基于运输问题的数学建模

合集下载

蔬菜运输问题数学建模

蔬菜运输问题数学建模

蔬菜运输问题数学建模
蔬菜运输问题可以通过数学建模来解决。

以下是一种可能的数学建模方法:
1. 定义变量:
- X[i][j]:表示从地点i运送蔬菜到地点j的数量,其中i和j 是地点的编号。

- D[i][j]:表示从地点i到地点j的运输距离。

2. 目标函数:
由于蔬菜运输的目标通常是最小化总运输成本或最短运输时间,可以设置目标函数为最小化运输成本或最小化运输时间。

具体的目标函数可以根据具体情况来定。

3. 约束条件:
- 每个地点的进出蔬菜数量必须平衡:对于每个地点i,进出的蔬菜数量之和要等于该地点的需求或产出量。

即∑X[i][j] - ∑X[j][i] = 0。

- 运输量不能超过运输能力限制:对于每个地点i到地点j的运输量X[i][j],必须满足X[i][j] <= C[i][j],其中C[i][j]表示地点i到地点j的运输能力限制。

- 运输量必须是非负数:X[i][j] >= 0。

4. 其他要求和限制:
- 可以考虑添加其他特殊要求和限制,如运输时间窗限制、调度顺序要求等。

5. 求解方法:
运用数学规划方法,如线性规划或整数规划,求解目标函数和约束条件得到最优的蔬菜运输方案。

数学建模之运输问题

数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。

这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。

2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。

我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。

3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。

设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。

我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。

那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。

这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。

2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。

进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。

4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。

线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。

对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。

这些算法可以快速找到较好的解,但不能保证找到最优解。

常用的算法包括模拟退火算法、遗传算法等。

5. 应用领域运输问题在许多实际应用中都有广泛的应用。

例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。

运输问题

运输问题

《数学建模与计算》问题运输问题1. 具体问题有某种物资3个产地,8个销地,第i个产地产量为ai(i=1,2,…,m)第j个销地的需要量为bj(j=1,2,…,n)其中。

由产地i到销地j的距离已知为dij,问应如何分配该种物资,使既能满足各地的需求又能在花费的运输总吨公里数最少(具体距离数据见下表格)①②③④⑤⑥⑦⑧供应量A 4 8 8 19 11 6 22 20 200B 14 7 7 16 12 16 23 17 170C 20 19 11 14 6 15 5 10 160销售量75 60 80 70 100 55 90 80 75由上表可知:该问题中出现了销售量大于产量的情况,因此可以可以增加一个虚产地,其中该虚产地到销售地的距离为0,则上表可以修改如下:①②③④⑤⑥⑦⑧供应量A 4 8 8 19 11 6 22 20 200B 14 7 7 16 12 16 23 17 170C 20 19 11 14 6 15 5 10 160虚产地0 0 0 0 0 0 0 0 075 60 80 70 100 55 90 80 752. 解决方法建立数据模型如下:Minz=4*x11+8*x12+8*x13+19*x14+11*x15+6*x16+22*x17+20*x18+14*x21+7*x22+7*x23+16*x24+12*x25+16*x26+23*x27+17*x28+20*x31+19*x32+11*x33+14*x34+6*x35+15*x36+5*x 37+10*x38+10*x41+8*x42+5*x43+10*x44+10*x45+8*x46+5*x47+8*x48 ;x11+x12+x13+x14+x15+x16+x17+x18=200 ;x21+x22+x23+x24+x25+x26+x27+x28=170 ;x31+x32+x33+x34+x35+x36+x37+x38=160 ;x41+x42+x43+x44+x45+x46+x47+x48=80 ;x11+x21+x31+x41=75 ;x12+x22+x32+x42=60;x13+x23+x33+x43=80 ;x14+x24+x34+x44=70 ;x15+x25+x35+x45=100 ;x16+x26+x36+x46=55 ;x17+x27+x37+x47=90 ;x18+x28+x38+x48=80 ;x>=0(i=1:4, ,j=1:8)ij3. 程序代码于是便可利用lingo软件编写程序求解如下:Min=4*x11+8*x12+8*x13+19*x14+11*x15+6*x16+22*x17+20*x18+14*x21+7*x22+7*x 23+16*x24+12*x25+16*x26+23*x27+17*x28+20*x31+19*x32+11*x33+14*x34+6*x35+1 5*x36+5*x37+10*x38+10*x41+8*x42+5*x43+10*x44+10*x45+8*x46+5*x47+8*x48 ;x11+x12+x13+x14+x15+x16+x17+x18=200 ;x21+x22+x23+x24+x25+x26+x27+x28=170 ;x31+x32+x33+x34+x35+x36+x37+x38=160 ;x41+x42+x43+x44+x45+x46+x47+x48=80 ;x11+x21+x31+x41=75 ;x12+x22+x32+x42=60;x13+x23+x33+x43=80 ;x14+x24+x34+x44=70 ;x15+x25+x35+x45=100 ;x16+x26+x36+x46=55 ;x17+x27+x37+x47=90 ;x18+x28+x38+x48=80 ;end4. 结果分析Global optimal solution found.Objective value: 3890.000Total solver iterations: 11Variable Value Reduced CostX11 75.00000 0.000000X12 0.000000 2.000000X13 0.000000 2.000000X14 0.000000 4.000000X15 70.00000 0.000000X16 55.00000 0.000000 X17 0.000000 12.00000 X18 0.000000 5.000000 X21 0.000000 9.000000 X22 60.00000 0.000000 X23 80.00000 0.000000 X24 0.000000 0.000000 X25 30.00000 0.000000 X26 0.000000 9.000000 X27 0.000000 12.00000 X28 0.000000 1.000000 X31 0.000000 21.00000 X32 0.000000 18.00000 X33 0.000000 10.00000 X34 0.000000 4.000000 X35 0.000000 0.000000 X36 0.000000 14.00000 X37 90.00000 0.000000 X38 70.00000 0.000000 X41 0.000000 11.00000 X42 0.000000 9.000000 X43 0.000000 9.000000 X44 70.00000 0.000000 X45 0.000000 4.000000 X46 0.000000 9.000000 X47 0.000000 5.000000 X48 10.00000 0.000000 Row Slack or Surplus Dual Price1 3890.000 -1.0000002 0.000000 -15.000003 0.000000 -16.000004 0.000000 -10.000005 0.000000 0.0000006 0.000000 11.000007 0.000000 9.0000008 0.000000 9.0000009 0.000000 0.00000010 0.000000 4.00000011 0.000000 9.00000012 0.000000 5.00000013 0.000000 0.000000 由结果可知:当X11=75.00000X15=70.00000X16=55.00000X22=60.00000X23=80.00000X25=30.00000X37=90.00000X38=70.00000X44=70.00000X48=10.00000其余为0时,该方案为最优方案.Min z= 3890.000而对于其他平衡运输问题以及产大于销问题,由上论述可知均可转化为平衡问题求解,这里就不再一一赘述。

