数字集成电路设计之电路参数及性能
《数字集成电路》课件

1 滤波
去除噪声、增强信号的关键技术。
2 变换
将信号在时域与频域之间转换的方法。
3 压缩
减少数据量,方便存储和传输。
数字信号处理中的滤波器设计
FIR滤波器
时域响应仅有有限个点,稳定性好。
IIR滤波器
时域响应呈指数衰减,延时较小。
模拟/数字混合信号集成电路
1
基础理论
混合信号电路设计所需的模拟电路与数字电路基础知识。
时序逻辑电路
触发器与锁存器
用于存储时钟信号冲突消除和数 据暂存。
计数器
移位寄存器
用于计算和记录触发事件的数量。
用于数据移位操作,实现数据的 串行传输。
数字信号处理技术
数字信号处理(DSP)是用数字计算机或数字信号处理器对原始信号进行处理、分析和存储的一 种技术。它在通信、音频处理和图像处理等领域具有广泛应用。
《数字集成电路》PPT课 件
数字集成电路PPT课件大纲: 1. 什么是数字集成电路 2. 数字集成电路的分类和结构
数字电路设计的流程
1
需求分析
确定数字电路的功能与性能要求,并定义输入输出及约束条件。
2
电路设计
利用逻辑门、触发器等基本组件进行数字电路设计。
3
电路仿真
使用仿真软件验证数字电路中的电气特性和功能。
2 低功耗设计
3 增强型通信
减少功耗,延长电池寿命。
提升通信性能和速度。
2
模拟数字转换
模拟和数字信号之间的转换方法和技术。
3
功耗与噪声
如何平衡功耗Βιβλιοθήκη 噪声性能。电路模拟与仿真SPICE仿真
使用电路仿真软件模拟电路 的工作状态。
参数提取与建模
TTL集成电路与CMOS集成电路的性能与特点

TTL集成电路与CMOS集成电路的性能与特点TTL集成电路与CMOS集成电路的性能和特点TTL集成电路使用TTL管,也就是PN结。
功耗较大,驱动能力强,一般工作电压+5VCMOS集成电路使用MOS管,功耗小,工作电压范围很大,一般速度也低,但是技术在改进,这已经不是问题。
就TTL与CMOS电平来讲,前者属于双极型数字集成电路,其输入端与输出端均为三极管,因此它的阀值电压是<0.2V为输出低电平;>3.4V为输出高电平。
而CMOS电平就不同了,他的阀值电压比TTL电平大很多。
而串口的传输电压都是以COMS电压传输的。
1、TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2、CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3、电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
4、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5、TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
电子电路设计中的数字集成电路设计方法

电子电路设计中的数字集成电路设计方法数字集成电路(Digital Integrated Circuit,简称DIC)设计方法在电子电路设计领域中扮演着至关重要的角色。
数字集成电路广泛应用于各种电子设备中,如计算机、通信设备、消费电子产品等。
本文将介绍几种常用的数字集成电路设计方法,并讨论其特点与应用。
一、全定制设计方法全定制设计方法是一种基于传统工艺的数字集成电路设计方法,它通过精确地定义电路的每个元件参数,将电路设计为完全定制化的形式。
在全定制设计方法中,设计师需要手动绘制电路原理图,并进行详细的手工布局和连线。
这种方法具有高度的灵活性和设计自由度,可以满足各种特定应用的需求。
