第六章聚合物表面改性
聚合物材料的表面改性技术及应用

聚合物材料的表面改性技术及应用引言:聚合物材料在现代工业中起着重要的作用,然而,由于其表面性质的限制,其应用受到了一定程度的限制。
为了克服这一问题,科学家们开发了各种表面改性技术,使聚合物材料具有更广泛的应用领域。
本文将介绍一些常见的聚合物材料表面改性技术及其应用。
一、化学改性技术化学改性技术是通过在聚合物材料表面引入新的化学官能团,改变其表面性质的方法。
其中,最常用的方法是表面接枝聚合。
通过在聚合物表面引入具有特定官能团的单体,然后进行接枝聚合反应,可以改变聚合物表面的化学性质。
这种方法可以使聚合物表面具有更好的亲水性、抗菌性等特性,从而扩展其应用领域。
例如,将聚合物表面接枝亲水性单体,可以制备具有良好润湿性的聚合物薄膜,用于医疗器械、食品包装等领域。
二、物理改性技术物理改性技术是通过物理方法改变聚合物材料表面的性质。
其中,最常用的方法是表面涂覆。
通过在聚合物表面涂覆一层具有特定性质的材料,可以改变其表面的光学、电学、热学等性质。
例如,将聚合物表面涂覆一层导电性材料,可以制备具有导电性能的聚合物薄膜,用于电子器件等领域。
此外,还可以利用等离子体处理、激光照射等方法对聚合物表面进行改性,以提高其光学、机械性能等。
三、纳米改性技术纳米改性技术是利用纳米材料对聚合物表面进行改性的方法。
纳米材料具有较大的比表面积和独特的物理、化学性质,可以在聚合物表面形成纳米尺度的结构,从而改变其性质。
例如,将纳米颗粒添加到聚合物中,可以增强其力学性能和耐磨性。
此外,还可以利用纳米粒子自组装技术制备具有特定结构和功能的聚合物薄膜,用于传感器、光学器件等领域。
四、应用前景聚合物材料的表面改性技术为其应用领域的拓展提供了新的可能。
通过改变聚合物材料的表面性质,可以使其具有更好的耐磨性、抗菌性、润湿性等特性,从而适用于更广泛的领域。
例如,在医疗器械领域,利用聚合物材料的表面改性技术可以制备具有抗菌性能的医疗器械,从而降低感染风险。
聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。
聚合物改性的目的:所谓的聚合物改性,突出在一个改字。
改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。
聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。
聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。
资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。
3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。
聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。
这是第一个实现了工业化生产的聚合物共混物。
1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。
二者可称为高分子合金系统研究开发的起点。
1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。
1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。
IPN已成为共混与复合领域一个独立的重要分支。
1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。
聚合物表面改性

聚丙烯的表面张力,已知 例:计算聚四氟乙烯(PTFE)和(PP)聚丙烯的表面张力 已知: 计算聚四氟乙烯( 和 聚丙烯的表面张力 已知: VPTFE=45.5cm3/mol;Vpp=46.2cm3/mol 解:
• 聚四氟乙烯 ∑Fs=2×150=300 Ns=6 σPTFE=0.327[300/6]1.85[ 6/45.5]1.52 =21×10-3N/m 实验值18.4×10-3N/m
σ c = 0.327[(∑ F ) s / ns ]
1.85
(n
s
/ Vm , s )
1.52
(6-25)
