1.1平行四边形及其性质导学案
平行四边形的性质(1)导学案.doc

课题内容:平行四边形的性质(1) 学习目标:1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯。
2、探索并掌握平行四边形的性质,并能简单应用。
3、通过观察、实验、猜想、验证…等活动进一步发展学生的合情推理能力。
教学重点1、理解并掌握平行四边形的概念,2、探索平行四边形的性质。
教学难点有条理的表达平行四边形性质的验证过程学习过程:(1)微课引入:①通过微课引入“平行四边形”的定义。
②通过微课讲解定义的理解。
两组对边分别平行的四边形,叫做平行四边形。
平行四边形的相邻的两个顶点连成的一段叫做它的对角线。
教师进一步强调,平行四边形定义中的两个条件:①四边形,②两边分别分别平行AD//BC且AB〃DC平行四边形的表示(2)小组活动:动手制作一个平行四边形,观察平行四边形,总结平行四边形的其他性质问题:同学们拿出准备好的剪刀、彩纸或白纸一张。
将你们设计的平行四边形进行研讨分析。
思考两个问题:%1小组内能研究出平行四边形有哪些的特性(性质)%1请你们通过所学的知识来证明你们得出的结论。
(2)理论推导:上述猜想涉及线段相等、角相等。
我们知道,利用三角形全等得出全等三角形的对应边、对应角都相等,是证明线段相等、角相等的-•种重要的方法。
为此,我们通过添加辅助线,构造两个角形,通过三角形全等进行证明°性质理论推导:证明:如图,连接ACV AD//BC且AB//DC:.Z1 = Z2 , Z3 = Z4又AC是AABC和\CDA的公共边・.. \ABC^\CDAAD=CB, AB = CD:.ZB = ZD这样我们证明了平行四边形具有以下性质:%1平行四边形的对边相等%1平行四边形的对角相等(3)例题1:如图,在平行四边形ABCD中, DE A. AB ,BF1CD垂足分别为E, F o求证:AE = CF证明:..•四边形ABCD是平行四边形A ZA = ZC, AD = CB・「ZAED = ZCFB = 90°.I AADE g XCBF:.AE = CF(4)巩固练习:在平行四边形ABCD中,对角线AC, BD相交于点0, AO16, BD=10,则AO, B0二。
初中数学 九年级上导学案(青岛泰山版)

初中数学九年级上导学案(青岛泰山版) 第1章特殊四边形1.1 平行四边形及其性质学习目标:1、知道平行四边形的概念;2、掌握平行四边形边和角之间的位置关系和数量关系3、通过操作、观察、培养动手和归纳能力,在观察、操作、推理、归纳的过程中发展合情推理能力。
重点、难点:平行四边形的性质及推理。
导学过程:一、情境导入1、想一想我们实际生活中,哪些物体的形状是平行四边形?2、在小学时,我们已经学习了平行四边形,哪位同学说一说,什么叫做平行四边形?二、自主学习自学课本第4也内容,完成下列问题:1、怎样用符号表示平行四边形?2、看下图,我们知道平行四边形是由边和角组成,找一找□ABCD中的对边、对角、邻边、邻角、对角线。
三、合作交流根据平行四边形定义很容易得到两组对边平行,那么根据图形、平行四边形还有什么特征呢?进一步启发学生平行四边形的特征与边、角、对角线有什么关系?归纳并证明:四、随堂练习1、已知□ABCD,根据下列条件填空:⑴已知∠A=50°,则∠B= _____,∠C= _____,∠D= _____。
⑵已知∠A+∠C=200°,则∠A= _____,∠B= _____。
⑶已知AB=3,BC=5,则□ABCD的周长= _______。
2、已知□ABCD中,AC、BD为两条对角线,图中有哪些相等的线段,哪些相等的角。
3、完成课本中例1、例2.五、课堂小结:六:课外拓展1、把两个完全重合且三边都不相等的三角形按不同的方法拼成平行四边形,你能拼成几个平行四边形?(看谁拼的又快又多又好2、有一张平行四边形的纸片你能把它剪成面积相等的两块三角形纸片吗?你能把它剪成面积相等的4块三角形纸片吗?七、巩固检测:(A教材P6中1、P7中练习1、习题1.1中1(B教材P6中2、P7中练习2、习题1.1中51.2 平行四边形的判定学习目标1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。
2.能运用综合法证明平行四边形判定定理。
1.1平行四边形学案