然而,全定制设计方法需要投入大量人力与时间,成本较高,因此更适用于小批量、高性能的电路设计。
二、半定制设计方法半定制设计方法是介于全定制设计和可编程门阵列设计之间的一种设计方法。
在半定制设计方法中,设计师通过使用逻辑门库和标准元件库,将电路的逻辑功能和部分布局进行自定义,而其他部分则采用标准单元的形式。
这种方法兼具了全定制设计的灵活性和可编程门阵列设计的高效性,能够在满足设计需求的同时,有效地减少设计时间与成本。
半定制设计方法广泛应用于中小规模、低功耗的数字集成电路设计。
三、可编程门阵列(Programmable Gate Array,简称PGA)设计方法可编程门阵列设计方法是一种基于Field Programmable Gate Array (FPGA)的数字集成电路设计方法。
在可编程门阵列设计方法中,设计师通过在FPGA上进行逻辑配置,将电路设计实现为可编程的形式。
这种方法具有高度的灵活性和可重构性,能够适应快速变化的设计需求。
然而,相比于全定制设计和半定制设计方法,可编程门阵列设计方法在性能和功耗上存在一定的折中。
可编程门阵列设计方法主要应用于中小规模、低功耗的数字集成电路设计,以及快速原型验证与系统开发。
四、可重构计算机设计方法可重构计算机设计方法是一种基于可重构计算机架构的数字集成电路设计方法。
集成电路主要参数与性能的测量方法

集成电路主要参数与性能的测量方法第一章:引言集成电路(Integrated Circuit,IC)作为现代电子技术的基础,已经成为了电路设计的主要方式和发展趋势。
因此,对于集成电路的主要参数和性能的测量方法的研究具有重要意义。
本文将对集成电路的主要参数和性能以及测量方法进行深入探讨。
第二章:集成电路的主要参数和性能(一)主要参数1.尺寸:IC的尺寸通常以晶圆直径来表示。
晶圆的直径通常在4-12英寸之间,尺寸与价格呈正相关趋势。
2.工艺节点:工艺节点是工艺技术的指标,它通常是指晶体管门宽和金属线的宽度。
工艺节点越小,表示晶体管门极容易变小,对晶体管的性能和功率效率的提高会有很大的帮助。
3.运行速度:运行速度是IC的一个重要性能参数,通常用截止频率、最大工作频率等来表示。
4.功耗:功耗是电路的重要指标之一,越小越好。
5.集成度:集成度是IC所能实现的复杂电路的规模。
(二)性能1.直流电路参数:包括电压增益、共模抑制比、输入电阻和输出电阻等。
2.交流电路参数:如输出功率、柔顺度、杂散信号等。
3.噪声参数:包括噪声系数、等效输入噪声电压等。
第三章:集成电路性能的测量方法(一)尺寸测量晶圆的尺寸测量通常使用光刻测量仪来进行,测量结果精度高、重复性好。
(二)运行速度测量1.直流电路参数的测量:可使用万用表、示波器等设备进行测量。
2.交流电路参数的测量:可以使用频谱分析器、动态信号分析仪等设备进行测量。
(三)功耗测量可以使用功率计、示波器等设备测量电路的功耗。
(四)集成度测量集成电路的集成度可以采用大规模集成电路测试系统进行测量。
(五)性能测量1.直流电路参数的测量:可使用各种测试电路(如差分放大电路)进行测量。
2.交流电路参数的测量:使用频谱分析器等仪器测量,可以得到其幅频特性、输出功率、等效杂散电平等参数。
3.噪声参数的测量:可以使用电压调制噪声功率谱仪等设备测量。
第四章:总结本文阐述了集成电路主要参数与性能的测量方法。
数字集成电路课程设计74hc138

