高中数学 1.3简单的逻辑联结词课件 新人教版选修21

合集下载

高二数学 (新课标人教A版)选修2-1《1.3简单的逻辑联结词》教案

高二数学     (新课标人教A版)选修2-1《1.3简单的逻辑联结词》教案

1.3简单的逻辑联结词1.3.1且 1.3.2或学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。

在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。

下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,…表示命题。

(注意与上节学习命题的条件p 与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。

(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。

学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。

问题2:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。

3、归纳定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q读作“p且q”。

一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。

命题“p∧q”与命题“p∨q”即,命题“p且q”与命题“p或q”中的“且”字与“或”字与下面两个命题中的“且”字与“或”字的含义相同吗?(1)若 x∈A且x∈B,则x∈A∩B。

1.3简单的逻辑联结词(新)

1.3简单的逻辑联结词(新)

2.问题2 思考:命题 p∧q的真假如何确定? 观察下列各组命题,命题p∧q的真假与p、q 的真假有什么联系? P:12能被3整除; q:12能被4整除; p∧q:12能被3整除且能被4整除;
P:等腰三角形两腰相等; q:等腰三角形三条中线相等; p∧q:等腰三角形两边相等且三条中线相等. P:6是奇数; q:6是素数; p∧q:6是奇数且是素数.
p∨q是真命题 p∧q为真命题
★★1.3.3
1.问题1
非 (not)
思考: 下列两组命题间有什么关系? (1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根 命题(2)是命题(1)的否定,命题(4)是命题 (3)的否定. 一般地,对一个命题p全盘否定,就得到一个 新命题,记作¬ p,读作“非p”或“p的否定”.
有些命题如含有“……和……”、
“……与……”、“既……,又…..”等词的 命题能用“且”改写成“p∧q”的形式. 例2:用逻辑联结词“且”改写下列命题,并 判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数.
解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题
p 真 真 假 假 q 真 假 真 假 p∧q 真 假 假 假 p∨q 真 真 真 假
﹁p
假 假 真 真
思考:命题P与┐p的真假关系如何? p与┐p真假性相反 填空:当p为真命题时,则┐p为 假命题;当p为假 命题时,则┐p为 真命题 .
一句话概括: 真假相反
p 真 假
¬ p 假 真
活动探究
探究1:逻辑联结词“非”的含义与集合 中学过的哪个概念的意义相同呢? 对“非”的理解,可联想到集合中的 “补集”概念,若命题p对应于集合P, 则命题非p就对应着集合P在全集U中的补 集CUP.

高中数学选修1课件:1.3简单的逻辑联结词

高中数学选修1课件:1.3简单的逻辑联结词
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词.含有逻 辑联结词的命题称为复合命题,不含逻辑联结 词的命题称为简单命题.
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
1.3.1 且(and)
思考?
正面
=>

都是
至多有一个 至少有一个 任意的 所有的
否定


不是
不都是
至少有两个 没有一个 某个 某些
例4 已知命题p,q,写出“P或q”,“P且q”,“非p”形
式的复合命题. (1)p:π是无理数,q:π是实数. (2)p:3>5,q:3+5=8. (3)p:等腰三角形的两个底角相等,q:等腰三 角形底边上的高和底边上的中线重合.
例2 分别写出由命题“p:平行四边形的对角 线相等”,“q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
例3 分别指出下列命题的形式及构成它的 简单命题。 (1)24既是8的倍数,又是6的倍数. (2)李强是篮球运动员或跳水运动员. (3)平行线不相交.
本节须注意的几个方面: (1)“≥”的意义是“>或=”. (2)“非”命题对常见的几个正面词语的否定.
是假命题时, p q是假命题.
p
q
全真为真,有假即假.
一般地,用逻辑联结词”或”把 命题p和命题q联结起来.就得到一个
p q 新命题,记作
规定:当p,q两个命题中有一个是真命题
时, p q 是真命题;当p,q两个命题中都是
假命题时, p q 是假命题.
当p,q两个命题中有一个是真命

