全混流反应器

合集下载

化学反应工程_连续流动釜式反应器讲解

化学反应工程_连续流动釜式反应器讲解

表3-5列出了平推流反应器和全混流反应器的反应
结果比较,其中 VR ,这是对等容过程而言。
V0
平推流反应器与全混流反应器的比较
补充知识点:空时与空速的概念:
空时:
Vr V0
反应体积 进料体积流量
(因次:时间)
表明 Vo , 处理能力
空速:
1 V0 FA0
Vr cA0Vr
因次 :时间-1
两釜串联操作时,第一釜在CA1下进行,仅第二釜 维持在CAf下进行,整个反应速度提高了一个水平;
在三釜串联操作时,前两釜都是在高于CAf的浓度 下进行,仅第三釜在CAf进行,反应速度比两釜串 联时又有所提高。可见,串联的釜数越多,反应 物浓度提高越多,反应速度越快,需要的反应时 间或反应器体积就越小。
物料出口处的物料参数; 2. 物料参数不随时间而变化; 3. 反应速率均匀,且等于出口处的速率,不随时间变化; 4. 返混=∞
二、全混流反应器计算的基本公式
1. 反应器体积VR 衡算对象:关键组分A
V0, N A0,CA0
X A0 0
N A,CAf X Af
衡算基准:整个反应器(VR) 稳定状态:
空速的意义:单位时间单位反应体积所处理的物料量。 空速越大,反应器的原料处理能力越大。
多级全混釜的串联及优化
设有一反应,A的初始浓度为CA0,反应结束后最 终浓度为CAf,反应的平衡浓度为CA*,考察平推流 反应器和全混流反应器的浓度推动力。 由图示,显然有,ΔCA平>ΔCA全 平推流反应器中的浓度推动力大于全混流反应器 中的浓度推动力。结果,平推流反应器体积小于 全混流反应器体积。
浓度分布 ------ 推动力
反应推动力随 反应时间逐渐 降低

全混流反应器的热稳定性

全混流反应器的热稳定性

结论
(1) C与d等效,平推流与全混流反应器串联时,与顺序无关。 (2)e与f等效,两个平推流反应器串联和并联时结果相同,与 连接方式无关。 (3)CAf:a>b>c=d>e=f (4)xAf:f=e>d=c>b>a
思考题:
等体积的平推流与全混流反应器串联,在等温条件下 进行二级不可逆反应,反应速率
平推流反应器: VR V0C A0 dxA rA
x Af 0
x Af
0
dxA rA
间歇反应器:不考虑辅 助操作时间 t C A0
x Af 0
VR V0t V0C A0
dxA rA
(2) 全混流反应器与平推流反应器体积比较 如果全混流反应器与平推流反应器中进行相同的反 应,采用相同的进料流量与进料浓度,反应温度与最终 反应率也相同。则由于全混流反应器中存在返混。所以 反应体积要大一些。
3.3.4
全混流反应器的热稳定性
任何化学反应都有一定的热效应,因此有必要讨论 反应器的传热问题,尤其当反应器放热强度较大时,传 热过程对化学反应过程的影响,往往成为过程的关键因 素。反应过程中的热量传递与传质一样,也可按其尺度 分为:设备尺度的热量传递和颗粒尺度的热量传递。 对放热反应过程,当某些外界因素使得反应温度升 高时,根据阿累尼乌斯公式可知反应速率随之加快。然 而反应速率的剧增,反应放热速率也愈大这就使反应温 度进一步上升,因而就可能出现如下的恶性循环 反应温度上升 反应速率加快 反应放热速率增大
E C A0VR (H R )k10 exp( ) C A0VR k (H R ) RT QR E 1 k m 1 m k10 exp( ) RT
B、移热速率