目录1.目的与任务 (1)2.教学内容基要求 (1)3.设计的方法与计算分析 (1)3.1 74H C138芯片简介 (1)3.2 电路设计 (3)3.3功耗与延时计算 (6)4.电路模拟 (14)4.1直流分析 (15)4.2 瞬态分析 (17)4.3功耗分析 (19)5.版图设计 (19)5.1 输入级的设计 (19)5.2 内部反相器的设计 (19)5.3输入和输出缓冲门的设计 (22)5.4内部逻辑门的设计 (23)5.5输出级的设计 (24)5.6连接成总电路图 (24)5.3版图检查 (24)6.总图的整理 (26)7.经验与体会 (26)8.参考文献 (26)附录 A 电路原理图总图 (28)附录B总电路版图 (29)集成1. 目的与任务本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用相关软件,初步熟悉和掌握集成电路芯片系统设计→电路设计及模拟→版图设计→版图验证等正向设计方法。
2. 教学内容基本要求2.1课程设计题目及要求器件名称:3-8译码器的74HC138芯片 要求电路性能指标:⑴可驱动10个LSTTL 电路(相当于15pF 电容负载); ⑵输出高电平时,OH I ≤20uA,min,OH V =4.4V; ⑶输出低电平时,OLI ≤4mA ,manOL V , =0.4V⑷输出级充放电时间r t =ft ,pdt <25ns ;⑸工作电源5V ,常温工作,工作频率workf =30MHZ ,总功耗maxP =15mW 。
2.2课程设计的内容 1. 功能分析及逻辑设计; 2. 电路设计及器件参数计算;3. 估算功耗与延时;4. 电路模拟与仿真;5. 版图设计;6. 版图检查:DRC 与LVS ;7. 后仿真(选做);8. 版图数据提交。
2.3课程设计的要求与数据1. 独立完成设计74HC138芯片的全过程;2. 设计时使用的工艺及设计规则: MOSIS:mhp_ns5;3. 根据所用的工艺,选取合理的模型库;4. 选用以lambda(λ)为单位的设计规则;3. 设计的方法与计算分析3.1 74HC138芯片简介74HC138是一款高速CMOS器件,74HC138引脚兼容低功耗肖特基TTL 系列图3-1 74HC138管脚图表3-1 74HC138真值表由于74HC138芯片是由两个2-4译码器组成,两个译码器是独立的,所以,这里只分析其中一个译码器。
数字集成电路--电路、系统与设计

数字集成电路是现代电子产品中不可或缺的一部分,它们广泛应用于计算机、手机、汽车、医疗设备等领域。
数字集成电路通过在芯片上集成大量的数字电子元件,实现了电子系统的高度集成和高速运算。
本文将从电路、系统与设计三个方面探讨数字集成电路的相关内容。
一、数字集成电路的电路结构数字集成电路的电路结构主要包括逻辑门、寄存器、计数器等基本元件。
其中,逻辑门是数字集成电路中最基本的构建元件,包括与门、或门、非门等,通过逻辑门的组合可以实现各种复杂的逻辑功能。
寄存器是用于存储数据的元件,通常由触发器构成;而计数器则可以实现计数和计时功能。
这些基本的电路结构构成了数字集成电路的基础,为实现各种数字系统提供了必要的支持。
二、数字集成电路与数字系统数字集成电路是数字系统的核心组成部分,数字系统是以数字信号为处理对象的系统。
数字系统通常包括输入输出接口、控制单元、运算器、存储器等部分,数字集成电路在其中充当着处理和控制信号的角色。
数字系统的设计需要充分考虑数字集成电路的特性,包括时序和逻辑的正确性、面积和功耗的优化等方面。
数字集成电路的发展也推动了数字系统的不断完善和创新,使得数字系统在各个领域得到了广泛的应用。
三、数字集成电路的设计方法数字集成电路的设计过程通常包括需求分析、总体设计、逻辑设计、电路设计、物理设计等阶段。
需求分析阶段需要充分了解数字系统的功能需求,并将其转化为具体的电路规格。
总体设计阶段需要根据需求分析的结果确定电路的整体结构和功能分配。