1. 1 平行四边形及其性质诸城市辛兴初中臧运建学习目标1、理解平行四边形的概念2、经历探索平行四边形的概念和性质的过程发展探究意识3、能证明平行四边形的三个性质①对边相等②对角相等③对角线互相平分4、进一步培养的分析、综合的思考方法,及表达书写能力.发展演绎推理能力重点:平行四边形的性质证明难点:分析、综合思考的方法二、学法分析法、类比探索,合作讨论式学习过程:课前延伸案知识回顾:1你能画出平行四边形吗?举例说明日常生活中有哪些是平行四边形?2平行四边形有那些性质?你能有所学知识进行证明吗?课内探究案一、自主观察操作自学课本4,完成3个思考题总结概念:平行四边形表示符号:读法:二、合作交流(探究一)1、猜想:指出□ABCD的对边和对角,度量说明对边和对角的关系?2、你的猜想正确吗?能否用所学知识证明你的结论?证明:平行四边形对边相等、对角相等三、学以致用例1、如图在□ABCD 中,∠A=36°,求其他各个角的度数。
四、巩固练习:1、在□ABCD 中,E 、F 分别是AD 、BC 的中点, 求证:BE=DF拓展思考:在上述条件下,当点E 、F 分别在AD 、BC 上满足什么条件时使BE=DF ?探究二:画出□ABCD 平行四边形,作出两条对角线AC 和BD ,若交点为O , (1)猜想:AO 、BO 、CO 、DO 的长常会有什么特征? (2)度量试试你的猜想是否正确?证明:平行四边形对角线互相平分学以致用:如图,□ABCD 的对角线AC 和BD 交点为O ,直线EF 过点O,且与AD,BC 分别交于E 、F ,求证OE=OFFD CB巩固练习:如图,在□ABCD中,点E,F在对角线AC上,且AE=CF.请你以点F为一个端点,和图中已标明字母的某一点连成一条线段,猜想并证明它和图中已有的某一线段相等(只需证明一组线段相等即可)(1)连结_________(2)猜想:________=_________(3)证明:四、课堂小结:学生总结本节课的知识收获(以知识树形式),说出本节困惑,教师补充解决问题的方法、思路,并对学生学习进行评价。
八年级数学下册 19.1.1平行四边形性质导学案(1) 人教新课标版

八年级数学下册 19.1.1平行四边形性质导学案(1)人教新课标版19、1 平行四边形及其性质(1)导学案学习目标:1、使学生掌握平行四边形的概念及性质定理,并能运用这些知识进行有关的证明或计算、2、知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想;通过推导平行四边形的性质定理的过程,培养学生的推理、论证能力和逻辑思维能力、3、通过要求学生书写规范,培养学生科学严谨的学风;渗透几何方法美和几何语言美及图形内在美和结构美学习重点:平行四边形性质定理的应用学习难点:在计算或证明中应用平行四边形概念、性质的知识、【预习内容】(阅读教材第83至84页,并完成预习内容。
)1、写出你在生活中常见的四边形,看谁写的又快又多。
2、平行四边形:___________________________________叫做平行四边形、3、自主画一个平行四边形、它可以记作______________________读作______________________(注意:表示时一定要按顺时针或逆时针方向依次注明各个顶点,若写成ACBD等都是错误的)ABCD4、你能求出下面这个平行四边形的面积吗?EBC=12 AE=85、平行四边形属于四边形,所以具有四边形的性质:______________平行四边形还有哪些性质呢?我们先来认识一下与其相关的概念。
①邻边:有公共顶点的边。
②对边:不相邻的,没有公共顶点的边。
③邻角:有公共边的两个角。
④对角:没有公共边的两个角,也就是相对的两个角。
6、探究:根据定义画一个平行四边形,观察除了“两组对边分别平行”外,它的边、角之间还有什么关系?度量一下,是不是和你的猜想一致?1,2,。
你能证明你发现的上述结论吗?(提示:连接对角线把未知问题转化为已知的三角形问题)ABCD已知:求证:(图3)证明:归纳:平行四边形具有以下性质:__________________________ ___________________________符号表达:∵ ABCD∴AD_____BC, AB____DC; ∠A ___ ∠C, ∠B____ ∠DABCD(图4)例1:如图4,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为10m,其他三边的长各是多少?【课堂活动】活动1 预习反馈、概念明确、定理证明活动2 平行四边形性质应用1、ABCD中,AB=5, BC=3, 则它的周长为_________。
平行四边形学案

