说题比赛高考数学

合集下载

2023年全国高考数学讲题比赛暨试卷评析研讨会 新高考I卷第21题

2023年全国高考数学讲题比赛暨试卷评析研讨会 新高考I卷第21题

2023年全国高考数学讲题比赛暨试卷评析研讨会新高考I卷第21题CONTENTS目录01试题讲解030402方法总结模型应用溯源推广05[2023全国I ,21] 甲、乙两人投篮,每次由其中一人投篮,规则如下: 若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签决定第1次投篮的人选,第一次是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率(3)已知:若随机变量X i 服从两点分布,且P(X i =1)=1−P(X i =0)=q i ,i =1,2,...n,则Eσi=1n X i=σi=1n q i .记前n 次(即从第1次到第n 次投篮中甲投篮的次数为Y ,求E Y .试题赏析(1)求第2次投篮的人是乙的概率;实际问题数学抽象数学问题A 1A 2A 1A 2B 2A 2B 2A 1B 2B 1B 1A 2 B 1B 2记A i :第i 次投篮的人是甲;B i :第 i 次投篮的人是乙由全概率公式得:P(B 2)= P(A 1B 2)+P(B 1B 2)= P(A 1)P(B 2|A 1)+P(B 1)P(B 2|B 1) =0.5 x (1-0.6)+ 0.5 x 0.8 = 0.6第2次第1次[2023全国I ,21] 甲、乙两人投篮,每次由其中一人投篮,规则如下: 若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签决定第1次投篮的人选,第一次是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率(3)已知:若随机变量X i 服从两点分布,且P(X i =1)=1−P(X i =0)=q i ,i =1,2,...n,则Eσi=1n X i=σi=1n q i .记前n 次(即从第1次到第n 次投篮中甲投篮的次数为Y ,求E Y .试题赏析思路1:依托教材,分析递推A 1A 2 A 1A 2B 2A 2B 2A 1B 2 B 1B 1A 2 B 1B 2第2次第1次A 2A 3 A 2A 3B 3A 3B 3A 2B 3 B 2B 2A 3B 2B 3第3次第2次第4次?第5次? …… 第i +1次呢?A iA i+1 A i A i+1B i+1A i+1B i+1A iB i+1 B iB i A i+1B i B i+1第i +1次第i 次由全概率公式得:因果执果索因、追根求源p i+1=0.6p i +(1−0.8)(1−p i )=0.4p i +0.2 ……②P(A i )+ P(B i )=1P(A i+1)= P(A i A i+1)+P(B i A i+1)= P(A i )P(A i+1|A 1)+P(B i )P(A i+1|B i )……①记P(A i )=p i ,则P(B i )=1-p i ,则 式可写作:0.2一阶线性递推求通项的数列问题同除法不动点法配凑法差分法得出递推式②后,则问题转化为一阶线性递推求数列通项,接下来,提供四种方法:(一)同除法对于递推式: p i+1+1 = 0.4p i + 0.2 ....②等式两边同除0.4i+1得:p i+1 0.4i+1=p i0.4i+0.20.4i+1……③③式可改写为:q i+1−q i=0.20.4i+1……④累加法不妨换元,令p i0.4i =qi,初始条件q 1=p 10.4=54q i =q 1+q 2−q 1+q 3−q 2+⋯+(q i −q i−1)q i+1−q i =0.20.4i+1q i =54+0.210.42+10.43+⋯+10.4i=512+56∙(52)i−1∴p i =0.4i ×q i =16×(25)i−1+13p i0.4i =q i(二)不动点法一般地,对于递推数列{X n},若其递推式为X n+1=f(X n),且存在实数x0,使得f(x0),则称x0是数列{X n}的不动点.