ns为高聚物重复单元的原子数,Vm,s为重复单元摩尔体积, 为高聚物重复单元的原子数, 为重复单元摩尔体积, (∑F)s为重复单元 (∑F)s为重复单元Small色散力的加和。 为重复单元Small色散力的加和 色散力的加和。
σ=(P/V)4=(220.8/86.5)4=42.8×10-3 N/m =42.8× 实测值为40.2 实测值为40.2 mN/m
分子中电子数愈多、原子数愈多、原子半径愈大, 分子中电子数愈多、原子数愈多、原子半径愈大,分子愈 易变形。 易变形。瞬时偶极可使其相邻的另一非极性分子产生瞬时诱导 偶极,且两个瞬时偶极总采取异极相邻状态, 偶极,且两个瞬时偶极总采取异极相邻状态,这种随时产生的 分子瞬时偶极间的作用力为色散力(因其作用能表达式与光的 色 散公式相似而得名) 虽然瞬时偶极存在暂短, 散公式相似而得名)。虽然瞬时偶极存在暂短,但异极相邻状态 却此起彼伏,不断重复,因此分子间始终存在着色散力。 却此起彼伏,不断重复,因此分子间始终存在着色散力。无 疑,色散力不仅存在于非极性分子间,也存在于极性分子间以 色散力不仅存在于非极性分子间, 及极性与非极性分子间。 及极性与非极性分子间。 色散力存在于一切分子之间。 色散力存在于一切分子之间。色散力与分子的变形性有 变形性越强越易被极化,色散力也越强。 关,变形性越强越易被极化,色散力也越强。
聚合物表面改性方法综述

聚合物表面改性方法综述聚合物表面改性方法综述摘要:由于聚合物表面化学能低、化学惰性等因素,其使用时需要进行表面改性。
本文综述了聚合物表面改性的方法(化学处理、低温等离子处理、表面接枝处理、电晕放电处理、光化学改性和离子注入改性),并对其改性机理及应用研究进展进行了说明。
关键词:聚合物,表面,改性方法高聚物表面因表面能低、化学惰性、表面污染及存在弱边界层等原因,往往难以润湿和粘合。
因此,常常要对高聚物进行表面处理。
表面处理的目的就是改变表面化学组成,增加表面能,改善结晶形态和表面的几何性质,清除杂质或脆弱的边界层等,以提高聚合物表面的润湿性和粘结性等。
高聚物的表面改性方法有多种,如电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。
这些方法一般只引起10nm~100μm 厚的表面层的物理或化学变化,对整体性质影响较小。
高聚物表面处理后的表面层化学、物理结构发生了变化,但是由于表面层很薄,对表面层变化的表征往往比较困难,表面物理性能一般通过接触角和表面能的测试进行表征,表面的形貌可用电镜进行观察,表面化学组成可由ESCA(光电子能谱)表征。
表面处理的效果往往由材料使用的性能直接评估,例如粘接强度的提高,印刷性能的改进,染色性的改善等等。
目前,聚合物改性方法主要有:化学处理、低温等离子处理、表面接枝、电晕放电处理和热处理等方法。
本文综述了上述聚合物表面方法的研究进展。
1.化学处理化学处理是用化学试剂浸洗高聚物, 使其表面发生化学的和物理的变化。
其研究进展如下:1.1溶液氧化法溶液氧化法是一种应用时间较长的处理方法,由于其简便易行,以处理形状复杂的部件,且条件易于控制,一直受到广泛关注。
溶液氧化法对聚合物表面改性影响较大的因素主要是化学氧化剂的种类及配方、处理时间、处理温度。
常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。
聚合物材料的表面改性方法

聚合物材料的表面改性方法聚合物材料是一类具有广泛应用前景的材料,具有质轻、高强度、耐腐蚀等特点。
然而,由于其表面的化学稳定性较差,导致其在某些特殊环境下容易受到损伤。
为了改善聚合物材料的性能,人们通过表面改性方法对其进行处理,并赋予其更多的功能。
本文将介绍一些常见的聚合物材料的表面改性方法。
物理气相沉积(PVD)是一种常见的表面改性方法。
通过将金属等材料以适当的气氛转变为气体态,然后使其在高真空环境中与聚合物材料表面发生反应,从而形成一层新的材料。
PVD能够显著提高聚合物材料的硬度、耐磨性和耐腐蚀性。
此外,PVD还可以通过控制沉积参数来调节材料层的粗糙度和结构,从而实现对材料性能的精确调控。
化学沉积是另一种常见的聚合物表面改性方法。
化学沉积利用化学反应使金属或其他材料以原子或分子的形式沉积在聚合物材料的表面上。
与物理气相沉积不同,化学沉积可以在常压或低压下进行。
化学沉积能够根据反应条件的不同,形成不同厚度、形貌和成分的材料层,从而使聚合物表面的性能得到改善。
