1-,∞).

[点评]定义域问题属于低档题,只要保证式子有意义即可,相对容易得分.常见考点有:分母不为0;偶次根下的式子大于等于0;对数函数的真数大于0;0的0次方没有意义.

28. (1)

()2

x x f x +=-

解:当10x -≤≤,则011x ≤+≤,故(1)(1)(11)(1)f x x x x x +=+--=-+ 又(1)2()f x f x +=,所以(1)

()2

x x f x +=-

29.解:(1)因为)31(32131≠-≠-+=--=

x x x x x y 且,故函数的值为1|1,,2y y y y R ??

≠≠∈????

30. 10 解由已知得到()31910f a a a ==∴-=∴=,所以填10;

31. (2,)-+∞

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

专题一:求函数值域十六法

求函数值域方法 求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题则是少得屈指可数。原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。本文谈一些求函数值域的方法,仅作抛砖引玉吧。 一、基本知识 1. 定义:因变量y 的取值范围叫做函数的值域(或函数值的集合)。 2. 函数值域常见的求解思路: ⑴.划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵.反解函数,将自变量x 用函数y 的代数式形式表示出来,利用定义域建立函数y 的不等式,解不等式即可获解。 ⑶.可以从方程的角度理解函数的值域,如果我们将函数()y f x =看作是关于自变量x 的方程,在值域中任取一个值0y ,0y 对应的自变量0x 一定为方程()y f x =在定义域中的一个解,即方程()y f x =在定义域内有解;另一方面,若y 取某值0y ,方程()y f x =在定义域内有解0x ,则0y 一定为0x 对应的函数值。从方程的角度讲,函数的值域即为使关于x 的方程()y f x =在定义域内有解的y 得取值范围。 特别地,若函数可看成关于x 的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷.可以用函数的单调性求值域。 ⑸.其他。 3. 函数值域的求法 (1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数()1y x =≥的值域。 ) +∞ 例2:求函数y = [)1,+∞ 例3:求函数1y = 的值域。 0≥11≥, ∴函数1y = 的值域为[1,) +∞。 (2)、配方法:配方法式求“二次函数类”值域的基本方法。形如2 ()()()F x a f x b f x c =++的函数的值域问题,均可使用配方法。 例1:求函数2 42y x x =-++([1,1]x ∈-)的值域。 解:2 2 42(2)6y x x x =-++=--+,

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

函数的定义域和值域映射

函数定义域、值域、解析式、映射 知识点一:求各种类型函数的定义域 类型一: 含有分母和偶次方根 例1 求下列函数的定义域 1. y= 3102++x x 2. y = 类型二: 偶方根下有二次三项式 例2 求下列函数的定义域 1.. 1 ||1 42 -+-=x x y 2.2 3 568 4x x x y ---= 类型三:含有零次方和对数式 例3 求下列函数的定义域(用区间表示) (1)02 )23() 12lg(2)(x x x x x f -+--=; 练习:求下列函数的定义域 1. y=x x -||1 2. 122+--=x x y

3.()f x = 4.)13(log 2+=x y 5. 函数y =1122---x x 的取定义域是( ) A.[-1,1] B.(][)+∞-?-∞-,11, C.[0,1] D.{-1,1} 6. 求函数的定义域。 知识点二:抽象函数定义域 类型一:“已知f(x),求f(…)”型 例1:已知f(x)的定义域是[0,5],求f(x+1)的定义域。 类型二: “已知f(…) ,求f(x)”型 例2:已知f(x+1) 的定义域是[0,5],求f(x)的定义域。 类型三: “已知f(…),求f(…)”型 例3:已知f(x+2)的定义域为[-2,3),求f(4x-3)的定义域。 练习: 1、函数()f x 的定义域是[0,2],则函数(2)f x +的定义域是 ___________. 2、已知函数()f x 的定义域是[-1,1],则(2)(1)f x f x +++的定义域为 ___________.