逻辑设计阶段是将总体设计转化为逻辑电路图,其中需要考虑逻辑函数、时序关系、并行性等问题。
电路设计阶段是将逻辑电路图转化为电路级电路图,包括门电路的选择和优化等。
物理设计阶段则是将电路级电路图转化为实际的版图设计,考虑布线、功耗、散热等问题。
在每个设计阶段都需要充分考虑电路的性能、面积、功耗等指标,以实现设计的最优化。
结语数字集成电路作为现代电子系统的关键组成部分,对于数字系统的功能和性能起着至关重要的作用。
集成电路的电路参数及性能

CL
f
V2
p dd
fp
1 tp
输入信号的频率
2021/6/26
18
(2)输入为非理想的波形
另一种动态功耗称为交变功耗PA,它是在输入波形为非 理想波形时,反相器处于输入波形上升沿和下降沿的瞬 间,负载管和驱动管会同时导通而引起的功耗。
PA
1 2
f
pVdd
I
' max
(tr
tf
)
I' max
交变电流 I '的峰值,tr,tf为输入信号的上升及下降
rc dV dt
d 2V dx 2
式中:r为单位长度电阻,c为单位长度电容。
通常信号在连线上的传播延迟时间可以用下式估算:
tl
rcl 2 2
其中:l为连线长度,由于 tl l,2 l在连线延迟中起主要作用。
为了减小延迟时间,可行的策略是在连线中加若干个Buffer。
2021/6/26
9
三、电路扇出延迟
• 利用逐级放大反相器构成的驱动电路可有效地解决驱动
大电容负载问题。
2021/6/26
12
例如:设一个标准反相器:
R
驱 负
R 9
Cl 81
Cg WL 3
Vi
Cl 81 2(7 倍) Cg 3
Vdd
1 3
3
1
Cl 81
如果不增加反相器的驱动能力,其延迟时间将增大27倍,即 T=27tpd。
设:|Vtp|=0.2Vdd
tr
4 Cl
pVdd
如果两管尺寸相同:Wn
Ln
Wp Lp
时, n
n p
p
有:
数字集成电路设计的SPEC有什么作用一般包含什么内容

数字集成电路设计的SPEC有什么作用一般包含什么内容一般来说,数字集成电路设计的SPEC包含以下内容:
1.功能需求:描述电路实现的功能和目标,包括输入、输出、控制和
时序等方面的要求。
2.性能指标:定义电路的性能要求,如速度、功耗、功率噪声、抖动、误码率等。
3.电气特性:规定电路的工作电压范围、电源电流、输入输出的电压
和电流范围,以及对环境变化的适应性等。
4.时序要求:定义电路的时钟频率、时钟延迟、时序关系、同步与异
步操作等。
5.接口要求:描述电路与外部系统或其他芯片的接口,包括通信协议、通信速率、引脚定义等。
6.可靠性要求:规定电路的可靠性、寿命、抗干扰能力、故障检测和
纠正、温度和电压的变化对性能的影响等。
7.适应性和可扩展性:定义电路的适应性与可扩展性要求,包括不同
操作模式、不同配置选项、可升级性等。
8.设计约束:规定电路设计的约束条件,如面积、功耗、成本、集成度、可制造性等。
9.测试要求:定义电路的测试方法和测试要求,包括可靠性和功能测试、工艺和制造测试等。
通过对SPEC的详细规定和完整描述,设计人员、制造商和客户可以共同理解和参与对电路设计的开发和验证,确保电路能够满足给定的需求和标准。
SPEC的编写也有助于减少设计过程中的误解和错误,提高设计的可靠性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 4.1 MOS晶体管的参数
§4.1.7 漏-源击穿电压
饱和区的MOS管,VDS>BVDS漏极的耗尽层会延伸到源极,使 电流流动与栅极电压无关。
第 四
章 §4.2 信号传输延迟
§ 4.2 信号传输延迟
§4.2.1 CMOS门延迟
