2020高考文科数学复习-概率统计含答案
高考文科数学(3卷):答案详细解析(最新,word版)

2020年普通高等学校招生全国统一考试文科数学(III 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(集合)已知集合{}1235711=,,,,,A ,{}315|=<<B x x ,则A ∩B 中元素的个数为 A .2B .3C .4D .5【解析】∵{5,7,11}=A B ,∴A ∩B 中元素的个数为3. 【答案】B2.(复数)若)(11+=-z i i ,则z = A .1–iB .1+iC .–iD .i【解析】∵)(11+=-z i i ,∴1212--===-+i iz i i ,∴=z i . 【答案】D3.(概率统计)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .10【解析】原数据的方差20.01=s ,由方差的性质可知,新数据的方差为21001000.011=⨯=s .【答案】C4.(函数)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()1--=+t I K t e ,其中K 为最大确诊病例数.当*()0.95=I t K时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【解析】**0.23(53)()0.951--==+t K I t K e,化简得*0.23(53)19-=te ,两边取对数得,*0.23(53)In19-=t ,解得*In1935353660.230.23=+=+≈t . 【答案】C5.(三角函数)已知πsin sin 13θθ++=(),则πsin =6θ+() A .12B .33C .23D .22【解析】∵π13sin sin cos 322θθθ+=+(), ∴π3331sin sin sin 3cos 1322θθθθθθ⎫++==+=+=⎪⎪⎭(), 31πcos sin 26θθθ+=+(), π316θ+=(),故π3sin 63θ+==().【答案】B6.(解析几何)在平面内,A ,B 是两个定点,C 是动点,若1⋅=AC BC ,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线【解析】以AB 所在直线为x 轴,中垂线为y 轴,建立平面直角坐标系,设(,0)-A a ,(,0)B a ,(,)C x y ,则(,)=+AC x a y ,(,)=-BC x a y ,2221⋅=-+=AC BC x a y ,即2221+=+x y a ,故点C 的轨迹为圆.【答案】A7.(解析几何)设O 为坐标原点,直线x =2与抛物线C :()220=>y px p 交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)【解析】解法一:如图A7所示,由题意可知,(2,2)D p ,(2,2)-E p ,(2,2)=OD p ,(2,2)=-OE p ,⊥OD ⊥OE ,⊥⊥OD OE , 即22220⨯-=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2. 解法二:4=DE p 44==+OD OE p⊥OD ⊥OE ,⊥222+=OD OE DE ,即2(44)16+=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2.图A7【答案】B8.(解析几何)点(0)1-,到直线()1=+y k x 距离的最大值为 A .1B .2C .3D .2【解析】解法一:点(0)1-,到直线()1=+y k x 的距离211+=+k d k ,则有222222(1)122=12111+++==+≤+++k k k kd k k k ,故2≤d . 解法二:已知点()01-,A ,直线()1=+yk x 过定点()10-,B ,由几何性质可知,当直线()1=+y k x 垂直直线AB 时,点()01-,A 到直线()1=+y k x 距离最大,最大值为线段AB 的长度,即max 2=d 【答案】B9.(立体几何)如图为某几何体的三视图,则该几何体的表面积是A .642+B .442+C .623+D .423+【解析】由三视图可知,该几何体为一个四面体,如图A8所示. 其表面积(2332226234=⨯+⨯=+S图A9【答案】C10.(函数)设3log 2a =,5log 3b =,23c =,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】∵233332log 3=log 93==c ,33log 2log 8==a a <c .∵233552log 5log 253===c 355log 3log 27==b c <b .故a <c <b.【答案】A11.(三角函数)在ABC ∆中,2cos 3C =,4=AC ,3=BC ,则tan B = A 5B .25C .45D .85【解析】解法一:由余弦定理得,2222cos 9=+-⋅⋅=AB AC BC AC BC C ,即3=AB ,∴22299161cos 22339+-+-===⋅⨯⨯AB BC AC B AB BC , ∵(0,π)∈B ,∴245sin 1cos =-=B B ,sin tan 45cos ==BB B. 解法二:3=AB ,所以△ABC 是以B 为顶角的等腰三角形.过B 作BD ⊥AC ,易得tan 25=B 22tan2tan 451tan 2==-BB B . 【答案】C12.(三角函数)已知函数1()sin sin f x x x=+,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线π=x 对称D .f (x )的图像关于直线π2=x 对称 【解析】A :1sin 1(sin 0)-≤≤≠x x ,当1sin 0-≤<x ,()0<f x ,故A 错误.B :1()sin ()sin -=--=-f x x f x x,f (x )为奇函数,故B 错误. C :1(2π)sin ()()sin -=--=-≠f x x f x f x x,故C 错误.D :11(π)sin(π)sin ()sin(π)sin -=-+=+=-f x x x f x x x,故D 正确.【答案】D二、填空题:本题共4小题,每小题5分,共20分。
2020届高考文数二轮复习常考题型大通关(全国卷):第19题+统计概率+Word版含答案

常考题型大通关:第19题统计概率1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。
射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频数分布表,求正整数a,b的值;(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表:年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60]频数 5 10 10 5 10赞成人数 4 6 8 4 91.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[)本亊件,并求选取2人中恰有1人持不赞成态度的概率.4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。