§84全混流反应器

§84全混流反应器

VRLeabharlann kCA20 (1 qV C A0 x A x A )2 (CB0 0.5C A0 xA )
0.0025
0.028 / 60 60 2(1 0.6)2 (3 0.5 2 0.6)
0.146 m3
• 9题,解(1)
VR
qV C A0 x A kCA0 (1 x A )
14.4 0.8 24 60 0.0806 (1 0.8)
(1)
t k CA0
x (1
A
x
A
)
2
0.5 kCA0 0.52
1 0.5k CA0
VR=qVt,VR2=6VR,6VR=6qVt=qVt2
6qV
qV xA
0.5kCA0 kCA0 (1 xA )2
xA2 25 xA 12 0
∴ xA 0.75
2020/6/17
8
• 另解:
6VR
xA
qV (C A0 C A ) (rA )VR
t VR CA0 CA
qV
rA
(2)
将 C A C A0 (1 xA )
代入(2)
t VR CA0 xA
(3)
qV rA
2020/6/17
4
t— 空间时间,因为是定容过程,∴又称为逗
留时间,因为物料质点在反应器的停留时间
长短不一,所以称为平均逗留时间。
• 因为流动情况不同,根据PFR的特点,有以下关
系式,
t3
CA3 CA0
dCA kCA2
1 1
k
CA3
1 CA0
kt3C A0
C A0 C A3
1
2

C A3 1

全混流反应器生活应用实例

全混流反应器生活应用实例

全混流反应器生活应用实例
按照操作方式,可以分为间歇过程和连续过程,相应的反应器为间歇反应器和流动反应器。

对于间歇反应器,物料一次性加入,反应一定时间后把产物一次性取出,反应是分批进行的。

物料在反应器内的流动状况是相同的,经历的反应时间也是相同的。

对于流动反应器,物料不断地加入反应器,又不断地离开反应器。

考察物料在反应器内的流动状况。

有的物料正常的通过反应器,有的物料进入反应器的死角,有的物料短路(即近路,通过反应器有的物料在反应器内回流。

在流动反应器中物料的流动状况不相同,造成物料浓度不均匀,经历的反应时间不相同,直接影响反应结果。

物料在反应器内的流动状况看不见摸不着。

人们采用流动模型来描述物料在反应器内的流动状况。

流动模型分类如下:
平推流模型全混流模型平推流模型理想流动模型金混流模型流动模型非理想流动模型
特别强调的是对于流动反应器必须者虑物料在反应器内的流动状况
流动模型是专指反应器而言的。

第三章理想流动反应器
第节流动模型概念
1.物料质点物料质点是指代表物料特性的微元彧微团。

物料由无数个质点组成。

2.物料质点的年龄和寿命年龄是对反应器内质点而言,指从进入反应器开始到某一时刻,称为年龄。

寿命是对离开反应器的质点而言,指从进入反应器开始到离开反应器的时间。

全混流反应器最佳反应体积

全混流反应器最佳反应体积

V rA H r v0 C p T T0 UAT Tm
UAT Tm 0
若反应器没有设置传热面,在绝热条件下操作,则:
V rA H r v0 C p T T0
故变温操作的CSTR设计就是操作方程、设计方程、动力 学方程联立求解的过程,即:
I)全混流反应器的热平衡
单位时间内的热量衡算:
V rA H r v0 C p T T0 UAT Tm
以Qg表示放热速度,则:Qg V rA H r 以Qr表示移热速率,则: Qr v0 C p T T0 UAT Tm 定常态下:Qg=Qr
解上式得: xA1=0.702
VR1 VR 2
v0 x A 2 x A1 3 3.88m 2 k CA0 (1 x A 2 )
3
v0 x A1 3 2.77 m 2 k CA0 (1 x A1 )
VRT 6.65m
Return
§3.7 全混流反应器的热量衡算与热稳定性 (1)全混流反应器的热衡算方程(操作方程) 忽略反应流体的密度和定压比热CP随温度的变化,在 定常态下,对反应器作热量衡算有:
★Qr~T是呈直线关系
Qg、Qr都是温度T的函数,当Qg=Qr时,在Q-T图上就表 示两条曲线的交点,交点体现的状态为定常态,但处于 定常态操作的反应器不一定是稳定的。 Qg Qr Qr b c
对于微小的干扰:
a
Qg
△T>0,对a, c两点,Qr>Qg, 则系统恢复至原来的状态; 而对于b点,Qg>Qr,则使反 应温度进一步升高,直到a点; △T<0,对a, c两点,Qg>Qr, 则系统恢复至原来的状态; 而对于b点,Qr>Qg,则使反 应温度进一步降低,直到c点;