1.门延迟:信号从逻辑门输入端到其输出端的延迟时间
VTN =
( ) 2qε si N A 2 Φ F
C OX
+ 2 Φ F + Φ MS + V OX
可用平带电压VFB来代替
V TN =
( ) 2 q ε si N A 2 Φ F
C OX
+ 2 Φ F + V FB
Φ MS = Φ gate - Φ silicon
( ) ΦF = ⎛⎜⎝ kT q ⎞⎟⎠ ln
② VG>VTn 形成反型层 Qs=QB+Qe
Qe: 沟道中的自由电子电荷。 VTn: Qe刚形成时的栅电压 此时QB不增加 Qe=-Cox(VG-VTn)
§ 4.1 MOS晶体管的参数
2. 电子层形成条件 反型层
+VG
表面电势 Φ s = 2Φ F
时电子层开始形成
体费米电势 Φ F
由型半导体中硼的掺杂密度确定:
静态功耗:漏电流引起的功耗(亚阈值泄漏电流,源漏区PN 结反偏电流,栅氧化层隧穿电流等产生)
Pstatic = VDD ⋅ Ileak
Ileak = IPN + ISUB
I PN
=
AqDn
n
2
i
Ln N A
§ 4.3 CMOS电路功耗
§4.3.2 CMOS电路的动态功耗
动态功耗:由CMOS开关瞬态电流和负载电容的充放电造成
19VDD − 20 VDD
VTP
⎟⎟⎠⎞⎥⎥⎦⎤
Tf
=
CL K PVDD
§ 4.2 信号传输延迟
②下降时间tf
NMOS导通,对负载电 容放电的电流
i = −Cout
dVout dt
= Vout Rn
( ) t f
=
βN
2C1 VDD − VTH
⎢⎣⎡VTVND−D
0.1VDD − VTN
+
1 2
浓度。栅氧层薄,则Cox大,体偏置系数小。
γ = TOX ε OX
2qε si N b
耗尽区电荷随VSB的变化
§ 4.1 MOS晶体管的参数
MOS管体效应的Pspice仿真结果
VB<0 VB>0
VSB=0.5v VSB=0v VSB=-0.5v
§ 4.1 MOS晶体管的参数
4、影响VT值的四大因素
1)输入波形为理想的阶跃波形
∫ ∫ ( ) ( )( ) Pd
=
1 tp
⎡td 2
⎢ ⎢
in
⎢⎣ 0
td
t VO dt + i p
td 2
t
Vdd − VO
⎤
dt
⎥ ⎥
⎥⎦
i (t )
=
CL
dV0 dt
∫ ( ) ( ) ∫ Pd
=
CL t pd
⎡0 ⎢ ⎢⎣Vdd
V0
− Vdd
d V0 − Vdd
1.PN结反向饱和电流IO 2.耗尽层产生电流Ig
IO
=
AqDnni2 Ln N A
Ig
≈
Aqni X d
2τ n
3.场开启漏电流
Al SiO2
N+
N+
n+
n+
Al
P - Si
寄生晶体管
§ 4.1 MOS晶体管的参数
§4.1.4 直流导通电阻Ron
nFET漏源电阻:Rn= VDSn/ IDn是非线性的
§ 4.2 信号传输延迟
以分布RC段表示的长导线
信号延迟时间:
Tn
=
0.7 ×
RCn (n
2
+ 1)
Tn→∞
=
0.7 ×
rcl 2 2
解决方法:缓冲器
§ 4.2 信号传输延迟
§ 4.2 信号传输延迟
§4.2.3 电路扇出延迟
电路的扇出:电路输出端接的输入门的个数
§ 4.2 信号传输延迟
∑ 扇出电容 C fanout =
1. 材料的功函数之差 当金属电极同Si晶片接触时,φms = φm - φs 对于Al⎯Si(p)接触, φms = (-0.7) ∼ (-1.5)
2. SiO2层中可移动的正离子 主要是Na+离子的影响,使阈值电压降低
3. 氧化层中固定电荷 固定正电荷QF使阈值电压降低
4. 界面势阱 Si与其它材料界面上,硅晶格突然终止有电子被挂起, 形成挂键,导致界面势阱.