例如,通过化学沉积薄层二氧化硅,可以增强聚合物材料的耐候性和耐磨性。
离子注入是一种通过将离子注入到聚合物表面来改变其性能的方法。
离子注入可以显著改变聚合物的化学结构和表面性质,从而实现对材料性能的调节。
通过控制注入的离子种类和能量,可以使聚合物材料表面发生化学反应,形成新的摩擦性能、光电性能等。
离子注入方法具有对材料表面改性效果持久、成本低廉等优点,因此得到了广泛应用。
高能束流 (EB) 辐照是一种利用电子束对聚合物材料进行表面改性的方法。
在高能束流辐照下,能量较高的电子束穿透聚合物材料,与其分子相互作用,从而引发一系列化学反应。
这些反应可以引起预期的表面改性效果,如增加表面粗糙度、提高耐久性和改善光学性能等。
由于高能束流辐照能够实现材料的局部改性,因此在一些特定应用中得到了广泛应用。
总之,聚合物材料的表面改性是提高其性能的重要途径。
通过物理气相沉积、化学沉积、离子注入和高能束流辐照等方法,可以赋予聚合物材料更多的功能性和改善其性能。
聚合物表面改性方法综述 4

聚合物的表面改性综述姓名:班级:高分子学号:学院:材料科学与工程摘要:本文综述了聚合物表面改性的目的、意义和多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。
并综述了聚合物表面改性效果的表征方法。
关键词:聚合物;表面改性;目的和意义;方法;表征方法一、聚合物的表面改性的目的和意义聚合物材料具有优良的综合性能,广泛应用于生产、生活的各个领域。
在实际应用中,聚合物材料与周围环境的相互作用主要发生在其表面,如印刷、吸附、粘结、摩擦、涂装、染色、电镀、防雾、防腐蚀、耐老化、表面电导、表面硬度等许多应用场合,都要求聚合物材料有适当的表面性能。
因此,聚合物材料不仅应具有良好的内在性能,也应具有良好的表面性能。
然而,几乎没有哪种聚合物能同时具有良好的本体性能和表面性能。
大多数聚合物的表面能较低,存在表面惰性和疏水性、对水不浸润、对胶粘剂或涂料的粘附强度低、或染色性差等不足之处,其应用范围也因此受到限制。
要改善其表面性能,往往须做聚合物表面改性。
聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。
为了改善这些表面性质,需要对聚合物的表面进行改性。
聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。
二、聚合物的表面改性的方法聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。
下面将结合具体聚合物材料详细介绍各种改性方法。
1 溶液处理方法1.1 含氟聚合物PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。
第6章 生物材料表面改性

材料表面改性方法包括化学和物理方 法,通常化学方法较为繁琐,应用大量有 毒化学试剂,对环境造成污染,对人体也 有极大危害。物理方法具有工艺简单、操 作方便、对环境无污染等优点,日益受到 重视。
UHMWPE接枝丙烯酸的红外光谱图
XPS分析
a: PE,C的XPS峰
b: PE-AA,C的XPS峰
聚乙烯的C1s主要由两个峰组成,分别归属于C1和C2峰,其结合能分别为285ev 和289ev。结合图和表可以看出,未接枝聚乙烯表面有C2电子峰,但是含量很少, 可能是聚乙烯表面的杂质,可忽略,接枝聚乙烯表面碳原子的结合形式发生了变化 ,即C1含量降低,C2含量增加,C2/C1由0.068增加到0.297,增加了337%,说 明接枝聚乙烯表面碳元素产生了新的官能团。光敏剂二苯甲酮受紫外光引发,从 PE大分子链上夺取氢,产生大分子自由基,从而引发丙烯酸(AA)单体的接枝聚 合,因此,接枝链末端应有-COOH存在,而O=C-O的结合能为289ev,从而证明 了丙烯酸已经被成功接枝到聚乙烯表面。
通常辐射接枝的接枝率正比于吸收剂量,但超过某一剂量 范围时接枝率的增加趋于缓慢。
单体浓度过高会阻碍单体的接枝,。
反应温度对接枝共聚的影响是复杂的,多方面的,如反应 在高粘度介质中进行时常产生凝胶效应、能量转移与链转 移、侧链长度变化、单体扩散速度改变以及相分离等,对 辐射接枝来说提高反应温度通常对提高接枝率有利。