递推关系结合p1=12,p1=12,p1−13=16不动点考虑初始条件构造等比数列p i+1=0.4p i+0.2……②0.4x+0.2=x x=1 3p i+1−13=25(p i−13)p i−13=16×(25)i−1p i=16×(25)i−1+13特征方程(三)配凑法p i+1=25p i+0.2②p i+1−13=25(p i−13)λ=13利用待定系数构造等比数列设p i+1+λ=25p i+λ计算整理构造等比数列p i+1−13=25(p i−13)殊途同归做法同方法(二)(四) 差分法p i+1=0.4p i +0.2……②②-⑤p i+1−p i =0.4(p i −p i−1)……⑥r i =0.4r i−1令r i =p i−1−p i(等比数列)r i =(−0.1)×0.4i−1r i =p 2−p 1=−0.1p i =0.4p i−1+0.2,i ≥2……⑤r i =(−0.1)×0.4i−1p i =p 1+p 2−p 1+p 3−p 2+⋯+(p i −p i−1)r i =p i−1−p i累加法p i =16×25i−1+13即:p i+1−p i =0.4i−1×(−0.1)同除法不动点法配凑法差分法实际问题数学问题依托教材活用全概率公式考虑基本事实P(B i )=1−P(A i )得出递推式p i+1=0.4p i +0.2一阶线性递推求通项的数列问题思路2:数形结合,直观递推设第n 次甲投篮的概率为a n ,是乙投篮的概率为b n由题意列出第n 次投篮到第n +1次投篮的状态转移图如下:状态转移图第n 次第n +1次甲投篮乙投篮甲投篮乙投篮中(0.6)中(0.8)a n+1=0.6a n +0.2b n b n+1=0.4a n +0.8b na n +b n =1a n+1=0.4a n +0.2a n+1b n+1a nb n思路3:马尔可夫,一招致胜借助思路2的状态转移图,可整理得到条件概率表:状态转移图第n 次第n +1次甲投篮乙投篮甲投篮乙投篮中(0.6)中(0.8)a n+1b n+1a nb n第n +1次第n 次甲乙甲0.60.4乙0.20.8条件概率表概率转移矩阵P(A n+1|A n )Q =0.60.40.20.8a i =a 1q i−1πi =π1Q i−1类比等比数列马尔可夫链马尔可夫链在时刻n 的分布完全由初始分布π(1)和概率转移矩阵Q 决定.第一次是甲、乙的概率各为0.5.则本题的初始状态π(1) = (0.5 0.5).为方便计算Q i−1,将Q 对角化(《线性代数》)可得:Q =0.60.40.20.8=121−11000.4121−1−1Qi−1=121−1=1i−1000.4121−1−1∴πi =π1∙Q i−1=0.50.5⋅121−11i−1000.4i−1121−1−1∴πi =π1∙Q i−1=16×25i−1+13−16×25i−1+231/21/21/21/2112-1×+×=实际问题数学问题思路1:全概率公式思路2:数形结合法思路3:马尔可夫链●根据情境判断马尔可夫问题●画出状态转移图、写出概率转移矩阵●考虑初始状态π(1),代入公式π(i) =π(1)Qi−1123(3) 已知:若随机变量X;服从两点分布,且P X I =1=1−P X i =0=q i ,i =1,2,…n,则E σi=1n X i =σi=1n q i .记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求E(Y).前n 次(即从第1次到第n 次投篮)中甲投篮的次数的期望E(Y)思路1:利用定义,代入公式思路2:利用结论,突出本质思路1:利用定义,代入公式由(2)知:第i次投篮是甲的概率为p i=16×(25)i−1+13,i=1,2…n第i次投篮第1次投篮第2次投篮...第n次投篮每次共投篮个数11 (1)第i次甲投篮概率p;p1p2…p nE Y=1×p1+1×p2+⋯1×p n=161−25n1−25+n3=5181−25n+n3思路2:利用结论,突出本质(3) 已知:若随机变量X i 服从两点分布,且P X i = 1= 1−P X i = 0=q i ,i =1,2,..n ,,则E(σi=1n X i )=σi=1n q i 记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求E(Y).构造两点分布:设第i 次投篮中甲的投篮次数为Y i P(Y i = 1)= 1− P(Y i =0)=p i ,E Y =E ෍i=1nY i =E ෍i=1np iE Y =p 1+p 2+⋯p n =5181−25n+n3数学期望的线性性基础知识、基本技能、基本思想、基本活动经验发现问题的能力、提出问题的能力、分析问题的能力、解决问题的能力数学抽象、逻辑推理、数学建模直观想象、数学运算、数据分析。