( 人教A版)最新高中数学选修1-1:1.3简单的逻辑联结词课件 (共31张PPT)-经典通用PPT

( 人教A版)最新高中数学选修1-1:1.3简单的逻辑联结词课件 (共31张PPT)-经典通用PPT

[解析] 设方程 x2+(a2-5a+4)x-1=0 的两根为 x1,x2,由题意不妨设 x1<1,x2
>1,所以
x1-1x2-1<0, 即x1x2-x1+x2+1<0. 又因为 x1+x2=-(a2-5a+4), x1x2=-1,所以 a2-5a+4<0,
所以 1<a<4.
6分
又因为函数 y=-log(a2-2a-2)(x+2)在(-2,+∞)上是减函数, 所以 a2-2a-2>1,
的补集.
3.已知命题 p:关于 x 的方程 x2-ax+4=0 有实根;命题 q:关于 x 的函数 y=2x2 +ax+4 在[3,+∞)上是增函数.若 p∨q 是真命题,p∧q 是假命题,则实数 a 的取 值范围是( ) A.(-12,-4]∪[4,+∞) B.[-12,-4]∪[4,+∞) C.(-∞,-12)∪(-4,4) D.[-12,+∞)
答案:C
由含逻辑联结词命题的真假求参数的取值范围 [典例] (本题满分 12 分)已知命题 p:方程 x2+(a2-5a+4)x-1=0 的一个根大于 1, 一个根小于 1;命题 q:函数 y=-log(a2-2a-2)(x+2)在(-2,+∞)上是减函数.若 p∨q 为真,p∧q 为假, 求 a 的取值范围.
解析:命题 p:2∉{1,3}是真命题. 因为{x|x2-4=0}={-2,2},所以命题 q:2∉{x|x2-4=0}是假命题. 答案:假 2∉{1,3}或 2∉{x|x2-4=0} 真
3.若 p:不等式 ax+b>0 的解集为x|x>-ba,q:关于 x 的不等式(x-a)(x-b)<0 的 解集为{x|a<x<b},且“p∧q”为真命题,则 a,b 满足________. 解析:因为命题“p∧q”为真命题,所以 p、q 均为真命题,于是 a>0,且 a<b. 答案:0<a<b

高中数学《简单逻辑联结词》课件

高中数学《简单逻辑联结词》课件
命题⑸的否定:空集不是任何集合的真子集,是真命题;
写出下列语句的否定形式:
• (1) a>0 或 b<0. • (2) 实数a、b、c都大于零. • (3)方程至多两个解.
• 解: (1)a≤0且 b≥0. • (2)实数a、b、c不都大于零. • (3)方程至少三个解.
对一些词语的否定
词语
等于 大于 小于
命题 q :函数 y (5 2a) x 是减函数,若 p 或 q 为真 命题,p 且 q 为假命题,则实数 a 的取值范围是( ) (A) a ≤1 (B) a 2 (C)1 a 2 (D) a ≤1或 a≥2
命题 p 为真时,即真数部分能够取到大于零的所有实数, 故二次函数 x2 2x a 的判别式 4 4a 0 ,从而 a 1 ;命 题 q 为真时, 5 2a 1 a 2 。若 p 或 q 为真命题,p 且 q 为假命题,故 p 和 q 中只有一个是真命题,一个是假命题。若 p 为真,q 为假时,无解;若 p 为假,q 为真时,结果为 1<a<2, 故选(C)
例 2.用逻辑联结词“且”改写下列命题,并 判断它们的真假: ⑴1 既是奇数,又是素数; ⑵2 和 3 都是素数.
例 3 判断下列命题的真假: ⑴2≤2; ⑵集合 A 是 A∩B 的子集或是 A∪B 的子集; ⑶周长相等的两个三角形全等或面积相等的 两个三角形全等.
例 4 写出下列命题的否定,并断它们的真假: ⑴ p: y sin x 是周期函数; ⑵ p: 3 < 2; ⑶ p: 空集是集合 A 的子集.
(真 )
(真 )
(真 )
(真 )
(假 ) (假 ) (假 ) (假 ) (假 )
p
q
P且q

高二数学人教A版选修2-1课件:1.3 简单的逻辑联结词(共28张ppt)

高二数学人教A版选修2-1课件:1.3 简单的逻辑联结词(共28张ppt)

探究点1 联结词“且” 下列三个命题之间有什么关系?
(1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除;
答案:命题(3)是由命题(1)(2)使用联结词“且”
联结得到的新命题.
【提升总结】
一般地,用联结词“且”把命题p和q联结起 来,就得到一个新命题,
记作:p∧q读作p且q p∩q={x|x∈p且x ∈q}
1.命题“x=±3是方程∣x∣=3的解”中( A.没有使用任何一种联结词 B.使用了逻辑联结词“非” C.使用了逻辑联结词 “或” D.使用了逻辑联结词“且”
C)
2.如果命题p是假命题,命题q是真命题,则下列错
误的是( D )
A.“p且q”是假命题 B.“p或q”是真命题
C.“非p”是真命题
D.“非q”是真命题
p p∩q q
如何确定命题“p∧q”的真假性呢? 规定:
当p,q都是真命题时, “p∧q”是真命题; 当p,q两个命题中有一个是假命题时, “ p∧q”是假命题. 简记为:有假则假.
例1 将下列命题用“且”联结成新命题,并 判断它们的真假: (1)p:平行四边形的对角线互相平分,
q:平行四边形的对角线相等;
3.p:2是8的约数,q:2是12的约数.
“p或q” 2是8的约数或是12的约数 ,
“p且q”2是8的约数且是12的约数 .
4.分别用“p∨q”“p∧q”“﹁p”填空:
(1)命题“6是自然数且是偶数”是__p_∧__q_的形式; (2)命题“3大于或等于2”是__p_∨__q__的形式; (3)命题“4的算术平方根不是-2”是__﹁__p_的形式; (4)命题“正数或0的平方根是实数”是 p∨q 的形
1.3 简单的逻辑联结词