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

专题3.3 图形面积求最值,函数值域正当时-玩转压轴题,突破140分之高三数学解答题高端精品(201

专题3 图形面积求最值,函数值域正当时 【题型综述】 1、面积问题的解决策略: (1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高) (2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形 2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化 3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。这样可以使函数解析式较为简单,便于分析 【典例指引】 例1已知椭圆C:22 221x y a b +=(0a b >>)的一个顶点为()0,1M -6:l y kx m =+(0k ≠)与椭圆C 交于A ,B 两点,若存在关于过点M 的直线,使得点A 与点B 关于该直线对称. (I )求椭圆C 的方程; (II )求实数m 的取值范围; (III )用m 表示?MAB 的面积S ,并判断S 是否存在最大值.若存在,求出最大值;若不存在,说明理由. 点评:(1)第二小问分为两个操作程序:①据对称性得到直线AB 斜率k 与截距m 之间的关系;②据位置关系构建直线AB 斜率k 与截距m 之间的不等关系.点关于直线对称的转化为对称轴为垂直平分线,法一进一步转化为等腰三角形,从而线段相等,利用两点距离公式进行坐标化,化简后得到交点坐标纵横坐标之和及弦AB 的斜率,故可以使用韦达定理整体代入.实际上所有使用韦达定理整体代入这个处理方式的标准是题意韦达定理化:①条件与目标均能化为交点坐标和与积的形式;②横坐标←??→交点在 直线上纵坐标;法二则点差法处理弦中点问题.均可得到直线AB 的斜率k 与截距m 之间的关系.构建不等式的方式:法一根据直线与椭圆的位置关系,利用判别式构建参数m 的不等式;法二根据点与椭圆的位置关系,利用中点在椭圆内构建参数m 的的不等式;故直线与椭圆相交可与点在椭圆内等价转化; (2)第三小问分成两个操作程序:①构建面积的函数关系;②求函数的值域.法一利用底与高表示三角形

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

(推荐)高三文科数学一轮复习之求函数定义域和值域方法总结

求函数定义域和值域方法总结 一、求函数定义域方法总结 (一)简单函数定义域的类型及方法【必会!!!】 (1)f(x)为整数型函数时,定义域为R. 例如d cx bx ax x f c bx ax x f b kx x f +++=++=+=232)(,)(,)(定义域均为R. (2)f(x)为分式型函数时,定义域为使分母不为零的实数集合. 例如-4)(x 41)( ,1)(x 1)(≠+=≠= x x f x x f (3)f(x)为二次根式(偶次根式)型函数时,定义域为使被开方数大于等于零的实数的集合. 例如0)x -2(x 2)( 0),(x )(2≥≤+=≥=或x x x f x x f (4)f(x)为对数型函数时,定义域为使真数大于零的实数集合. 例如-1)(x )1(log )( 0),(x log )(2>+=>=x x f x x f a (5)正切函数)k ,k 2(x tan Z x y ∈+≠=ππ 例如Z)k ,2 k 4(x )2tan()(∈+≠=ππ x x f (6)00没有意义. 例如)2 1(x ,)12()(0≠-=x x f

(二)对于抽象函数定义域的求解 (1)若已知函数)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域由不等式b x g a ≤≤)(求出的x 的范围; 例如:已知)(x f 的定义域为]5,1[,则)23(+x f 的定义域为]1,3 1[-. (2)若已知函数))((x g f 的定义域为],[b a ,则函数)(x f 的定义域为)(x g 在],[b a x ∈上的值域. 例如:已知)3(-x f 的定义域为]7,0[,则)(x f 的定义域为]4,3[-. 二、求函数值域方法总结 (一)常见函数的值域(结合图像)【必会!!!】 (1)一次函数)0( ≠+=k b kx y 的值域为R . (2)二次函数)0( 2≠++=a c bx ax y 的值域为: 当0>a 时,值域为}44|{2a b ac y y -≥;当0=a a a y x 且的值域为}0|{>y y . (5)对数函数)10( log ≠>=a a x y a 且的值域为R . (6)三角函数:

函数的定义域和值域课件

函数的定义域和值域 学习目标: 1.了解构成函数的要素有定义域、对应法则和值域,会求一些简单函数的值域; 2.通过本节的学习,使学生养成用运动、发展、变化的观点认识世界的思维习惯; 活动方案 活动一(目标:理解函数定义域的概念,复习巩固上一节课的定义域的相关内容,并能 熟练求出一个给定的函数的定义域。) 题型一:简单函数的定义域 巩固检测1.求下列函数定义域: (1)()f x =; (2)21()1f x x = -; 小结:求简单函数的定义域时常考虑哪些因素? 题型二:函数由两个及以上数学式子的和、差、积、商的形式构成时的定义域 求下列函数的定义域: 巩固检测2.(1)y = (2)1()f x x = 小结:此种情况如何求定义域? 题型三:复合函数的定义域 例1.(P24.5)若2 ()f x x x =- (1)此函数的输入值是谁? (2)求(0),(1),(1)f f f x +; (3)函数(1)y f x =+的输入值又是谁?(2)y f x =呢? 例2.求下列函数的定义域: (1)若()y f x =的定义域为]1,4?-?,则2()y f x =的定义域是 。 (2)若函数(1)y f x =+的定义域是]2,3?-?,则(21)y f x =-的定义域 是 。 活动二(目标:理解函数值域的概念,并能熟练准确地求出一个给定的函数的值域。) 阅读课本P23中间关于值域的内容,思考以下问题: (1)函数的值域是怎样定义的? (2)函数的值域与定义中集B 有怎样的包含关系? (3)函数的定义域、值域、对应法则称为函数的三要素,这三者之间的关系怎 样?

函数的定义域及值域

函数的定义域及值域 题型一 求函数的定义域 1. 已函数f(x)=x x x -+0 )1(的定义域 2.函数 )3(log 1 3x y -= 的定义域为 3.函数x x y cos lg 252+-=的定义域为 __ 2.抽象函数定义域 1. 函数f(x 2)的定义域为[-1,1],则函数f(x)的定义域 2.设函数 的定义域是[0,1],求的定义域. 3.已知f(x 2)的定义域为[1,2],则y=f()(log 2 1x 的定义域为_______. 3.定义域逆用 1. 已知函数y = 的定义域为R.求实数m 的取值范围; 2. 设f (x )=lg(x 2 -2x +a )的定义域为R ,求a 的取值范围; 3.设函数y = 的定义域为R ,求实数a 的取值范围.

题型二 求函数的值域 1.求下列函数的值域: (1)y = 2x -1 x ∈[1,3] (2) y = -3x +1 x ∈[-1,2] (3)函数f(x)= ax + b x ∈[-1,1] 最大值为2,最小值为-4,求a,b 的值 2. 求下列函数的值域: ⑴y =x 2-5x +6 x ∈[-2,1] ⑵y =x 2-5x +6,x ∈[1,3] ⑶y =x 2-5x +6,x ∈[2,4] (4)y =x 2-5x +6,x ∈[3,5] (5) f(x)= x 2-2ax -2 x ∈[-2,4] 3. x>0 4.函数y =x +x 21-的值域 5.若 求函数的取值范围. 6. 对于任意实数,设函数 是与中较小者,求的最大值 7.已知函数 的值域是,求的值.

求解函数定义域,值域,解析式讲义(精华版)

求解函数定义域、值域、解析式 【课堂笔记】 知识点一 定义域、值域的定义 在函数)(x f y =中,x 叫做自变量,x 的取值范围的集合A 叫作函数的定义域;与x 的值相对应的值y 叫作函数值,函数值的集合})({A x x f ∈叫作函数的值域。 下面我们就以求简单函数的定义域做一讲解。 (1)当函数是以解析式的形式给出的时候,其定义域是使函数解析式有意义的自变量的取值的集合。 (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义。 注意:(1)求函数的定义域,一般是转化为解不等式或不等式组的问题,要注意逻辑连接词的恰当使用。 (2)定义域是一个集合,其结果可用集合或区间来表示。 (3)若函数)(x f 是整式型函数,则定义域为全体实数。 (4)若函数)(x f 是分式型函数,则定义域为使分母不为零的实数构成的集合。 (5)若函数)(x f 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 (6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 (7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有 意义的公共部分的集合。 (8)复合函数的定义域问题: ①若已知)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域可由不等式b x g a ≤≤)(解出; ②若已知))((x g f 的定义域为],[b a ,则函数)(x f 的定义域,即为当],[b a x ∈时函数)(x g 的值域。 【例1】求下列函数的定义域 (1)1+= x y (2)x y -= 21 (3)0)1(21-+-= x x y 【例2】 求下列函数的定义域 (1)x y ++ = 11 11; (2)1 42 --= x x y ;