2023新高考数学说题

2023新高考数学说题

2023新高考数学说题2023年新高考数学说题:一、说教材本次考试,试卷命题以《2023年普通高等学校招生全国统一考试大纲(数学)》为依据,考查了集合、函数与导数、三角函数、平面向量、数列、不等式、立体几何、解析几何、计数原理和概率等高中数学主干知识,同时还考查了数学运算、数据处理以及运用数学思想方法解决问题的能力。

全卷整体难度适中,知识覆盖面广,注重对基础知识、基本技能和基本方法的考查,突出了对重点知识、重点内容的考查,同时也呈现了多角度、多层次考查能力的趋势。

二、说学生学生在答题中存在的主要问题有:1. 基础知识不扎实。

部分学生对基础知识掌握不够牢固,导致答题时出现概念模糊或计算错误。

2. 解题能力不强。

部分学生不能灵活运用所学知识解决问题,解题思路不清晰,方法不得当。

3. 缺乏数学思想方法。

部分学生只关注具体题目的解答,而忽略了数学思想方法的运用,导致遇到新问题时无法应对。

三、教学建议针对学生在答题中存在的问题,教师在教学中应注意以下几点:1. 强化基础知识教学。

教师在教学中应注重基础知识的传授和巩固,加强学生的计算能力训练。

2. 培养学生的解题能力。

教师可以通过讲解例题、引导学生进行探究和讨论等方式,提高学生的解题能力。

3. 注重数学思想方法的渗透。

教师在教学中应注重数学思想方法的运用,引导学生逐步形成数学思维方式,提高解决实际问题的能力。

4. 加强数学实验和实践教学。

教师可以利用数学软件和工具开展实验教学,让学生通过实验和实践活动来加深对数学知识的理解和应用。

5. 关注学生的个性化需求。

针对不同层次的学生,教师可以采用分层教学和个性化辅导等方式,帮助学生解决学习中遇到的问题。

四、说备考策略针对本次考试的特点和学生在答题中存在的问题,教师在备考时应采取以下策略:1. 全面复习,夯实基础。

教师应对高中数学的主干知识进行全面梳理和复习,帮助学生巩固基础知识和基本技能。

2. 强化训练,提高解题能力。

高中数学说题比赛课件集锦王坤峰说题课件

高中数学说题比赛课件集锦王坤峰说题课件

……① ……②
∴ y1 k1(x1 2), y1 k2 (x1 2) 两式相加得 即 0 (k1 k2 )x1 2(k1 k2 )
x1
2(k1 k2 ) k1 k2
又由 得 , ∴ 即
y

k1
(
x

2)
y k2(x 2)
x 2(k1 k2 ) k1 k2
直线 A1P 的方程为 直线 A2Q 的方程为
y y1 (x 2)
y
x1y1
2 (x
2)
x1 2
……① ……②
设点M(x, y)是A1P与 A2Q 的交点,由①×②得
y2

y12 x12 2
(x2
2)
……③
又点P(x1, y1)在双曲线
上 x2 y2 1
2

x x1 2
x 2, x1

y1

k1


2(k1 k2 ) k1 k2
2


2
2k1 k2 k1 k2
y

k1



2(k1 k2 ) k1 k2
2




2 k1
2k1 k2
k2
以下同法一 ∴
∴ y1 k1 k2 2
y2
2 1
0
得 x 2, y 0 所以直线 l
与双曲线只有唯一交点 A2 。故轨迹E不经 过点 (0,1)。
综上分析,轨迹E的方程为 x2 y2 1, x 0 且x 2 2
法三:由题设知 A1( 2,0) A2( 2,0) ,则有