现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者.组号分组频数频率160,165 5 0.05第1组[)第2组[165,170)0.35第3组[170,175)第4组[175,180)20 0.20第5组[180,185)10合计100 1.001.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;2.为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?3.在2的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?5、某中学组织了一次高三学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.1.若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?2.在1中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.6、某乡镇根据中央文件精神,在2014年通过精准识别确定建档立卡的贫困户共有473户,结合当地实际情况采取多项精准扶贫措施,从2015年至2018年该乡镇每年脱贫户数见下表:年份2015 2016 2017 2018 年份代码x 1 2 3 4脱贫户数y55 69 71 85(1)根据2015-2018年的数据,求出y关于x的线性回归方程$$y bx a=+$;(2)利用(1)中求出的线性回归方程,试判断到2020年底该乡镇的473户贫困户能否全部脱贫.附:$$1221,ni iiniix y nxyb a y bxx nx==-==--∑∑$$7、某农科所对冬季昼夜温差大小与某反季节大豆新品种种子发芽数之间的关系进行分析研究,他们分别记录了12月1日至12月5日每天昼夜温差大小与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中随机选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验。
文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。
文科高考数学重难点05 概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
广东省广州市2020届高三数学概率统计专题(文科A卷)

2020届高三数学专题——概率与统计测试卷A (文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分) 1.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。
黄金矩形常应用于工艺品设计中。
下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近 C. 两个批次总体平均数与标准值接近程度相同 D. 两个批次总体平均数与标准值接近程度不能确定2.对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 3. 期末考试后,班长算出了全班40名同学的数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M :N 为( ) A .40:41 B .1:1 C .41:40 D .2:14.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率第6题图 为( ) A .23 B . 13 C . 12 D . 1255.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512C .712D .136.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.457.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。
高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
高考数学压轴专题2020-2021备战高考《计数原理与概率统计》知识点总复习含答案解析

新数学《计数原理与概率统计》试卷含答案一、选择题1.若实数22a=-,则1019228101010222a C a C a -+-+L 等于( )A .32B .-32C .1 024D .512【答案】A 【解析】 由题意可得:()()10192221010101010222222232.a C a C a a -+-+=-=--=L本题选择A 选项.2.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D .3.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种C .42种D .25种【答案】C 【解析】 【分析】给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数.【详解】甲可有3种安排方法, 若甲先安排第1社区,则第2社区可安排1个、第3社区安排3个,共1343C C ⋅;第2社区2个、第3社区安排2个,共2242C C ⋅;第2社区3个,第3社区安排1个,共1141C C ⋅;故所有安排总数为1322114342413()42C C C C C C ⨯⋅+⋅+⋅=.故选:C. 【点睛】本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力.4.下列等式不正确的是( )A .111m mnn m C C n ++=+ B .12111m m m n n n A A n A +-+--= C .11m m n n A nA --=D .1(1)k k kn n n nC k C kC +=++【答案】A 【解析】 【分析】根据排列和组合公式求解即可. 【详解】根据组合公式得11!1(1)!1!()!1(1)!()!1mm n n n m n m C C m n m n m n m n +++++==⨯=-++-+,则A 错误;根据排列公式得122111(1)!!!(1)!(11)()!()!()!()!m m m n n n n n n n A A n n n A n m n m n m n m +-+-+--=-=+-=⋅=----,则B 正确;根据排列公式得11!(1)!()!()!mm n n n n A n nA n m n m ---==⋅=--,则C 正确;根据组合公式得()()1!!(1)(1)(1)!1!!1!k nn n k C k k n k k n k ++=+⋅=+-+-+⎡⎤⎡⎤⎣⎦⎣⎦[]!!()!()!!