全混流反应器

全混流反应器

§3.3 连续操作的完全混合流反应器
级不可逆放热反应有: 对n级不可逆放热反应有: 级不可逆放热反应有
V (−∆H r )C A0 n QG = k (1 − x A ) n v0 ρ c p
对于n=1的情况,有 的情况, 对于 的情况
QG = V (−∆H r )C A0 k ( ) v0 ρ c p 1 + kτ
UATm V (−rA )(−∆H r ) UA = T (1 + ) − (T0 + ) v0 ρ c p v0 ρ c p ρ c p v0
则:
放热速率 移热速率
QG =
V ( − rA )( −∆ H r ) v0 ρ c p
UATm UA Qr = T (1 + ) − (T0 + ) v0 ρ c p ρ c p v0
全混流反应器的热衡算及热稳定性
§3.3 连续操作的完全混合流反应器
三、全混流反应器的热衡算及热稳定性
1.全混流发应器的热衡算方程(操作方程) .全混流发应器的热衡算方程(操作方程) 随温度的变化, 若忽略反应流体的密度和定压比热 c p 随温度的变化,反应器在 定常态下操作对反应器作热量衡算, 定常态下操作对反应器作热量衡算,有:

E ] RT QG = E v0 ρ c p + V ρ c p k0 exp[− ] RT V (−∆H r )C A0 k0 exp[−
当 T 时,有 →∞
QG = ( −∆H r )C A0 / ρ c p
UATm UA Qr = T (1 + ) − (T0 + ) v0 ρ c p ρ c p v0
单位时间 内反应的 放热量
+

全混流反应器(CSTR)

全混流反应器(CSTR)

例题
对于一级不可逆反应方程:
A → B , rA = kcA
在全混流反应器完成上述一级反应,如k= 0.01s-1,体积流量为10-3 m3s-1,试计算转化 率达到30%时所用的反应时间。
间歇反应器t=35.7s 平推流反应器τ=35.7s 全混流反应器τ=42.9s
全混流反应器对完成同样的转化率所需的反应器 体积和停留时间都比平推流和间歇反应器大。 体积和停留时间都比平推流和间歇反应器大。
FA0 = vT c A0
FA = vT c A
rAV
0
ቤተ መጻሕፍቲ ባይዱ
FA0 = FA + rAV
FA0 − FA rA = V
全混流反应器的设计方程不是微分格式,这不 同于平推流反应器和间歇反应器。平推流需要 微分形式来描述组分随空间的变化,间歇反应 器组分随反应时间的变化。相反,CSTR方程 其组分不随时间和空间变化。因此,反应组分 不随时间和空间变化,那么全混流行为还是反 应器?回答呢:问题在于新鲜的物料是连续的 引入到反应器内,因为完全混合是一个瞬间变 化,因此反应组分也是瞬间发生变化的。
CSTR的体积计算 的体积计算
n n FA0 − FA FA0 x A FA0 x AvT FA0 x AvT V= = = = n n n n rA kc A kFA kFA0 (1 − x A )
反应为一级反应
V 1 xA τ= = vT k 1 − x A
kτ xA = 1 + kτ
全混流反应器
全混流反应器(CSTR)
操作特点
反应物料和产物流速恒定; 反应流体在反应器内是完全混合的,故在反应 器内时具有均一的温度和组成,且与从反应器 流出的物料的温度和组成是一致的 当反应流体的密度是恒定时,则流出和流入 反应器的容积流速v是相同的 反应器内的反应速率亦维持恒定。