数学建模运输问题

数学建模运输问题

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2

n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2


bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。

数学建模,线性规划,运输为问题

数学建模,线性规划,运输为问题
X26 20.00000 0.000000
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20

数学建模中优化模型之运输问题讲解

数学建模中优化模型之运输问题讲解

6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:5-(4+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(10)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:3-(0+(-4)=7
4
3 u1=-4
7
7 u2=-2
6
6
13 u3=6
v4=0
对偶变量法(6)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u2+v1=c21 v1=10
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(7)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u1+v1=c11 u1=-4
运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 求解方法 闭回路法、对偶变量法 特殊形式运输问题 不平衡问题、转运问题

基于运输问题的数学建模

基于运输问题的数学建模

数学建模一周论文论文题目:基于运输问题的数学模型姓名1:学号:姓名2:学号:姓名3:学号:专业:班级:指导教师:2011年12 月29 日(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示(1)求最优调拨方案;(2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。

一论文摘要一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。

本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。

引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。

针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x minx+3031x+3532x+4033x+5534x+2535x+3025Z=并用管理运筹学软件软件得出最优解为:min关键词:运输模型最优化线性规划二.问题的重述和分析A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地is和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i将物品从产地运往销地的最优调拨方案。

A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道,1B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。

把产地1B,2B,3B,4B,5B,正好满足这三个销地的需要。

先将安排的部分配给销地1运输量列如下表中:三.模型的假设与符号说明1.模型的假设①每一个产地都有一个固定的供应量,所有的供应量都必须配送到各个销地;②每一个销地都有一个固定的需求量,整个需求量都必须由产地满足;③从任何一个产地到任何一个销地的物品运输成本和所运输的数量成线性比例关系;④这个成本就等于运输的单位成本乘以运输的数量。

数学建模--运输问题

数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。

关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。

考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。

关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。

首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。

即最短路线为:1-5-7-6-3-4-8-9-10-2-1。

但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。

关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。

这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。

因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。

得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。

关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模一周论文论文题目:基于运输问题的数学模型
1:学号:
2:学号:
3:学号:
专业:
班级:
指导教师:
2011年12 月29 日
(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示
(1)求最优调拨方案;
(2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。

一论文摘要
一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。

本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。

引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。

针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型
Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x min
x+3031x+3532x+4033x+5534x+2535x
+30
25
Z=
并用管理运筹学软件软件得出最优解为:
min
关键词:运输模型最优化线性规划
二.问题的重述和分析
A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地
i
s和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i
将物品从产地运往销地的最优调拨方案。

A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道,
1
B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2
A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。

把产地
1
B,2B,3B,4B,5B,正好满足这三个销地的需要。

先将安排的部分配给销地
1
运输量列如下表中:
三.模型的假设与符号说明
1.模型的假设
①每一个产地都有一个固定的供应量,所有的供应量都必须配送到各个销地;
②每一个销地都有一个固定的需求量,整个需求量都必须由产地满足;
③从任何一个产地到任何一个销地的物品运输成本和所运输的数量成线性比例关系;
④这个成本就等于运输的单位成本乘以运输的数量。