高中数学说题比赛课件集锦谷艳波的课件

高中数学说题比赛课件集锦谷艳波的课件

谢谢 请多指教
以பைடு நூலகம்







a2k 1 a2k 1 2 于是有
a1 a3 a5 a59 (a1 a3 ) (a5 a7 ) (a57 a59 ) 15 2 30
。 。 。 。 。 (1)
又由 an 1 (1)
n
an 2n 1 ,令 n=1,3,5......59,知
关于一道高考题的 解法探究
浩良河化肥厂学校 谷艳波
2012 年高考全国新课程卷理科第 16 题:
n
数列 {a n} 满足
an1 (1) an 2n 1 , 则
{a n } 的前 60 项和为
n a ( 1) an 2n 1 ,则 {a n } 的前 60 项和为 数列 {a } 满足 n1
a2 a1 1, a4 a3 5, a6 a5 9....... a60 a59 117
以上各式相加,得
(a2 a 4 a6 a60 ) (a1 a3 a5 a59 ) 1 5 9 117 1770
于是可知
a4k 3 a, a4k 2 a (8k 7), a4k 1 2 a, a4k a (8k 1),
所以 a4k -3 a4k 2
a4k 1 a4k 16k 6 , 知每连续四项之和成等差
15(10 15 16 6) s60 1830 数列,则 2
g (n)an
an1 qan d (其中 q,d 为常数)构造
想通过以上几种方法求出通项,在进一步进行求和, 但进一步分析哪种形式都不符合,原因出在这道题有

高考数学原创题命题说题比赛

高考数学原创题命题说题比赛


1 3x
AM

1 3y
AN
三.例谈命题
(3)M、N、G 三点共线
A
M
G N
【论题】M、N、G 三点共线,A 为平面内一点,若 AG xAN y AM, 则 x y 1
【论证】M、N、G 三点共线,存在实数 ,使得 MG MN(0 1)
即 AG AM (AN AM) , 所 以 AG AN (1 )AM xAN y AM, 而
人教 A 版八年级数学上册:三角形三条中线的交点叫做三角形的重心. 【论题】重心到顶点的距离与重心到对边中点的距离之比为 2:1,
(如图,D、E 分别是 ABC的边 BC,AB 的中点,AD 与 CE 交于点 G,求证:AG: GD 2 :1 )
A
【论证】
E
F
G
B
C
D
过 D 作 DF // CE 交 AB 于 F,因为 D 为 BC 中点,所以 F 为 BE 中点,(平行线分线段
选择题 12
填空题 15
解答题 21
改编:
原创
试题来源:模拟试题 试题来源:联考测试题,
难度 0.3,区分度 0.29 难度 0.45,区分 0.41
原创,试题来源:
1、教材 P32B 组 1(4 2、 2017 年(全国 II 卷(理)
难度 0.25,区分 0.4
创新性:由形到数
创新性,指数运算,整 化归与转化,类比思想、运
.
一.试题呈现
【解答题】
21.已知函数f
(x)

ln
x,
f
(x
1)

ax在其定义域内恒成立, 数列an 满足a1

2022年全国高考数学1卷第22题讲题比赛课件精选全文

2022年全国高考数学1卷第22题讲题比赛课件精选全文

= 经过 与 的交点
x
解法1:
x
由(1)知, f ( x) e x, g ( x) x ln x
1
设函数 G( x) f ( x) g ( x) e ln x 2 x, 则G ( x) e 2
x
放缩法
x
1
ln x 2 x, 则G ( x) e 2


e x0 b x2 ln x2 b
x1
x1


ln

=b
x

注意 f (x) 与 g (x) 的结构,可得 f ( x) g (e ) ,
ⅇx0 − ln ⅇx0 = b
所以 g ( x0 ) g (e 1 )
x
而由 0 x0 1,0 e 1 1 , g (x) 在 (0,1) 上单调递减,
x
等价于 e x b 和 ln x x b 共有三个不同的根.
x
因为 = ⅇ 和 = ln 互为反函数,图像关于 = 对称,
= + 和 = − 也互为反函数,图像关于 = 对称
得∃ ∈ ,使得 = ⅇ 与 = + 交于,两点,
= ln 与 = − 交于,两点,且,横坐标相同时有3根.
x
'
所以当 >
x
因为 e x 1
x
0时, ′
'
x
=