人教A版高中数学选修1-1《一章 常用逻辑用语 1.3 简单的逻辑联结词 1.3.1 且(and)》赛课课件_2

人教A版高中数学选修1-1《一章 常用逻辑用语  1.3 简单的逻辑联结词  1.3.1 且(and)》赛课课件_2

(2) p:35是15的倍数, q:35是7的倍数。
解:(2) pq: 35是15的倍数且35是7的倍数。 由于p假、q真,从而pq假。
将下列命题用“且”联结成新命题,并判断它们的真假; (1)p:菱形的对角线相等,
q:菱形的对角线互相平分 (2) p:35是5的倍数,
q:35是7的倍数。
解:(1) pq:菱形的对角线相等且互相平分。 由于p假、q真,从而pq假。
口诀:全假为假,有真即真.
课后练习 课后习题
课后练习
将下列命题用“且”联结成新命题,并判断它们的真假:
(1)p: 5是10的约数,q:5是15的约数
p且q: 5是10的约数且是15的约数

(2)p: 矩形的对角线相等,q:矩形的对角线互相垂直
p且q:矩形对角线相等且互相垂直

(3)p:π是有理数,q:π是自然数
(2) pq: 35是5的倍数且35是7的倍数。 由于p真、q真,从而pq真。
例2、用逻辑联结词“且”改写下列命题,并判断它们的真假;
(1) 1既是奇数,又是素数; (1)可改写为:1是奇数且1是素数。 由于p真q假, 所以这个命题是假命题。
(2)2和3都是素数。
(2)可为:2是素数且3是素数。 “2是素数”与“3是素数”都是真命题, 所以这个命题是真命题。
即 pq 。
因为p真、q假, 所以命题pq 是真命题。
(2) 集合A是A∩B的子集或是A∪B的子集; 解:命题“集合A是A∩B的子集或是A∪B的子集” 是用“或”联结构成的命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集;
用“或”联结后构成新命题,即 pq 因为p假q真,所以命题pq是真命题。
如果pq 为真命题, 那么pq一定是真命题吗?

2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.3.1 简单的逻辑联结词——且、或

2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.3.1 简单的逻辑联结词——且、或

p∧q:1不是质数且1不是合数.
(2)p:2是偶数,q:2是质数,
p∧q:2 是偶数且2是质数.

(3)p:5是质数,q:7是质数,
p∧q:5是质数且7是质数.
(4)p:x=3是方程|x|=3的解,
q:x=-3是方程|x|=3的解,
p∨q:x=3或x=-3是方程|x|=3的解.


基 础 梳 理 2.含有逻辑联结词的命题真假的判断: (1)若p∧q为真,当且仅当
p、q均为真 _______________________________________________ ;
(2)若p∨q为真,当且仅当
p、q至少有一个为真 _______________________________________________ .
点评:(1)当一个复合命题不是用“且”或“或”连
接时,可以将其改为用“且”或“或”连接的复合命题,
改写时要注意不能改变原命题的意思,这就要仔细考虑到 底是用“且”还是用“或”.
(2)在用“且”、“或”联结两个命题 p、 q时,
在不引起歧义的情况下,可将 p、 q中的条件或结论合 并,使叙述更通顺.
q:三角形的外角大于与它不相邻的任何一个内角.

变 式 迁 移 解析:(1)“p∨q”:π 是无理数或e不是无理数; “p∧q”:π 是无理数且e不是无理数. (2)“p∨q”:方程x2+2x+1=0有两个相等的实数根 或两根的绝对值相等;“p∧q”:方程x2+2x+1=0有两 个相等的实数根且两根的绝对值相等.

栏 目 链 接

题型一
例1
用“且”、“或”联结成新命题
将下列命题用“且”、“或”联结成新命题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档