全混流反应器的返混

全混流反应器的返混

全混流反应器的返混全混流反应器是一种在化学工程中广泛使用的反应器类型,其设计和操作参数对反应的效果有着重要的影响。

下面是一些与全混流反应器相关的参考内容,以帮助读者深入理解全混流反应器的原理和应用。

1. 反应器设计:全混流反应器的设计涉及多个方面,包括反应器的尺寸和体积、反应物的进料方式、搅拌机械的选择和搅拌速度、采样管和温度、压力和流量测量等。

其中,反应器尺寸和容积的确定通常需要考虑到反应物料的热效应、反应速率和转化程度等因素。

2. 反应器模型:全混流反应器的模型可以通过质量守恒和能量守恒等原理进行推导和分析。

一般情况下,可以使用连续性方程和能量方程来建立模型,以描述反应物的浓度和温度随时间和位置的变化。

3. 反应动力学:反应动力学是全混流反应器设计的重要依据,它研究了反应速率和反应物浓度之间的关系。

常见的反应动力学模型有零级、一级、二级和伪一级反应动力学模型等,它们可以用来描述多种化学反应的速率。

4. 放热反应控制:全混流反应器中的放热反应对温度的影响较大,需要进行合适的温度控制以保证反应的安全和有效进行。

参考内容可以包括放热反应的控制策略、热交换技术的应用以及多相反应体系中的热传递问题等。

5. 混合与分离操作:全混流反应器中需要进行的混合和分离操作对反应过程的控制和产品的纯度有着重要影响。

相关参考内容可以包括混合操作的选择和优化以及分离操作的技术,如蒸馏、离心等。

6. 反应器应用:全混流反应器在化学工程中有广泛的应用,涉及到多个领域,如有机合成、催化反应、聚合反应等。

文中可以引用一些具体的应用案例,介绍全混流反应器在如化学品生产、石油炼制和新能源开发等领域的实际应用。

以上提及的参考内容涵盖了全混流反应器的原理、设计、动力学、热控制、运行操作和应用等方面,有助于读者了解和应用全混流反应器。

通过深入研究和实践,读者可以进一步掌握全混流反应器的工程设计和操作技术,为化学工程领域的反应过程提供技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


i
N
i
C A ,i 1 C A ,i Vi i rAi Q0
将具体的速率方程代入上式,从第一釜开始逐釜计算下去。
各釜的容积与温度可以不同,如对于n级不可逆反应:
x A,i x A,i 1 Vi C A,i 1 C A,i i n n n 1 v0 k i C A,i k i C A0 1 x A,i
§3.4 全混流反应器
1、全混流模型 2、全混流反应器的设计方程式 3、设计方程式的应用 4、分批式(间歇釜式)反应器和全混流(CSTR) 反应器的比较 §3.5 多釜串联组合的全混流反应器 1、多釜串联CSTR反应器的特点
2、多釜串联CSTR反应器的设计方法
①解析法 ②图解法
1、全混流模型:
CSTR(Continuously Stirred Tank Reactor—CSTR)
VR VR xA FA0 v0 C A0 C A0 rA VR C A0 x A C A0 C A rA rA v0
CSTR设计方程式(xA0=0的情况) xA0≠0呢?
xA0≠0, 可认为原料中的A已转化了xA1 推导出的设计方程具有通用性
CA(排料时A的浓度),反应速率随 t 减小; 全混流CSTR:A的浓度由CA0瞬间降至反应器出口浓度 CA,故全混流反应器一直在相当于出口浓度的 低反应速率下进行,相当于图中 B 点 速率下进 行。
分批式反应器所需反应时间:
t
CA0
CA
dCA rA
全混流反应器所需空时:
τ = 面积CA0DBCA=
k i k j const
C A, N C A0