1

+ −2> 1+
所以 G(x) 在(0,
)单调递增.
1
+

−2>0
2

高中数学说题比赛课件集锦张庭树 说题


AB AC , D、E分别是棱AA1,B1C的中点。
B1 D A C E
BD=DC,∴AB=AC
三.解题方法
几何解法
向量解法
A1 C1
2009年全国高考题理科第18题(立体几何)
证明1)(法二)连结EB。 由Rt△DEB≌Rt△DEC得到DB=DC AB=AC
B1
D A B
E
C A1 C1
证明1)(法三)取BC中点H,连结EH
向量解法
2009年全国高考题理科第18题(立体几何)
A1
解2)(法二)建立空间直角坐标系
二面角的平面角 侧棱和底边的关系
C1
B1
D

E
求出面BCD的法向量


两个向量的数量积
直线与平面所成的角
四、高考连击:
2012年山东高考理科第18题
在如图所示的几何体中,四边形ABCD是等腰梯形,
0 AB CD,DAB=60,FC 面ABCD, AE BD,CB=CD=CF
五、考题变式
A1 B1
C1
D A B C
1
E
C B1
变式(一)如图,在直三棱柱ABC A1 B1C1中, 1 D、E分别是棱AA1,B1C的中点。AB= AA1 2 DE B1C 1)证明AB BC 2)若二面角A-BD-C的为60 , 求B1C与面BCD所成角的大小。
0
A1
E
D C A B
图2
五、考题变式
B B1 D A C E A1 C1
二.解题思路
条件分析
结论分析解题关键源自2009年全国高考题理科第18题(立体几何)
如图,在直三棱柱ABC A1B1C1中, AB AC , D、E分别是棱AA1,B1C的中点。 DE 面BCC1 1)证明AB AC 2)若二面角A-BD-C的为60 , 求B1C与面BCD所成角的大小。

高中数学第二届说题比赛试题说题——圆锥曲线1共18张PPT

3、利用几何法化简式子,也进行了消元,但在 解题中忽略了判别式,缺乏严谨性;
已知直线 y k (x 2)(k 0)与抛物线 C:y 2 8x 相交 A、B 两
点,F 为 C 的焦点.若 FA 2 FB ,求 k 的值.
(
设 A、B 两点坐标分别为(x1,y1),( x2,y2)
BN = 2 AM
解 法 一 :
结束语
我想,如果拿到一个题目,作为教师都能这 样深入去观察、分析、解决与反思,那必能起到 以一当十、以少胜多的效果,既可以增大课堂的 容量,又可以培养学生各方面的能力,特别是自 主探索,不断创新的能力。如果在教学中能够尝 试让学生自己说题,讲题,相信教学的效果会更 好。
我想今后我会继续努力深入去研究课本的例 题、习题和全国各地的高考试题,不断追求新知, 完善自己,将说题的意识进行到底。
说拓展
变式1(类比): 已知直线 y k (x 2)与抛物线 C:y 2 8x 相交 A、B 两点, F 为 C 的焦点.若 FA 2 FB ,求 k 的值.
变式2(进一步提升):
已知直线 y k (x a)与抛物线 C: y 2 8x 相交 A、B 两 点,F 为 C 的焦点.若 FA 2 FB ,求 k 的值.
x1 x2
8 4k 2 k2
x1x 2 4
(2x 2 2)x 2 4 x 2 2(舍)或x 2 1
y2 2 2
k 22 3
缺乏严谨性
已知直线 y k (x 2)(k 0)与抛物线 C:y 2 8x 相交 A、B 两
点,F 为 C 的焦点.若 FA 2 FB ,求 k 的值.
设 A、B 两点坐标分别为(x1,y1),( x2,y2)
翻译——代数讨论——翻译