高考求函数值域及最值得方法及例题,训练题

函数专题之值域与最值问题 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。

函数定义域值域及表示

函数定义域值域及表示 (1)函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有 意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 构成函数的三要素:定义域、对应关系和值域 再注意: 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无 关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (2)区间的概念及表示法 设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的 集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

函数定义域、值域、解析式习题及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- (4) f(x)= 2 32--x x ; (5) ; (6)f(x)=1+x -x x -2; (7 )0y = (8 )223 y x x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、f(x)的定义域为[0,1],求f(x +1)的定义域。 5、已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ (5 )y x =(6)求函数y =-x 2 +4x -1 ,x ∈[-1,3) 的值域

三、求函数的解析式 1、已知函数 2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且 2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法) 5、已知函数f(x)满足1 ()2()f x f x x -=,求函数f(x)的解析式。(消去法) 6、已知()1f x x =+,求函数f(x)的解析式。 7、已知 2 2 11()11x x f x x --=++,求函数f(x)的解析式。 8、已知2 211()f x x x x +=+,求函数f(x)的解析式。 9、已知()2()1f x f x x +-=-,求函数f(x)的解析式。 10、求下列函数的单调区间: ⑴ 2 23y x x =++ 11、函数236x y x -= +的递减区间是

1 函数定义域和值域

第一讲 函数定义域和值域 ★★★高考在考什么 【考题回放】 1.函数f (x )=x 21-的定义域是 ( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 2.函数) 34(log 1 )(2 2-+-=x x x f 的定义域为 (A ) A .(1,2)∪(2,3) B .),3()1,(+∞?-∞ C .(1,3) D .[1,3] 3. 对于抛物线线x y 42=上的每一个点Q ,点()0,a P 都满足a PQ ≥,则a 的取值范围是 ( B ) A .()0,∞- B .(]2,∞- C .[]2,0 D .()2,0 4.已知)2(x f 的定义域为]2,0[,则)(log 2 x f 的定义域为 ]16,2[ 。 5. 不等式x x m 22 +≤对一切非零实数x 总成立 , 则m 的取值范围是 (,-∞__。 6. 已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0) f f '的最小值为 。 52 ★★★高考要考什么 一、 函数定义域有两类:具体函数与抽象函数 具体函数:只要函数式有意义就行---解不等式组; 抽象函数:(1)已知)(x f 的定义域为D ,求)]([x g f 的定义域;(由D x g ∈)(求得x 的范围就是) (2)已知)]([x g f 的定义域为D ,求)(x f 的定义域;(D x ∈求出)(x g 的范围就是) 二、 函数值域(最值)的求法有: 直观法:图象在y 轴上的“投影”的范围就是值域的范围; 配方法:适合一元二次函数 反解法:有界量用y 来表示。如02 ≥x ,0>x a ,1sin ≤x 等等。如,2 211x x y +-= 。 换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围。注意三角换元的应用。

高中数学函数的12种求值域法

高中数学函数的12种求值域法

高中数学函数的12种求值域法 高中数学高考复习 下面数学不好的同学们,福利来啦,这里有12种关于高中数学求值域的好方法,举一反三,还有练习题哦,赶紧收藏起来备用吧! 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。 解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。 ∴函数的值域为{y∣y≥3}. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y ∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})

函数定义域值域习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941 x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-

⑼ y = ⑽ 4y = ⑾y x =-6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数 ()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数, 且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数 ()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( )

相关文档
最新文档