B汤原一中八年级数学导学案课题:平行四边形及其性质(一)一、学习目标:1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 二、重点、难点1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、学习过程我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义: 。
(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ABCD ”,读作“平行四边形ABCD ”. 书写格式:①∵AB//DC ,AD//BC ②∵四边形ABCD 是平行四边形∴四边形ABCD 是平行四边形(判定); ∴AB//DC , AD//BC (性质). 2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.同学们根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)平行四边形的对边平行.根据平行线的性质,在平行四边形中,相邻的角互为 . (2)猜想 平行四边形的对边 ,对角 .下面证明这个结论的正确性. 已知:如图ABCD ,求证:AB =CD ,CB =AD ,∠B =∠D ,∠BAD =∠BCD . 分析:作 ABCD 的对角线AC ,它将平行四边形分成△ABC 和△CDA ,证明这两个三角形全等即可得到结论. 证明:由此得到:平行四边形性质1 平行四边形的对边( ). 平行四边形性质2 平行四边形的对角( ). 怎样用几何语言来表示?如图, ∵四边形ABCD 是平行四边形(已知)∴ (平行四边形的对边相等)(平行四边形的对角相等)(三)、例题讲解例1 如图,小明用一根36m 长的绳子围成了一个平行四边形场地,其中边长AB 为8m ,其它三条边各是多少?例2 如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .(四)、随堂练习 1.(1)在 ABCD 中,∠A=60° ,则∠B= 度,∠C= 度,∠D= 度. (2)如果ABCD 中,∠A —∠B=40,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm , 2.如图,在 ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足, 求证:BE =DF .(五)、当堂检测(1) ABCD 中,∠A 比∠B 大30︒,则∠C= (2) ABCD 中,AB=5,BC=3,则周长=(3)平行四边形一个外角是38︒,这个平行四边形每个内角度数分别是(4) ABCD 中,AB=6cm,AB的长是 ABCD 周长的316,则BC=(六)、课后练习1、已知ABCD 中,∠A=80°,∠B= ,∠C= ,∠2、如图2,四边形ABCD 是平行四边形,则∠ADC= ,∠AB= ,BC= 。
平行四边形的性质导学案

平行四边形的性质导学案[学习目标]知识与技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。
过程与方法:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。
情感态度与价值观:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.[学习重点与难点]重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.[学习过程]一、导入新课问题(1)同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?问题(2)爱动脑筋的小钢观察到平行四边形影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻的边长,便能计算出它的周长,这是为什么呢?通过本节课的学习,大家就能明白其中的道理.今天,我们来共同研究平行四边形及其性质.二、新知学习活动一:拼图游戏.问题1:你能利用手中两张全等的三角形纸板拼出四边形吗?问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由.①平行四边形的定义:这个定义包含两层意义:①②。
②平行四边形的表示:平行四边形用符号“”表示,平行四边形ABCD记作“ ABCD”。
读作“平行四边形ABCD”。
练习:观察课本图16.1.1,哪些是平行四边形呢?问题3:根据定义画一个平行四边形。
(可参照课本探索)步骤:1:2:3:活动二:开放探究平行四边形的性质.活动要求:大家先看清要求,再动手操作,结论写在记录板上平行四边形的性质:A.从边看:B.从角看:C.从对角线看:三、精练反馈1.解决课前提出的实际问题某时刻小刚用量角器量出地面上平行四边形影子的一个内角是60°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40cm和55cm,便胸有成竹的说能够计算出这个平行四边形的周长.你知道小刚是如何计算的吗?这样计算的根据是什么?2.如图(1),在ABCD中,已知A=40 ,求其它各个内角的度数。
青岛版初三数学上册导学案全册