20xx年说题稿(数学)—谭丹风

20xx年说题稿(数学)—谭丹风上期高中部《说题比赛》说题稿(数学组、谭丹风)本题选自(xx年高考,全国1卷理科21,满分12分)设函数,曲线在点(1,f(1))处的切线为方程为(1)求(2)证明:一、选题理由xx年,湖南高考将采用全国卷,那么函数综合试题是高考的必考题型,满分12分,并且是高考解答题的压轴题。

总体来讲,本题对能力要求较高,有明显的区分度。

但本题的起点并不高,低层次考生都能动笔做,只要掌握函数曲线的切线基本求法,就能得到2-5分;它很好地贯彻了考纲的要求,堪称完美。

二、学情分析部分学生觉得这是高考的压轴题,肯定比较难,怕时间不够,也有少部分学生觉得第2问无从下手。

主要失分原因有以下五点:1、忽略求函数的定义域、如,的定义域为;2、求导公式和求导法则记得不牢,如,的导函数的求解出错;3、曲线切线方程的斜率的求法理解不清、如,在点(1,f(1))处的切线的斜率应为;4、方法掌握不牢、如,在证明时,我们要采用构造函数的方法,往往学生不会构造出便于求导的新函数;5、导数在函数性质中的应用掌握不够、如,不会利用导数去判断的单调性和最值;三、考纲要求纵观近年的高考全国卷的题目,我们不难发现这些高考题都涉及到考查导数的几何意义及利用导数研究函数的性质的综合性问题,尤其是函数的单调性和最值与导数的关系。

主要考查的数学思想有:函数思想、转化与化归思想;同时考查的基本能力有:运算求解能力、转化能力以及灵活运用所学知识分析能力和解决问题的能力。

四、命题立意本题在命制时把函数的性质、导数、不等式等放在一起,有机融合了函数与导数以及导数与不等式的关系。

本题的命题意图是三维的:一是考查数学思想:如:在解决第1问时要用到:函数与方程的思想。

解决第2问时要用到:函数与方程、转化与化归的思想;二是要考查数学能力:解决第2问时要用到:运算求解能力、通过构造函数求单调性及最值问题、对不等式进行转化等考查学生分析问题、解决问题的能力;三是让学生学会利用导数研究函数的单调性,根据函数的单调性及最值解不等式,以及探究与猜想在数学中的重要性。