(1)!k kn n n n nC kC n k k n k k n k -⋅=--+-=即1(1)k k k n n n nC k C kC +=++,则D 正确;故选:A 【点睛】本题主要考查了排列和组合公式的应用,属于中档题.5.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .23【答案】D 【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.6.把15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( ) A .18 B .28C .38D .42【答案】B 【解析】 【分析】根据题意,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3. 个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,由挡板法分析可得答案. 【详解】根据题意,15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3个球, 则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题, 将剩下的9个球排成一排,有8个空位,在8个空位中任选2个,插入挡板,有2887282C ⨯==种不同的放法, 即有28个不同的符合题意的放法; 故选B . 【点睛】本题考查排列、组合的应用,关键是将原问题转化为将3个球放入3个盒子的问题,属于基础题.7.如图所示,线段BD 是正方形ABCD 的一条对角线,现以BD 为一条边,作正方形BEFD ,记正方形ABCD 与BEFD 的公共部分为Ω(如图中阴影部分所示),则往五边形ABEFD 中投掷一点,该点落在Ω内的概率为( )A .16B .15C .14D .13【答案】B 【解析】 【分析】五边形ABEFD 的面积52S =,阴影Ω的面积为12,得到概率. 【详解】不妨设1AB =,故五边形ABEFD 的面积15222S =+=,阴影Ω的面积为12,故所求概率为1121522P ==+, 故选:B . 【点睛】本题考查了几何概型,意在考查学生的计算能力和应用能力.8.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的个数是()A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.9.若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是()A.18B.35C.58D.78【答案】C【解析】【分析】设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,利用几何概型即可得到结果.【详解】设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|0≤x≤10且0≤y≤20},这是一个长方形区域,面积为S=10×20=200A表示某生等车时间不超过5分钟,所构成的区域为a={(x,y)|0≤x≤5或0≤y≤5},即图中的阴影部分,面积为S′=125,代入几何概型概率公式,可得P (A )'12552008S S === 故选C【点睛】解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.10.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ba的值( ) A .1265B .1285C .1253D .26【答案】B 【解析】 【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得ba的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r rr r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„, 求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B .【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.11.概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是( ) A .甲48枚,乙48枚 B .甲64枚,乙32枚 C .甲72枚,乙24枚 D .甲80枚,乙16枚【答案】C 【解析】 【分析】根据题意,计算甲乙两人获得96枚金币的概率,据此分析可得答案. 【详解】根据题意,甲、乙两人每局获胜的概率均为12, 假设两人继续进行比赛,甲获取96枚金币的概率111132224P =+⨯=, 乙获取96枚金币的概率2111224P =⨯=, 则甲应该获得396724⨯=枚金币;乙应该获得196244⨯=枚金币; 故选:C . 【点睛】本题主要考查概率在实际问题中的应用,涉及到独立事件的概率,考查学生的逻辑推理能力、数学运算能力,是一道中档题.12.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 约等于9,据此模型预报广告费用为6 万元时,销售额为( )A .54万元B .55万元C .56万元D .57万元【答案】D 【解析】试题分析:由表格可算出1(1245)34x =+++=,1(10263549)304y =+++=,根据点(),x y 在回归直线ˆˆˆy bx a =+上,ˆ9b=,代入算出ˆ3a =,所以ˆ93y x =+,当6x =时,ˆ57y =,故选D.考点:回归直线恒过样本点的中心(),x y .13.已知()929012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1【答案】B 【解析】 【分析】求出二项式()913x -展开式的通项为()193rrr T C x +=⋅-,可知当r 为奇数时,0r a <,当r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++⋯+的值.【详解】二项式()913x -展开式的通项()193rr r T C x +=⋅-,当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()990191314a a a ⎡⎤++⋯+=-⨯-=⎣⎦.故选:B. 【点睛】本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题.14.若二项式2nx ⎫⎪⎭的展开式中各项的系数和为243,则该展开式中含x 项的系数为( ) A .1 B .5 C .10 D .20 【答案】C 【解析】 【分析】对2nx ⎫⎪⎭令1x =,结合展开式中各项的系数和为243列方程,由此求得n 的值,再利用二项式展开式的通项公式,求得含x 项的系数.【详解】对2n x ⎫⎪⎭令1x =得()123243n n +==,解得5n =.二项式52x ⎫⎪⎭展开式的通项公式为()515312225522rr rr rr C x xC x---⎛⎫⋅⋅=⋅⋅ ⎪⎝⎭,令53122r -=,解得1r =,故展开式中含x 项的系数为115210C ⋅=.