1 k i N 1 k i
1
N
1
或 : x A, N 1
总容积为:V=N· Vi=N·τi· v0
例 题
例题8 在两釜串联的全混流反应器中,用已二酸和已二醇生
产醇酸树脂,在第一釜中已二酸的转化率为60%,第二釜中 它的转化率达到80%,反应条件和产量如下:
速率方程式:(-rA)=kCACB
式中:
(-rA)----以已二酸组分计的反应速率,kmol.L-1.min-1
k----反应速率常数,1.97L.kmol-1.min-1
CA、CB----分别为已二酸和已二醇的浓度,0.004kmol.L-1
若每天处理已二酸2400kg,转化率为80%,试计算确定反
★ 如果多釜与单釜具有相同的生产能力和转化率,多釜
串联的反应器总容积必定小于单釜。串联级数越多,所 需体积愈小,过程愈接近活塞流( PFR)和分批式反应 器。 Return
多釜串联反应器的设计方法 ①解析法:
1 2 i N
设每个反应器的空时为τi,则总空时为: 对任意i釜A组分的物料衡算(恒容系统):
又称理想混合流反应器或连续搅拌釜式反应器,进出 物料的操作是连续的,可以单釜或多釜串联操作。 特点: ★新鲜物料瞬间混合均匀,存在不同停留时间的物料之 间的混合,即返混。物料返混是连续操作反应器存在 的现象,且逆向混合程度最大,逆向混合直接导致稀 释效应最大。 ★反应器内所有空间位臵的物系性质是均匀的,并且等 于反应器出口处的物料性质,即反应器内物料的浓度 与温度均一,且与出口物料温度、浓度相同。 ★反应器内物系的所有参数,如T、C、P等均不随时间变 化,从而不存在时间独立变量,独立变量是空间。
CA0 xA0=0 (或xA1) v0 FA0 CA xA (或xA2) VR CA xA (或xA2) v FA
试问化学反应速率 是固定不变的吗? 为什么?
进入量=FA0=v0CA0
排出量=FA=FA0(1-xA)= v0CA0(1- xA) 反应量=(-rA)VR
FA0-FA0(1-xA) -(-rA)VR=0 或:v0CA0- v0CA0(1- xA) -(-rA)VR=0 可以导出下列式子
应器的总体积大小。
解: 反应速率方程可转化为:(-rA)= 第一釜有效容积的计算
2 kCA
由操作方程知: VR C A0 C A C A 0x A1 x A1 2 Q0 (rA ) kC A 0(1 x A1 ) kC A 0(1 x A1 )2
VR 1 Q 0
C A0 C A BC A
全混流反应器的容积效率:
说明容积效率 可以用时间比 空时的原因
C A0 C A
rA C
A
AB曲线下阴影部分面积 1.0 矩形C A0 DBCA的面积
对于0级反应,η=1,其物理意义是什么?请思考!
t
对于n>0的不可逆反应,CSTR的容积效率η均小于1,这是 由于“返混”造成的稀释效应使全混流的反应器的容积效 率小于1,也就是说全混流反应器的有效容积将是分批式 反应器的1/η倍,但要注意分批式操作的非生产性时间t0在 计算η时并没有考虑,若考虑之,则η’=(t+t0)/τ,有可能 η=t /τ小于1的情况,而η’=(t+t0)/τ大于1,这是完全可能 的。见陈甘棠教材P54例3-3-1。
对于任意εA值
VR xA C A0 C A Q0 k(1 x A ) kC A k 或 : xA 1 k C A0 CA 1 k CA 1 C A0 1 k
★ 二级反应 AP 对于任意εA值: (-rA)=
2 kCA
VR C A 0x A x A(1 A x A )2 C A 0(C A 0 x A ) 2 2 Q0 kC A kC A 0(1 x A ) kC A2(C A 0 AC A )
VR VR x A 2 x A1 rA FA 0 v 0C A 0 C A0
τ为空时,是反应器的有效容积与进料流体的容积流速比值 反应工程中常用于表示时间概念的还有: ◆反应时间t:反应物从进入反应器后从实际发生反应起 到反应达某一程度(如某转化率)时所需的时间 ◆停留时间:它是指反应物从进入反应器的时刻算起到 它们离开反应器的时刻为止在反应器内共停留的时间, 对于分批式操作的釜式反应器与理想平推流反应器, 反应时间等于停留时间,而对于存在返混的反应器, 则出口物料是由具有不同停留时间的混合物,即具有 停留时间分布的问题,工程上常用平均停留时间来表 示。 ◆平均停留时间:以t 来表示,其定义为反应器的有效容 积与器内物料体积流速之比,即 t V v 。 要注意区分上述三个工程上常用于表示时间的概念。
171 0.8
2
7234 L 7.234 m
而间歇反应器所需的体积仅为:2.16m3 请思考:为何间歇釜式反应器所需反应体积要小得多?
Return
4、分批式(间歇釜式)反应器和全混流(CSTR)反应器的 比较: 对于反应级数n>0的反应:
分批式:一次性投料,反应体系A的浓度由CA0逐渐降至
CA0 xA0=0 (或xA1) v0 FA0 CA xA VR
CA xA (或xA2) v FA
(或xA2)
CSTR
Return
2、 全混流反应器的设计方程式 两点说明: ◆ CSTR体系性质均一,不随时间而变,可就整个反应器进 行物料衡算,而且单位时间可以任取。 ◆连续操作的物料累积量为零。 基本衡算式: 进入量-排出量-反应量=累积量 对反应的A作物料衡算:
或 : C A C A 0 k (注 : 以上是 A 0的等分子反应 )
若 A 0 C A0 C A xA C A0 A C A