上述方法现已发展为可控自由基聚合(CRP),又 称为活性自由基聚合。
聚合物改性(完整版)

聚合物改性的目的、意义;聚合物改性的定义、改性的方法(大分类和小分类)答:改性目的及意义:①改善材料的某些物理机械性能②改善材料的加工性能③降低成本④赋予材料某些特殊性能、获得新材料的低成本方法⑤提高产品技术含量,增加其附加值的最适宜的途径⑥调整塑料行业产品结构、增加企业经济效益最常采用的途径聚合物改性的定义:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程改性的方法:①化学改性:a、改变聚合物的分子链结构b、接枝、嵌段共聚、互穿聚合物网络、交联、氯化、氯磺化等②物理改性:a、改变聚合物的高次结构b、共混改性、填充改性、复合材料、表面改性等1.化学改性(改变分子链结构)和物理改性(高次结构)的本质区别答:化学改性—改变聚合物分子的链结构物理改性—改变聚合物分子的聚集状态2.共混物和合金的区别答:共混(指物理共混)的产物称聚合物共混物。
高分子合金:不能简单等同于聚合物共混物,高分子合金---指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。
工业上称:塑料合金。
3.共混改性的分类(熔融、溶液、乳液、釜内)答:分类一:化学方法:如接枝、嵌段等;--化学改性物理方法:机械混合、溶液混合、胶乳混合、粉末混合---混合物理-化学方法---反应共混分类二:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点;溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备;乳液共混:共混产品以乳液的形式应用;釜内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其;聚合过程,在聚合的同时也完成了共混。
4.共混物形态研究的重要性5.共混物形态的三种基本类型(均相、海-岛、海-海)答:均相体系:一般本体聚合、溶液聚合才形成均相体系非均相体系:①海-岛结构:连续相+分散相(基体)②海-海结构:两相均连续,相互贯穿6.相容性对共混物形态结构的影响答:①在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力;良好的相容性是聚合物共混物获得良好性能的重要前提。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中R为短碳链烷基;X为C,N,P,S等元素,Y为羟基,氨基, 式中R为短碳链烷基; 等元素, 为羟基,氨基, 环氧基,双键等基团; 为非水解基团的个数。 环氧基,双键等基团;N为非水解基团的个数。 需注意: 需注意: 1 ≤ M ≤ 4
M +N ≤6
功能区1 功能区 (RO)M:与被改性材料发生偶联作用的基团 :
, 主要有:硅烷偶联剂,钛酸酯偶联剂,铝酸酯偶联剂,双金属 主要有:硅烷偶联剂,钛酸酯偶联剂,铝酸酯偶联剂,
偶联剂,磷酸酯偶联剂,硼酸酯偶联剂等。 偶联剂,磷酸酯偶联剂,硼酸酯偶联剂等。 1.硅烷偶联剂 1.硅烷偶联剂 目前有改性氨基硅烷偶联剂, 目前有改性氨基硅烷偶联剂,含过氧基硅烷偶联剂和叠氮基硅 烷偶联剂。 烷偶联剂。
第六章
高分子材料的表面改性
缺点:表面能低, 缺点:表面能低,化学惰性及存在弱边界层等 在高分子材料的使用过程中, 在高分子材料的使用过程中,其表面难以与其他物质如 粘结剂,印刷油墨,涂料以及生物分子如蛋白质的黏结,在 粘结剂,印刷油墨,涂料以及生物分子如蛋白质的黏结, 复合材料的使用过程中, 复合材料的使用过程中,疏水聚合物弱的表面极性也常导致 复合界面的劣化。 复合界面的劣化。 高分在材料表面改性主要包括改善高分子材料表面的亲水性, 高分在材料表面改性主要包括改善高分子材料表面的亲水性,疏 水性,生物相容性,导电性,抗雾性,表面硬度,润滑性等。 水性,生物相容性,导电性,抗雾性,表面硬度,润滑性等。 常用的改性方法有化学改性,表面改性剂改性,辐照改性, 常用的改性方法有化学改性,表面改性剂改性,辐照改性,等离 子体改性以及生物酶表面改性等。 子体改性以及生物酶表面改性等。
