菲涅尔圆孔衍射和圆屏衍射讲义
合集下载
菲涅尔衍射.ppt

当波长、P点的位置r0、 圆孔位置R给定后,由
N
2 N
(1
1)
r0 R
N与圆孔的大小ρN有关,孔大,露出的的波带多, 衍射效应不显著,孔小,露出的的波带少,衍射效
应显著;
当孔趋于无限大- -即 没有光阑时,
播到任一点P时的振幅,只要把球面波相对于P分成半
波带,将第一个和最后一个(第N个)带所发出的次
波的振幅相加或相减即可。
12/28/2019
返回
(3) N与ρN间的关系
D
图示O为点光源,DD’ 为光阑,其上有一半径 为ρN的圆孔,S为通过
圆孔的波面-球冠(球 冠的高为h),P为圆孔
对称由上任意一点。
半波带与观察点P的位置、圆孔的大小、波长等有关。
12/28/2019
返回
S BnN
(2) 合振幅的计算
Rh
rN
O R B0
r0
P
N个半波带的发次波在P点叠加
的合振幅AN
AN a1 a2 a3 a4 a5 ... (1) N 1 aN
aN:第N个半波带所发在P点的次波振幅 “-”:相邻两个半波带所发次波到达P点相位差为
(4)轴外点Q的衍射
12/28/2019
返回
(1)r0对衍射现象的影 响
当波长、圆孔位置R、大 小ρh给定后,由
N
2 N
(1
1)
r0 R
P点的振幅与P点的位置r0有关,即移动观察屏,P
点出现明暗交替变化;
随r0增大,N减小,菲涅耳衍射效应显著;
当r0大到一定程度时,r0→∞,露出的波带数N不 变化,且为
大学光学经典课件L10圆孔衍射和圆屏衍射

大学光学经典课件 L10 圆孔衍射和圆屏
衍射
目录
• 圆孔衍射 • 圆屏衍射 • 圆孔与圆屏衍射的比较 • 总结与展望
01
圆孔衍射
圆孔衍射的基本理论
01
衍射现象
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续传播,产生
衍射现象。
02 03
圆孔衍射的原理
当光波通过一个很小的圆孔时,由于孔径的限制,光波只能从圆孔的一 侧传播到另一侧,但光波的波动性使其在传播过程中产生衍射,形成衍 射图案。
衍射公式
菲涅尔衍射公式是描述圆孔衍射的基本公式,它描述了衍射角、波长和 圆孔半径之间的关系。
圆孔衍射的实验装置
实验装置
实验注意事项
圆孔衍射实验通常包括激光器、小孔 、屏幕和探测器等部分。激光器发出 单色光,通过小孔形成衍射图案,在 屏幕上观察和记录。
在实验过程中,需要注意保持实验环 境的稳定性和清洁度,避免外界干扰 对实验结果的影响。
实验注意事项
确保实验环境的光线充足 、稳定,圆屏的位置和角 度要准确,测量仪器要校 准。
圆屏衍射的实验结果与讨论
实验结果
通过测量衍射图案的直径、亮度 分布等参数,可以得出圆屏的直
径与光波长的关系。
结果分析
根据实验结果,分析圆屏直径对衍 射现象的影响,以及不同波长光波 的衍射差异。
结论与讨论
总结实验结果,探讨圆屏衍射在实 际应用中的意义,以及如何利用圆 屏衍射原理改善光学系统的性能。
04
圆屏衍射
衍射现象的描述:波通过不同形状和尺寸 的圆屏产生的衍射现象。
05
06
衍射的规律:衍射角与波长、圆屏厚度和 材料性质的关系,以及衍射强度分布。
对未来研究的展望
衍射
目录
• 圆孔衍射 • 圆屏衍射 • 圆孔与圆屏衍射的比较 • 总结与展望
01
圆孔衍射
圆孔衍射的基本理论
01
衍射现象
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续传播,产生
衍射现象。
02 03
圆孔衍射的原理
当光波通过一个很小的圆孔时,由于孔径的限制,光波只能从圆孔的一 侧传播到另一侧,但光波的波动性使其在传播过程中产生衍射,形成衍 射图案。