说题:多维视角下解析一道高考试题

说题:多维视角下解析一道高考试题傅婷【期刊名称】《中学数学教学》【年(卷),期】2018(000)003【总页数】4页(P37-40)【作者】傅婷【作者单位】浙江省宁波中学 638400【正文语种】中文笔者有幸参加宁波教研室组织的高中数学说题比赛.在参加比赛之前,笔者的学生问了这样一个问题:已知一个抛物线型的酒杯,杯口宽4cm,杯深4cm,若将一个玻璃球放进酒杯中,当玻璃球的半径在什么范围内,玻璃球一定会触及酒杯底部?笔者在给学生解答的过程中,发现这个酒杯中的数学与2016年浙江高考理科数学试卷第19题其实是同一类型的问题.遂选择了这个题目进行说题,题目如下:如图,设椭圆(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.1 解法分析考点弦长公式;圆与椭圆的位置关系;椭圆的离心率几何条件含参圆与椭圆至多有三个交点;离心率范围目标动态圆锥曲线交点问题的转化第(I)题:考查直线与椭圆相交的位置关系,涉及到线段长,可以考虑用弦长公式,解法如下:由题意可得:解得:x1=0,.直线y=kx+b被椭圆截得的线段长为:·第(II)题:考查的是双二次曲线的交点问题,本题中有动态和恒成立两个难点,故问题的解决关键在于交点问题的转化.视角一代数视角由于圆锥曲线的交点个数可以转化为方程有解问题,便有解法1.解法1 方程在区间上根的分布问题由得(a2-1)y2+2y+r2-1-a2=0(*)先考虑有四个交点情况,则需要方程(*)在(-1,1)上有两不同根,由得当时,存在这样的r, 使得方程(*)在(-1,1)上有两解,圆与椭圆有4个交点.故圆与椭圆至多有3个公共点时,1<a≤,椭圆的离心率范围是0<e≤.知识圆与椭圆的对称性、根的分布问题策略正难则反思想方程思想方程的有解问题可以转化为函数的交点问题,故有解法2.解法2 函数在区间上的交点个数(1-a2)y2-2y+1+a2=r2.令f(y)=(1-a2)y2-2y+1+a2(-1≤y≤1) ,得而1-a2<0,假设存在r,使函数t=f(y)与t=r2在(-1,1)上有两个不同的交点,则需求函数f(y) 在 (-1,1)不是单调函数,只需,即a2>2.当a2>2时,圆与椭圆有4个不同的公共点.所以当1<a≤时符合题意,椭圆的离心率范围是0<e≤.思想函数与方程思想、数形结合思想视角二几何视角椭圆具有对称性,要保证圆与椭圆至多有3个公共点,则圆与椭圆y轴单侧不可能有2个公共点,即弦长在y轴单侧处处不相等.将两条动态曲线的交点问题转化为弦长问题,再代数解决.解法1 弦长相等(浙江省考试院提供的参考答案)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P、Q,满足AP=AQ,记直线AP、AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知·,·,故··,所以.由于k1,k2>0,k1≠k2,得:.①因为①式关于k1,k2的方程有解的充要条件是:1+a2(a2-2)>1,所以.因此,以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a2≤2.离心率,因此椭圆的离心率范围是0<e≤.知识圆与椭圆的对称性、弦长公式思想函数与方程思想在解法1的基础上,若AP=AQ,则三角形APQ为等腰三角形,连接PQ,取其中点M,连接AM,如图所示,则AM垂直PQ.涉及中点、垂直的位置关系,可以考虑用点差法,将弦长相等的数量关系转化为几何的位置关系.解法2 点差法假设圆与椭圆的公共点有4个,由对称性可设轴左侧的椭圆上有两个不同的点P、Q,满足AP=AQ.设P(x1,y1),Q(x2,y2),PQ的中点为M(x0,y0).则两式相减得:. 即(x1-x2)(x1+x2)+a2(y1-y2)(y1+y2)=0,得x0+a2y0·.②由AP=AQ,得AM⊥PQ,即kAM··.所以,代入②式得:x0+a2y0·,由得:a2>2.因此,以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤.离心率,因此椭圆的离心率范围是0<e≤.知识圆与椭圆的对称性、点差法思想设而不求思想、函数思想视角三函数视角圆与椭圆至多有3个公共点,即当点P从上定点逆时针旋转到下定点时,PA处处不相等,即弦长在y轴左侧单调.可以考虑构造函数,将交点问题转化为函数的单调性.解法1 弦长在y轴单侧单调递增由(1)知,设k2=t,则在区间(0,+∞)内单调递增.只需t2+t≤,即t≤恒成立,得≥1,即a2≤2.离心率,因此椭圆的离心率范围是0<e≤.