第一节Biblioteka 表面改性剂改性在材料成型的过程中通过共混加入, 在材料成型的过程中通过共混加入,随着剪切混炼作用分 布到改性界面。 布到改性界面。这种添加型表面改性剂在聚合物基体中的迁移 扩散并在聚合物表面富集是其改性效果体现的关键。 扩散并在聚合物表面富集是其改性效果体现的关键。 表面富集是指所研究的聚合物多相复合体系中, 表面富集是指所研究的聚合物多相复合体系中,某一组分在聚合 物表面聚集,导致其在表面层的浓度高于其基体浓度的现象, 物表面聚集,导致其在表面层的浓度高于其基体浓度的现象,而 具有表面活性的表面改性剂所产生的表面富集现象更为明显, 具有表面活性的表面改性剂所产生的表面富集现象更为明显,成 为有效改善聚合物表面性质的重要助剂。 为有效改善聚合物表面性质的重要助剂。 低分子的表面改性剂和高分子的表面改性剂。 低分子的表面改性剂和高分子的表面改性剂。
材料
热塑性树脂 纤维素 聚缩醛 聚丙烯酸酯 聚乙烯
硅烷偶联剂
氨烃基、异氰酸烃基 氨烃基、 氨烃基、丙烯酰氧烃基、 氨烃基、丙烯酰氧烃基、阳离子烃基 氨烃基、 氨烃基、丙烯酰氧烃基 链烯基、氯烃基、氨烃基、环氧烃基、 链烯基、氯烃基、氨烃基、环氧烃基、 丙烯酰氧烃基、阳离子烃基、 丙烯酰氧烃基、阳离子烃基、过氧化烃基
功能区2Ti-O:酯基转移和交联功能,它可使钛酸酯偶联剂与 :酯基转移和交联功能, 功能区 聚合物及改性材料产生交联, 聚合物及改性材料产生交联,同时还可与环氧树脂中的羟基发 生酯化反应。 生酯化反应。 功能区3X:链接钛中心带有功能性的基团, 功能区3X:链接钛中心带有功能性的基团,它决定着钛酸酯偶 3X 联剂的特性,这些基团有烷氧基,羧基,硫酰氧基等。 联剂的特性,这些基团有烷氧基,羧基,硫酰氧基等。 功能区4R’:长链的纠缠基团(使用于热塑性树脂), ),主要是 功能区4R’:长链的纠缠基团(使用于热塑性树脂),主要是 4R 保证与聚合物分子的缠结作用和混溶性,提高材料的冲击强度, 保证与聚合物分子的缠结作用和混溶性,提高材料的冲击强度, 对于填料填充体系而言,可减低其表面能。 对于填料填充体系而言,可减低其表面能。 功能区5Y:固化反应基团(使用于热塑性树脂),包括不饱和 功能区5Y:固化反应基团(使用于热塑性树脂),包括不饱和 5Y ), 双键基团,氨基,羟基等。 双键基团,氨基,羟基等。
材料
热固性材料 邻苯二甲酸丙烯酯 环氧树脂 聚酯 聚氨酯
硅烷偶联剂
链烯基、氨烃基、丙烯酰氧烃基、异氰酸烃基 链烯基、氨烃基、丙烯酰氧烃基、 链烯基、氯烃基、氨烃基、环氧烃基、 链烯基、氯烃基、氨烃基、环氧烃基、多硫烃基 链烯基、氯烃基、氨烃基、环氧烃基、多硫烃基、 链烯基、氯烃基、氨烃基、环氧烃基、多硫烃基、 丙烯酰氧烃基、 丙烯酰氧烃基、阳离子烃基 氨烃基、环氧烃基、多硫烃基、 氨烃基、环氧烃基、多硫烃基、异氰酸烃基
橡胶
SBR 氟橡胶 NBR 环氧烃基、 环氧烃基、多硫烃基 氨烃基、 氨烃基、阳离子烃基 多硫烃基、 多硫烃基、丙烯酰氧烃基
近年来相对分子质量较大和具有特种官能团的硅烷偶联剂发展很快。 近年来相对分子质量较大和具有特种官能团的硅烷偶联剂发展很快。
2.钛酸酯偶联剂 2.钛酸酯偶联剂 主要有作无机填料和颜料等广泛应用的表面活性剂 钛酸酯偶联剂的分子结构可按下式分为六个功能区: 钛酸酯偶联剂的分子结构可按下式分为六个功能区:每个功能 区都有其特点,在偶联剂改性中发挥各自的作用: 区都有其特点,在偶联剂改性中发挥各自的作用: 简式: 简式:(RO)M
硅烷偶联剂的通式为:RnSiX(4-n) 硅烷偶联剂的通式为: 其中R为非水解的、可以与有机基体进行反应的活性官能团, 其中R为非水解的、可以与有机基体进行反应的活性官能团, X为能够水解的基团,与无机表面有较好的反应性。 为能够水解的基团,与无机表面有较好的反应性。
表7-1 不同材料所选用的硅烷偶联剂
一.偶联剂表面改性 作用原理:偶联剂主要用作高分子共混、复合材料的助剂, 作用原理:偶联剂主要用作高分子共混、复合材料的助剂, 其分子两端含有化学性质不同的两类基团:一是亲水基团, 其分子两端含有化学性质不同的两类基团:一是亲水基团, 与极性物质具有良好的相容性或直接参与化学反应,另一类 与极性物质具有良好的相容性或直接参与化学反应, 是亲油基团, 是亲油基团,能与非极性物质例如大多数合成树脂或其他聚 合物发生相互缠结或生成氢键,因此偶联剂被称为分子桥。 合物发生相互缠结或生成氢键,因此偶联剂被称为分子桥。