2.符号说明
A,2A,3A表示该物资的三个产地;

1
B,2B,3B,4B,5B表示该物品的5个销地;

1
s表示产地i A的产量;

i
d表示销地j B的销量;

j
c表示把物资从产地i A运到销地j B的单位运价;

ij
x表示把物资从产地i A运到销地j B的运输量;

ij
Z表示将物资从产地i A运到销地j B总费用的最小值。


min
四.模型的建立
从上表可以写出此问题的数学模型。

满足产地产量的约束条件为
x+12x+13x+14x+15x=50,
11
x+22x+23x+24x+25x=100,
21
x+32x+33x+34x+35x=150.
31
满足销地销量的约束条件为
x+21x+31x=25
11
x+22x+32x=115
12
x+23x+33x=60
13
x+24x+34x=30
14
x+25x+35x=70
15
使运输费最小,即
Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x+ min
x+3031x+3532x+4033x+5534x+2535x。

30
25
所以此运输问题的线性规划的模型如下:
Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x+ min
x+3031x+3532x+4033x+5534x+2535x
30
25
约束条件,
1112131415
2122232425
3132333435
112131
122232
132333
142434
152535
50
100
150
25
115
60
30
70
0(1,2,3;1,2,3,4,5) ij
i j
x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
x x x
x x x
x
⎧++++=

++++=


++++=


++=


++=


++=

⎪++=

⎪++=

⎪≥==

五.模型的求解及结果
通过管理运筹学软件对模型中约束条件的求解,解得,模型目标函数中:Z=7225,
min
x=15
11
x=35
12
x=10
21
x=60
23
x=30
24
x=80
32
x=70
35
其余的x值为0.
最优解如下
********************************************
起至销点
发点 1 2 3 4 5
-------- ----- ----- ----- ----- -----
1 15 35 0 0 0
2 10 0 60 30 0
3 0 80 0 0 70
此运输问题的成本或收益为: 7225
此问题的另外的解如下:
起至销点
发点 1 2 3 4 5
-------- ----- ----- ----- ----- -----
1 0 50 0 0 0
2 10 0 60 30 0
3 15 65 0 0 70
此运输问题的成本或收益为: 7225
此问题的另外的解如下:
起至销点
发点 1 2 3 4 5
-------- ----- ----- ----- ----- -----
1 0 35 0 15 0
2 25 0 60 15 0
3 0 80 0 0 70
此运输问题的成本或收益为: 7225
六.结果的分析和检验
A运到销地1B的运输量为15单位,产地1A运到销地2B的从结果可知,当产地
1
A运到销地1B的运输量为10单位,产地2A运到销地3B的运运输量为35单位,产地
2
A运到销地4B的运输量为30单位,产地3A运到销地2B的运输输量为60单位,产地
2
A运到销地5B的运输量为70单位,其他运输量都为0单位时,最小量为80单位,产地
3
总费用为7225。

第二问:当产地
A的产量变为130时,则供给量为50+100+130=280单位;而需
3
求量为25+115+60+30+70=300单位。

这是一个销大于产的问题,为此我们建立一个假A,4A的产量为20,不过4A生产的物品仅仅是个“空头支票”。

由于销地2B 想的产地
4
A运到销地2B的单位运价为M(M可以是一个足够的115个单位必须满足,所以设产地
4
大的基数,如1000即可),其他销地的产品可以不满足,假设其运价为0.单位运价表如下:
运用管理运筹学软件求解得:
最优解如下
********************************************
起至销点
发点 1 2 3 4 5
-------- ----- ----- ----- ----- -----
1 0 50 0 0 0
2 25 5 60 10 0
3 0 60 0 0 70
4 0 0 0 20 0
此运输问题的成本或收益为: 6500
此问题的另外的解如下:
起至销点
发点 1 2 3 4 5
-------- ----- ----- ----- ----- -----
1 0 50 0 0 0
2 25 0 60 15 0
3 0 65 0 0 65
4 0 0 0 1
5 5 此运输问题的成本或收益为: 6500
此问题的另外的解如下:
起至销点
发点 1 2 3 4 5 -------- ----- ----- ----- ----- -----
1 0 50 0 0 0
2 25 0 60 10 5
3 0 65 0 0 65
4 0 0 0 20 0 此运输问题的成本或收益为: 6500
x=50
有结果可知,
12
x=25
21
x=5
22
x=60
23
x=10
24
x=60
32
x=70
35
x=20
44
其余变量为0,此时总费用的最小值为6500.
七.参考文献
[1]伯棠.《管理运筹学》.高等教育,2006.
[2]管理运筹学软件2.0
课程设计评分表1:学号:;2:学号:;
3:学号:;
专业:;班级;
课程设计题目:基于运输问题的数学模型。

相关文档
最新文档