衍射公式
菲涅尔衍射公式是描述圆孔衍射的基本公式,它描述了衍射角、波长和 圆孔半径之间的关系。
圆孔衍射的实验装置
实验装置
实验注意事项
圆孔衍射实验通常包括激光器、小孔 、屏幕和探测器等部分。激光器发出 单色光,通过小孔形成衍射图案,在 屏幕上观察和记录。
在实验过程中,需要注意保持实验环 境的稳定性和清洁度,避免外界干扰 对实验结果的影响。
实验注意事项
确保实验环境的光线充足 、稳定,圆屏的位置和角 度要准确,测量仪器要校 准。
圆屏衍射的实验结果与讨论
实验结果
通过测量衍射图案的直径、亮度 分布等参数,可以得出圆屏的直
径与光波长的关系。
结果分析
根据实验结果,分析圆屏直径对衍 射现象的影响,以及不同波长光波 的衍射差异。
结论与讨论
总结实验结果,探讨圆屏衍射在实 际应用中的意义,以及如何利用圆 屏衍射原理改善光学系统的性能。
04
圆屏衍射
衍射现象的描述:波通过不同形状和尺寸 的圆屏产生的衍射现象。
05
06
衍射的规律:衍射角与波长、圆屏厚度和 材料性质的关系,以及衍射强度分布。
对未来研究的展望
§5-10-11圆孔和圆屏的菲涅耳衍射§7-1偏振光和自然光

§5-10圆孔和圆屏的菲涅耳衍射
此为处理次波相干迭加的一种简化方法,菲
涅耳衍射公式要求对波前作无限分割,半波
带法则用较粗糙的分割来代替,从而使菲涅
耳衍射公式化为有限项求和,此方法虽不够
精确,但可较方便地得出衍射图样的某些定
性特征,故为人们所喜用。
Z1+3λ/2
如图所示,平面波垂直入射孔径 c
为了决定波面在点产生的复振幅 ∑ 的大小,以这样的方法来作图: k
z12, z1, z13 2,
为半径在圆孔露出的波面上作波带(Z1为P 到圆孔衍射屏的距离)
可以预见,随着P点离开P0点逐渐往外,其 光强度将时大时小变化。
§5-10圆孔和圆屏的菲涅耳衍射
但,离P0点较远的地方,此时没有一个完整 的波带,并且奇数带和偶数带受光屏阻挡的 情况差不多,故这时P点将都是暗点。
P0 Z1
M
以为中心,以
z12,
z1, z13 2 z1j2 ,
§5-10圆孔和圆屏的菲涅耳衍射
为半径分别作一系列球面,这此球面将与∑ 面相交成圆,而∑ (等相面)则被分割为一个 个环带。 由于这些环带的边缘点到P0的光程逐个相差 半个波长,这些环带因此被称为菲涅耳半波带 或菲涅耳波带。
的 的由振距惠幅离更正,斯比并-于依菲该赖涅带 于耳的 倾原面 斜理积 因:, 子各反1波比1带于co在s该P带0点到产P生0点
3)、保持不变的情况下移动接收屏,在此过程 中可观察到衍射图样中心的亮暗交替变化。
§5-10圆孔和圆屏的菲涅耳衍射
多4)。、中心强度随ρ的变化比随Z1的变化敏感得 若用圆屏代替上述实验中的圆孔,我们观 察到的衍射图样也是同心圆环。与圆孔情形显著 不同的是,无论改变半径还是距离b,衍射图样 的中心总是一个亮点。 这是光的波动学说最终被微粒说支持者 (泊松,拉普拉斯等)接受的主要的事实。 二、菲涅耳波带法:
菲涅耳圆孔和圆屏衍射 33菲涅耳圆孔和圆屏衍射

a1 E P0 2
光强为第一个半波带产生的光强的 一半,光强不受圆孔大小的影响。 与几何光学结论一致。几何光学是 波动光学的极限。
P0 的光强是不存在衍 4)圆孔很小,如只包含一个半波带,则 圆孔很小,如只包含一个半波带,则P0 4倍!典型的衍射效应。 射屏时的4 射屏时的
菲涅耳衍射 二、圆屏的 圆屏的菲涅耳衍射
rj z j z 2 2
2
j jz 1 4z
1 2
Aj 1 cos aj C zj 2
由于 z
∴
rj
jz
Aj rj2 rj21 z
即近似地各半波带面积相等 则
a1 a2 a3
菲涅耳波带片不仅给惠更斯-菲涅耳原理提供了使