故选:C. 【点睛】本小题主要考查二项式展开式各项系数之和,考查求二项式展开式指定项的系数,属于基础题.15.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L ,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29sD .32x +,292s +【答案】C 【解析】 【分析】由样本数据的平均数和方差的公式,化简、运算,即可求解,得到答案. 【详解】由平均数的计算公式,可得数据12100,,,x x x L 的平均数为1231001()100x x x x x =++++L 数据1210032,32,,32x x x +++L 的平均数为:121001210011[(32)(32)(32)][3()2100]32100100x x x x x x x ++++++=++++⨯=+L L , 数据12100,,,x x x L 的方差为2222121001[()()()]100s x x x x x x =-+-++-L , 数据1210032,32,,32x x x +++L 的方差为:222121001{[(32)(32)[(32(32)][(32)(32)]}100x x x x x x +-+++-++++-+L 2222121001[9()9()9()]9100x x x x x x s =-+-++-=L 故选C. 【点睛】本题主要考查了样本数据的平均数和方差的计算与应用,其中解答中熟记样本数据的平均数和方差的计算公式,合理化简与计算是解答的关键,着重考查了推理与运算能力,属于基础题.16.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱【答案】A 【解析】 【分析】由散点图可知,去掉(3,10)D 后,y 与x 的线性相关性加强,由相关系数r ,相关指数2R 及残差平方和与相关性的关系得出选项. 【详解】∵从散点图可分析得出:只有D 点偏离直线远,去掉D 点,变量x 与变量y 的线性相关性变强, ∴相关系数变大,相关指数变大,残差的平方和变小,故选A. 【点睛】该题考查的是有关三点图的问题,涉及到的知识点有利用散点图分析数据,判断相关系数,相关指数,残差的平方和的变化情况,属于简单题目.17.二项式51(2)x x的展开式中含3x 项的系数是 A .80 B .48 C .−40 D .−80【答案】D 【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C rr r r r r r r T x x x ---+⎛⎫=-=- ⎪⎝⎭n n n n , 令523r -=,1r =,所求系数为145C 280-=-n ,故选D .18.设2012(12)n n n x a a x a x a x L -=++++,若340a a +=,则5a =( )A .256B .-128C .64D .-32【答案】D【解析】【分析】 由题意利用二项展开式的通项公式求得n 的值,从而求得5a 的值.【详解】∵()201212nn n x a a x a x a x -=++++L ,∵334434220n n a a C C +=⋅-+⋅-=()(), 5n ∴=,则5555232a C (),=⋅-=- 故选D .【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.19.我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有“算”字的概率为( )A .518B .12C .59D .79【答案】D【解析】【分析】现在小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,由此能求出他取到的书的书名中有“算”字的概率.【详解】解: 小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,那么他取到的书的书名中有“算”字的概率为357459m p n ===. 故选:D .【点睛】 本题考查排列组合与古典概型的综合应用,难度一般.注意此题中的书名中有“算”字包含两种情况:仅有一本书的书名中有“算”、两本书的书名中都有“算”,分类需要谨慎.20.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .118【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.。
高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1、2019年2月,国家教育部就“文理分科是否取消”等教改问题征集民意之际,某新闻单位从900名家长中抽取15人,1500名学生中抽取25人,300名教师中抽取5人召开座谈会,这种抽样方法是( )A .简单随机抽样B .抽签法 C2、某雷达测速区规定:凡车速大于或等于70km/h 视为“超速”点对200图,则从图中可以看得出将被处罚的汽车大约有( ) A .30辆 B .40辆 C .60辆 D .80辆3、在0,1,2,3,…,9这十个数字中,任取四个不同的数字,那么“这四个数字之和大于5”这一事件是( )A .必然事件B .不可能事件C .随机事件D .不确定是何事件4、某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .不确定是何事件5、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12(2)4f f ≤⎧⎨-≤⎩为事件为A ,则事件A 发生的概率为( ) A .14 B . 58 C . 12 D . 38二、填空题6、容量为100的样本数据,依次分为8组,如下表:则第三组的频率是 .7、某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是 .8、若数据123,,,,n x x x x L 的平均数x =5,方差22σ=,则数据12331,31,31,,31n x x x x ++++L 的平均数为 ,方差为 .9、若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆2216x y += 内的概率为 .10、在一个直径为6的球内随机取一点,则这个点到球面的最近距离大于2的概率为 .三、解答题11、潮州统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)1500,1000[)。