青岛版数学九年级上册学案1.1平行四边形及其性质(1)审核人:张宏学习目标:1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、提高综合运用知识的能力学习重点:平行四边形的定义,对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.预习指导:1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如_______________________________________________________等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________.学习过程:一、学习新知1、平行四边形的定义(1)定义:________________________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形(3)定义的双重性: 具备__________________的四边形,才是平行四边形,反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD记作_________,读作___________.2、平行四边形的性质平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?已知:如图ABCD,求证:AB=CD,CB=AD.分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线__________________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.证明:总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
18.1.1.1平行四边形的概念及边、角的性质教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器测量平行四边形的边长和角度,演示其性质。
其次,在新课讲授过程中,我应该适时地抛出一些问题,激发学生的思考。比如在讲解平行四边形的判定方法时,可以提问:“为什么只有两组对边分别平行或一组对边平行且相等就能判定一个四边形是平行四边形呢?”通过这样的问题,让学生在学习过程中不断思考和探索。
此外,在实践活动和小组讨论环节,我发现有些学生参与度不高,可能是因为他们对主题不够感兴趣或者不知道如何下手。为了提高学生的参与度,我可以在设计实践活动时,更多地结合生活实际,让学生感受到几何知识在生活中的重要性。同时,在小组讨论中,我可以适时地给予提示和引导,帮助学生更好地展开讨论。
2.推理与证明:引导学生运用严密的逻辑推理证明平行四边形的性质,提高学生的推理能力和证明技能,培养严谨的科学态度。
3.合作与交流:鼓励学生在小组讨论中分享观点,倾听他人意见,提高合作解决问题的能力,培养良好的沟通与团队协作素养。
4.创新与拓展:激发学生探索平行四边形相关性质的兴趣,鼓励他们提出新的问题,培养创新意识和拓展思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是两组对边分别平行的四边形,它在几何图形中具有重要地位,广泛应用于日常生活和工程建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析长方形、正方形等特殊的平行四边形,了解它们在实际中的应用,以及如何利用平行四边形的性质解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1«平行四边形的性质»导学案
学习目标:
1.知识与技能:
了解四边形的有关概念,掌握平行四边形的概念和边、角的性质,能运用这些性质解答有关问题。
2.过程与方法:
通过联想三角形的概念,归纳抽象四边形的有关概念和平行四边形的有关概念,通过观察、猜想和合情推理,获得平行四边形的边、角的性质定理,初步了解研究四边形的途径和方法,体会图形变换和转化思想。
3.情感态度和价值观:
在自主探索、观察、推理过程中,体验探索的乐趣,感受推理的重要性与作用,培养探索意识和推理能力,形成良好的学习习惯。
学习重点、难点
1重点:平行四边形的概念和性质。
2难点:平行四边形性质的推导和运用。
一、创设情境导入新课
1、出示一张图形,观察,同学们说说它是什么图形?
2、我们教室里那些物体的形状是四边形?
二、自主学习预习交流
1、自学内容:课本P68页的内容。
2、自学要求:四边形的有关概念、平行四边形的定义、平行四边形的表示方法以及读法
3、自学方法:同学们自主完成后小组讨论交流
4、自学反馈:请同学们填一填:
(1)叫做四边形。
(2)叫做四边形的边;叫做四边形的顶点。
(3)四边形ABCD如果具备如下性质:这样的四边形叫做凸四边形。
(4)在四边形中,叫做四边形的对角线。
(5)四边形叫做对角,叫做对边。
(6)叫做平行四边形。
三、合作交流探究新知
问题:平行四边形的对边有什么关系?对角有什么关系?
的
四条边的长度,四个角的大小。
由此你能对
平行四边形的对边关系、对角关系作出什么
猜想?
我猜想平行四边形的对边平行四边形的对角。
这些猜想对吗?
探究:怎么能证明你猜想的结论呢?画出图形让学生自己探索。
教师及时指导,点拨。
结论(板书):平行四边形对边相等,平行四边形对角相等。
四、应用迁移 巩固提高
1.例题.一块平行四边形的草地,其中草地的一边为5m ,相邻的另一边为7m ,求这块平行四边形草地的周长。
解:
2.动脑筋:如图12//L L ,AB∥CD那么AB与CD相等?为什么?
结论:夹在两条平行线间的平行线段相等
五、当堂训练
能力提升
C
1.已知 ,根据下列条件填空:
(1,则∠B= _____,
∠C= _____,∠D= _____。
(2)已知∠A+∠C=200°, 则∠A= _____,∠B= _____。
2.已知AB=3,BC=5的周长= _______。
(同学们自主完成后小组交流)
3.教材第72页练习第1题,第2题。
六、课堂小结 巩固提高
同学们,本节课你有哪些收获?(小组交流后小组发言人全班交流最后师点拨归结)
七、布置作业:教材P84,习题3.1 A 组 T2,T3.。