C A0 1 x A CA 1 A xA
将上式代入设计方程得 : C A0 (C A0 C A ) C A0 x A (1 A ) 或 k (C A0 A C A ) k (1 A x A )
★一级反应 AP (-rA)=kCA
VR C A 0x A x A(1 Ax A ) C A 0(C A 0 C A ) Q0 (rA ) k(1 x A ) kC A(C A 0 AC A )
对于液相反应 ,可以认为是恒容过程 ,这时 A 0


例题7:
工厂采用 CSTR 以硫酸为催化剂使已二酸与已二醇以等摩尔 比在70℃下进行缩聚反应生产醇酸树脂,实验测得该反应的 速率方程式为:(-rA)=kCACB 式中: (-rA)----以已二酸组分计的反应速率,kmol.L-1.min-1 k----反应速率常数,1.97L.kmol-1.min-1 CA、CB----分别为已二酸和已二醇的浓度,kmol.L-1
对于 A 0
VR xA C A0 C A 2 Q0 kC A 0(1 x A ) kC A2
★ n级反应
C A0 C A0 C A n kC A C A0 A x A
εA=0时
rA kC
n A
C A0 C A VR xA n 1 n n v0 kC Ao (1 x A ) kC A
CA0、CB0均为0.004kmol.L-1
若每天处理已二酸2400kg,转化率为80%,试计算确定反应 器的体积大小。
解:根据CSTR反应器的设计方程可知,
VR VR xA v kC A 0(1 x A )2 Qx A kC A 0(1 x A )
2

1.97 6 x A1 171 (0.8 0.6) Q0 1810 L 2 2 kC A 0(1 x A 2 ) 1.97 0.004 1 0.8 60
总有效容积:VR=VR1+VR2=3170L。
很明显,达到相同转化率时,两釜串联的有效容积要比 单釜(7230L)的要小得多,为什么?请思考!
相关文档
最新文档