0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距(1)求居民月收入在)3500,3000[的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中分层抽样方法抽出100人作进一步分析,则月收入在)3000,2500[的这段应抽多少人?12、某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格) 和平均分;(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在不同分数段的概率.13、已知,x y 之间的一组数据如下表:(1)分别从集合A={}8,7,6,3,1,{}5,4,3,2,1=B 中各取一个数,x y ,求10x y +≥的概率; (2)对于表中数据,甲、乙两同学给出的拟合直线分别为113y x =+与1122y x =+,试根据残差平方和:21ˆ()ni i i y y=-∑的大小,判断哪条直线拟合程度更好. 14、某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工. (1)求每个报名者能被聘用的概率;(2)随机调查了24名笔试者的成绩如下表所示:请你预测面试入围分数线大约是多少?(3) 公司从聘用的四男,,,a b c d 和二女,e f 中选派两人参加某项培训,则选派结果为一男一女的概率是多少?15、将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率;16、甲、乙两人玩一种游戏:5个球上分别标有数字1、2、3、4、5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢,(1)求甲赢且编号的和为6的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.17、已知向量()a,(),x y=b.=-1,2(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1g a b=-的概率;(2)若,x y∈[]1,6,求满足0>g a b的概率.参考答案一、选择题 1、D ; 2、B ; 3、A ; 4、C ; 5、C ; 二、填空题 6、0.21; 7、18; 8、16,18; 9、29; 10、127. 三、解答题11、解:(1)月收入在)3500,3000[的频率为15.0)30003500(0003.0=-⨯ . (2)1.0)10001500(0002.0=-⨯Θ,2.0)15002000(0004.0=-⨯,25.0)20002500(0005.0=-⨯,5.055.025.02.01.0>=++所以,样本数据的中位数240040020000005.0)2.01.0(5.02000=+=+-+(元); (3)居民月收入在)3000,2500[的频率为25.0)25003000(0005.0=-⨯, 所以10000人中月收入在)3000,2500[的人数为25001000025.0=⨯(人), 再从10000人用分层抽样方法抽出100人,则月收入在)3000,2500[的这段应 抽取25100002500100=⨯人. 12、解:(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为80.010)005.0025.0030.0020.0(=⨯+++,所以,抽样学生成绩的合格率是80%. 利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅05.09525.0853.0752.06515.05505.045⨯+⨯+⨯+⨯+⨯+⨯=72=.估计这次考试的平均分是72分(2)[80,90) ,[90,100]”的人数是15,3.所以从成绩是80分以上(包括80分)的学生中选两人,则基本事件总数153n =,事件“不同分数段”所包含的基本事件数45m =,故所求概率为:45515317P == ,答:略 13解:(1)分别从集合A,B 中各取一个数组成数对(),x y ,共有25对,其中 满足10≥+y x 的有()()()()()()()()()6,4,6,5,7,3,7,4,7,5,8,2,8,3,8,4,8,5,共9对 故使10≥+y x 的概率为:925p =. (2)用131+=x y 作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:222221410117(1)(22)(33)(4)(5)3333S =-+-+-+-+-=.用2121+=x y 作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:222222791(11)(22)(3)(44)(5)222S =-+-+-+-+-=.12S S <Θ,故用直线2121+=x y 拟合程度更好. 14、解:(1)设事件A 为“每个报名者能被聘用”,由题意:201()100050P A == (2)设24名笔试者中有x 人参加面试,则5020024x=,得6x =,参照题中所给表 可预测面试入围分数大约是80分(3)设事件B 为“选派结果为一男一女”则基本事件有:,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,则基本事件总数15n =,事件B 所包含的基本事件数8m =,所以8()15P B =.15、解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件(1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件, 所以P (A )=41369=; 答:两数之和为5的概率为19. (2)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,所以P (B )=931364-=;答:两数中至少有一个奇数的概率34. 16、解:(1)设“甲胜且数字之和为6”为事件A ,事件A 包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),共5个,又甲、乙二人取出的数字共有5525⨯=种等可能的结果,所以51()255P A ==. (2)这种游戏规则不公平。
设“甲胜”为事件B ,“乙胜”为事件C ,则甲胜即两数字之和为偶数所包含的基本事件数为:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)共13个,所以甲胜的概率13()25P B =,从而乙胜的概率为12()1()25P C P B =-=,由于()()P C P B ≠,所以这种游戏规则不公平.17、解(1)设(),x y 表示一个基本事件,则抛掷两次骰子的所有基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),……,(6,5),(6,6),共36个.用A 表示事件“1=-g a b ”,即21x y -=-.则A 包含的基本事件有(1,1),(3,2),(5,3),共3个. ∴()313612P A ==. y x =1x =6y =6 x -2y =0答:事件“1=-g a b ”的概率为112. (2)用B 表示事件“0>g a b ”,即20x y ->.试验的全部结果所构成的区域为(){},16,16x y x y ≤≤≤≤, 构成事件B 的区域为(){},16,16,20x y x y x y ≤≤≤≤->, 如图所示.所以所求的概率为()142425525P B ⨯⨯==⨯. 答:事件“0>g a b ”的概率为425.。