人信服的论据,而且在微波、红外和紫外线、X射线的 成像技术方面开辟了新的方向,并在近代全息照相术 等方面也获得了重要的应用。
P0点产生的复振幅叠加 P0 的复振幅 = ∑上所有半波带发出的子波在 上在P0点产生的复振幅:
Aj 1 cos aj C zj 2 Aj :半波带面积;
z j :半波带到P0点平均距离
C:比例常数
下面来比较 a1, a 2 , a 3 各振幅的大小
点光源通过圆屏时也将发生衍射现象。光波传播 时被圆屏遮了k个半波带。于是从第k+1个半波带 开始,所有其余的波带所发的子波都能到达P点。 不管圆屏的大小和位置怎样,圆屏几何影子的中心永远有光。 但圆屏的面积较小时,被遮蔽的带的数目k就少,因而 ak 1 就 大,到达P点的光就强。
如果圆屏足够小,只遮住中心带的一小部分,则光看起来可 完全绕过它,圆屏影子中心有亮点。
a1 a2 a3
菲涅耳圆孔和圆屏衍射ok

05
06
4. 使用测量工具测量衍射图案的直径、形 状等参数。
实验结果与分析
结果
通过实验可以观察到菲涅耳圆孔衍射图案的变化,如中央亮斑的直径变化、衍射 条纹的形状和数量等。
分析
通过对实验结果的分析,可以了解光波的波动性质和衍射规律,验证光的波动理 论。
04
菲涅耳圆孔和圆屏衍射的 应用
在光学领域的应用
菲涅耳圆孔和圆屏衍 射
目录
• 引言 • 菲涅耳圆孔衍射 • 菲涅耳圆屏衍射 • 菲涅耳圆孔和圆屏衍射的应用 • 结论
01
引言
衍射现象简介
衍射是光波遇到障碍物时,偏离 直线方向传播的现象。
衍射现象是光的波动性的一种表 现,与光的干涉现象密切相关。
衍射可以分为菲涅耳衍射和夫琅 禾费衍射,其中菲涅耳衍射是指 光波遇到边缘或狭缝时发生的衍
05
结论
对菲涅耳圆孔和圆屏衍射的总结
01
菲涅耳圆孔衍射
当光波通过一个小的圆形孔洞时,会在孔洞的周围产生衍射现象。衍射
光斑的形状和大小取决于孔洞的大小和波长。随着孔洞的增大,光斑的
直径也会增大,但形状保持圆形。
02
菲涅耳圆屏衍射
当光波遇到一个大的圆形障碍物时,同样会产生衍射现象。与菲涅耳圆
孔衍射不同的是,菲涅耳圆屏衍射的光斑形状为椭圆形,且长轴方向与
障碍物的法线方向一致。
03
应用领域
菲涅耳圆孔和圆屏衍射在光学、物理、工程等领域有着广泛的应用。例
如,在光学仪器制造、光通信、光学检测等领域,人们常常需要理解和
掌深入研究其他形状的衍射现象
除了圆形孔洞和障碍物外,还有许多其他形状的物体也会产生衍射现象。未来研究可以进 一步探索这些形状的衍射规律和特性,以丰富和完善衍射理论。
菲涅尔圆孔衍射和圆屏衍射(修正版)讲义

§6 菲涅耳圆孔和圆屏衍射
1.菲涅耳圆孔和圆屏衍射 1)衍射装置
S
P0
R
对于可见光:
b
~ mm量级 R ~ m 量级 b ~ 3m 5m
2)实验现象
衍射图样是亮暗相间的同心圆环,中 心点可能是亮的,也可能是暗的。 孔径变化,衍射图样中心的亮暗交替 变化。 移动屏幕,衍射图样中心的亮暗交替 变化,中心强度随 的变化很敏感,随 距离 b 的变化迟缓。 圆屏的衍射图样也是同心圆环,但衍 射图样的中心总是一个亮点。
(4)求露出前n个半波带的圆孔衍射中心场点Po 处的合振幅
取:
A1
A3 Ak A(P) A4
· · ·
…
A2 A1
则有:
(a) k为奇数 A3 Ak A(P)
1 A( P0 ) [ A1 (1) ( n 1) An ] 2
பைடு நூலகம்
I A ( P0 )
2
A2 (b) k为偶数 波带法中的振幅矢量
U m ( P0 ) A( P0 )e
i ( 0 )
3)画出矢量图 注意: 矢量图是正多边形, 一个完整半波带首尾矢量的 位相差是 4)连接首尾矢量,得到合成 矢量,则半波带在P0点产生的 光强为:
m M Am
A
A3 O A1 A2
I ( P0 ) A
l/2
k 由菲涅耳原理可知: Ak k ( k ) r k Rl Ak k ( k ) k ( k ) Rb Ak仅随 k ( k ) 变化,随k的增加缓慢减小,最后
趋近于零。即:
A1 A2 A3 Ak 1 Ak 2 A 0
1.菲涅耳圆孔和圆屏衍射 1)衍射装置
S
P0
R
对于可见光:
b
~ mm量级 R ~ m 量级 b ~ 3m 5m
2)实验现象
衍射图样是亮暗相间的同心圆环,中 心点可能是亮的,也可能是暗的。 孔径变化,衍射图样中心的亮暗交替 变化。 移动屏幕,衍射图样中心的亮暗交替 变化,中心强度随 的变化很敏感,随 距离 b 的变化迟缓。 圆屏的衍射图样也是同心圆环,但衍 射图样的中心总是一个亮点。
(4)求露出前n个半波带的圆孔衍射中心场点Po 处的合振幅
取:
A1
A3 Ak A(P) A4
· · ·
…
A2 A1
则有:
(a) k为奇数 A3 Ak A(P)
1 A( P0 ) [ A1 (1) ( n 1) An ] 2
பைடு நூலகம்
I A ( P0 )
2
A2 (b) k为偶数 波带法中的振幅矢量
U m ( P0 ) A( P0 )e
i ( 0 )
3)画出矢量图 注意: 矢量图是正多边形, 一个完整半波带首尾矢量的 位相差是 4)连接首尾矢量,得到合成 矢量,则半波带在P0点产生的 光强为:
m M Am
A
A3 O A1 A2
I ( P0 ) A
l/2
k 由菲涅耳原理可知: Ak k ( k ) r k Rl Ak k ( k ) k ( k ) Rb Ak仅随 k ( k ) 变化,随k的增加缓慢减小,最后
趋近于零。即:
A1 A2 A3 Ak 1 Ak 2 A 0
《菲涅耳衍射》PPT课件

N
2 N
(1
R)
2 N
(78)
R r0 r0
AN
a1 2
aN 2
(76)
a1 a2 a3 aN
(4)轴外点的衍射
对于轴外任意点 P 的光强度,原则上也可以用同样 的方法进行讨论。
M
P
M0M2M
S
O1M 1
2
P
0
MN R N hN
rN=r0+N /
2
S
S O O
r0
P
0
(4)轴外点的衍射
通常在半定量处理菲涅耳衍射现象时,均采用比较 简单、物理概念很清晰的菲涅耳波带法或图解法。
4.3.1 菲涅耳圆孔衍射—菲涅耳波带法(Fresnel diffraction by a circular aperture — Fresnel's zone construction )
1. 菲涅耳波带法
N
1
2 2
(73)
(3)倾斜因子 由上图可见,倾斜因子为
K( ) 1 cos (74)
2
将(72)-(74)式代入(66)式,可以得到各个波带在 P0 点产生的光振动振幅
aN
πR
R r0
1
cos N
2
(75)
可见,各个波带产生的振幅 aN 的差别只取决于倾角
N。
aN
SN rN
K ( )
(66)
这说明,当孔小到只露出一个波带时,P0 点的光强 度由于衍射效应,增为无遮挡时 P0 点光强度的四倍。
I1 a12
只露出一个波带时的光强
A
a1 2
(80)
无遮挡时的光强
菲涅尔圆孔衍射和圆屏衍射(修正版)讲义34页PPT

▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
34
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
菲涅尔圆孔衍射和圆屏衍射(修正版) 讲义
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)画出矢量图