z 下降时间tf:输入阶跃波的条件下,输出信号电压从 90%VDD 下降到10%VDD需要的时间。
z 延迟时间td:输入阶跃波的条件下,输入电压变化到 50%VDD时刻到输出电压变化到50%VDD的时刻的时间间隔。
3、CMOS反相器的转换特性
VIN VDD
§ 4.2 信号传输延迟
VOL = 0 VOH = VDD VM = f(Rn, Rp)
Ron
=
Vds I ds
1、非饱和区(三极管区)(0 < VDS < VGS-VT)
ID
=
μnCoxW
2L
[2(VGS
- VTH)VDS
- VDS2]
Ron
= VDS I DS
=
2tox
μnε ox
L W
1 2(VGS − VTN ) − VDS
当 VDS << 2(VGS - VTH ) 即MOS在深三极管区时
§ 4.1 MOS晶体管的参数
§4.1.2 沟道长度调制效应
L′ = L - ΔL
ΔL =
2
ε Si
qN b
(VDS
−
(VGS −VT ))
沟道长度调制因子
ID
=
μnCoxW 2L
(VGS
- VTH )2(1 + λVDS )
§ 4.1 MOS晶体管的参数
§4.1.3 漏-源截止电流
增强型的MOS晶体管,VGS<0截止状态下的漏电流
有反型层电子电荷MOS结构
ΦF
=
⎜⎜⎝⎛
KT q
⎟⎟⎠⎞ Ln⎜⎜⎝⎛
Na ni
⎟⎟⎠⎞
§ 4.1 MOS晶体管的参数
3. 阈值电压VTN
定义:表面电势 Φ s = 2Φ F 时VG上的电压
即界面的电子浓度等于P型衬底的多子浓度时的栅压
① 理想MOS:氧化层没有寄生电荷,栅和半导体材料一
样(与实际情况不符)
N sub ni
§ 4.1 MOS晶体管的参数
③ 现代MOS工艺调整阈值电压VTN:
通过控制到N沟道区表面的硼离子注入剂量DI(cm-2), 调整量为qDI/COX
VTN =
( ) 2qε si N A 2 Φ F
C OX
+ 2Φ F
+ qD I C OX
§ 4.1 MOS晶体管的参数
④ 考虑衬底调制效应(体效应)的MOS管: 体效应: 衬底是接地的,但源极未必接地,源极不接地时对 VT值的影响称为体效应(Body Effect)。
( ) Ron
Vds →0
=
β
1 VGS − VT
适宜数字电路
§ 4.1 MOS晶体管的参数
等效为一个压控电阻
2、 饱和区
( ) Ron =
VDS
1 2
β
VGS
− VTN
2
( ) β R = 1 on VDS =VGS −VT
2
1 VGS − VTN
= 2Ron VDS =0
§ 4.1 MOS晶体管的参数
In⎜⎜⎝⎛
19VDD − 20VTH VDD
⎟⎟⎠⎞⎥⎦⎤
Tf
=
CL K NVDD
§ 4.2 信号传输延迟
③ 传播延迟td 输入到50%输出的延迟时间 tp=(tpf+tpr)/2
( ) ( ) t p = In 2τ n + In 2τ p 2 ≈ 0.35 τ n + τ p
传播时间定义
§ 4.2 信号传输延迟
第
四 章
电路参数及性能
电路参数和性能
4.1 MOS晶体管的参数 阈值(开启)电压、沟道长度调制效应、漏-源截止电 流;直流导通电阻;栅-源直流输入电阻;栅-源击穿电 压;漏-源击穿电压
4.2 信号传输延迟 CMOS门延迟、连线延迟、电路扇出延迟、大电容负载 驱动电路
4.3 CMOS电路功耗 CMOS电路的静态功耗、CMOS电路的动态功耗、电路 总功耗、功耗管理
V dd
⎤
+ V0dV 0 ⎥
0
⎥⎦
=
CL
f
V2
p dd
动态功耗与输入信号频率成正比,而与器件参数无关
§ 4.3 CMOS电路功耗
(a)负载电容充电功耗
(b) P、N管会同时导通, 产生一个窄脉冲电流
§ 4.3 CMOS电路功耗
2)输入为非理想的波形 反相器处于输入非理想波形上升沿和下降沿的瞬间,负载管 和驱动管会同时导通引起的功耗
电路参数和性能
4.4 CMOS电路的闸流效应 闸流效应原因、闸流效应的控制
4.5 电路模拟HSPICE简介 文件格式、应用例子
4.6 设计例子
第 四