知识弦长公式、单调性思想函数思想在解法1的基础上,弦长单调递增,即意味着弦长是具有最大值的.反思解法1,利用弦长公式构造出的函数,较为复杂,不便于研究.点P为椭圆上的任意动点,可以利用椭圆的方程进行三角换元来设点P的坐标,则PA为P、A两点间的距离公式.解法2 弦长的最大值圆与椭圆至多有3个公共点,即当点P从上顶点逆时针旋转半圈到下顶点时,PA 单调递增,即当且仅当点P(acosθ,sinθ)为下顶点B(0,-1)时,PAmax=2.PA2=a2cos2θ+(sinθ-1)2=(1-a2)sin2θ-2sinθ+1+a2,(-1≤sinθ≤1)因为PA的最大值当且仅当sinθ=-1时取到,且1-a2<0,所以对称轴≤-1,又a>1,得1<a≤.离心率,因此椭圆离心率的取值范围为知识距离公式、二次函数最值思想函数思想、数形结合思想对于一个复杂的动态圆锥曲线的交点问题,若直接处理起来比较困难,有时候可以考虑特殊位置.视角四特殊视角若需满足题目条件,只需当临界情况,即半径r=2时,椭圆完整在圆内,否则只需半径再大一点就会有4个交点.取相同y时,,即(1-y2)a2<4-(y-1)2,所以,当-1<y<1时,a2≤2.离心率∈(0,.策略考虑临界位置思想函数思想、数形结合思想解法小结对于本题,解法众多,但笔者认为最理想的解法是转化为距离(弦长)的最值.2 背景分析2.1 本质研究本题所涉及的动态圆与椭圆的交点问题,其本质是y轴上的定点A到圆锥曲线椭圆上动点P的距离PA的最值问题.解决步骤如下:(1)两点坐标;(2)距离公式;(3)构造函数;(4)函数最值.深入研究本问题,还是得到一些其他的结论:在y轴单侧,PA单调递增时,圆与椭圆的交点个数为2或1或0个;在y轴单侧,PA不单调时,圆与椭圆的交点个数为4或3个.2.2 问题链接以下两个问题也是定点到圆锥曲线(椭圆、抛物线)上动点的距离的最值问题. (1990年全国卷)已知椭圆的中心为坐标原点,长轴在x轴上,已知点P(0,到椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.有一种酒杯的轴截面近似一条抛物线,杯口宽4米,深8米,称之为抛物线酒杯,当玻璃球的半径为多大时,玻璃球一定会触及到酒杯底部.3 拓展变式对于2016年浙江高考理科数学试卷第19题,定点A在y轴上的位置比较特殊,恰为椭圆的上顶点,故对这个问题还可以进行拓展.变式1 点A在y轴上,椭圆外设椭圆,若任意以点A(0,tb)(t>1)为圆心的圆与椭圆至多有3 个公共点,求离心率e的取值范围.变式2 点A在在y轴上,椭圆内设椭圆,若任意以点A(0,tb)(0<t<1)为圆心的圆与椭圆至多有3个公共点,求离心率e的取值范围.变式3 点A在y轴正方向上运动设椭圆,若任意以点A(0,tb)(t>0)为圆心的圆与椭圆至多有3个公共点,求e,t满足的条件.解设椭圆上动点为P(acosθ,bsinθ),则PA2=a2cos2θ+(bsinθ-tb)2=(b2-a2)sin2θ-2b2tsinθ+t2b2+a2,(-1≤sinθ≤1),由≤-1得0<e≤.一般结论点A在y轴上时,当0<e≤(t≠0)时,至多有3个交点;点A在y轴上时,当(t≠0)时,有4个交点;变式5 点A在x轴正方向上运动设椭圆,若任意以点A(ta,0)(t>0)为圆心的圆与椭圆至多有3个公共点,求e、t所满足的条件.解设椭圆上动点为P(acosθ,bsinθ),则PA2=(acosθ-t)2+b2sin2θ=(a2-b2)·cos2θ-2atcosθ+t2+b2(-1≤cosθ≤1),由≥1得0<e≤.一般结论:点A在x轴,当0<e≤(t≠0),至多有3个交点;点A在x轴,当(t≠0),有4个交点;变式6 圆与抛物线的交点问题设抛物线方程为x2=2py(p>0),若任意以点A(0,t)(t>0)为圆心的圆与抛物线至多有3个公共点,求t、p需满足的条件.解设抛物线上点为p(x0,y0),则,当≤0时,t≤p.变式7 点A为平面上任意一点设椭圆,若任意以点A(m,n)为圆心的圆与椭圆至多有3个公共点,求离心率e的取值范围.4 教学启示通过对这道高考试题的研究,笔者得到了一些启发.任何一个复杂解析几何问题的解决,都需要用到基本知识,因此在教学的过程中应该注重学生基础知识、基本技能的夯实;引导学生从不同视角下进行研究,挖掘问题的本质;关注解析几何问题(比如交点问题)转化中的通性通法,方程与函数、数形结合等思想的应用.通过对问题的变换、推广和转化,可以有效培养学生思维的广阔性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档