注意: 矢量图是正多边形, 一个完整半波带首尾矢量的
位相差是
4)连接首尾矢量,得到合成 矢量,则半波带在P0点产生的 光强为:
I (P0 ) A2
m M Am
A
O A1
A2
A3
(4)讨论
1)若被分割的是一整个半波带,
弧m线,合时成矢, 矢量量A1 图为为半半圆圆的形直径。
)
(
1 2
A3
A4
1 2
A5
)
1 2
(
1 )n1
An
1 2 [ A1
(1) ( n1)
An ]
2)自由传播时,由于 An A 0
A(P0 )
1 2
A1 (P0 )
3)若衍射圆孔逐渐增大
n 1 时,A(P0 ) A1 ,Po点处是亮点 n 2 时, A(P0 ) A1 A2 0 ,Po点处是暗点
解:从波源S发出的球面波,自由传播到 R和R+b处的Q和P点时复振幅分别为
U (Q) a eikR R
U (P) a eik (Rb) Rb
由衍射积分公式得
U1(P) K
U0 (Q)F( ,0 )
eikr r
d
F(,0) 1
U0(Q)=U(Q)
d 2Rdr
r Rb
U1(P) K
U0 (Q)F( ,0 )
由菲涅耳原理可知:
Ak
k ( k
)பைடு நூலகம்
Rl
Rb
rk
Ak
R
k( k(k )
b
k
)
k rk
Ak仅随 k(k ) 变化,随k的增加缓慢减小,最后
趋近于零。即:
A1 A2 A3 Ak1 Ak2 A 0
(4)求露出前n个半波带的圆孔衍射中心场点Po
处的合振幅
A P 0 A 1 A 2 A 3 A 4 1 k 1 A k
(5)例1 求圆孔包含1/2个半波带时轴上点P0处的衍射强度
解:此时圆孔露出部分是 半个半波带
作图过程仍然如前所述
但首尾矢量的位相差是 / 2
____
A' OB 2 A0,I ' 2A02
0
光强为自由传播时的两倍
例2 以自由传播为例,验证惠更斯-菲涅尔
原理,并定出公式中的比例系数:K = -i /l
A( P0 ) An1 An2 A
1 2
[
An1
( 1)
A
]
1 2
An1
1 A(P0 ) 2 An1
I A2 (P0 )
(6)讨论:
1)圆孔衍射中心场点P0处的总振幅近似为:
A(P0 ) A1 A2 A3 (1)(n1) An
1 2
A1
(
1 2
A1
A2
1 2
A3
n 3 时, A(P0 ) A1 A2 A3 A1
Po 点处是亮点
n 3 时, A(P0 ) A1 A2 A3 A1
Po 点处是亮点
n 4时, A(P0 ) A1 A2 A3 A4 0
Po点处是暗点
随包含的半波带数目逐渐增多, 中心强度的亮暗交替变化。
随着距离b的变化, 中心强度的亮暗也交替变化。
eikr r
d
2 RK
Rb
bl b
/
2
U
0
(Q)eikr
菲涅尔圆孔衍射和圆屏衍射讲义
2)实验现象
➢ 衍射图样是亮暗相间的同心圆环,中 心点可能是亮的,也可能是暗的。
➢ 孔径变化,衍射图样中心的亮暗交替 变化。
➢ 移动屏幕,衍射图样中心的亮暗交替
变化,中心强度随 的变化很敏感,随
距离 b 的变化迟缓。
➢ 圆屏的衍射图样也是同心圆环,但衍 射图样的中心总是一个亮点。
Ak 0 m
O
2)如果露出m个半波带
由于倾斜因子的影响,随半波带 序号的增长,每个半波带形成的 合矢量(半园的半径)逐渐收缩, 矢量图形成螺旋线。
A1
A2
A1
A1- A2
细波带的叠加
[A1+(-1)k+1Ak+1]/2
3)量自由A0为传第播一时个,半螺圆旋的线半旋径绕到A圆0 (P心0 ) C 。12 A合1(P成0 )矢
取:A1
A1
2
A1
A3
A3
2
A3
···
A1 A3 Ak
A2
A1
2
A3
A4
A3
2
A5
…
则有:
A(P0 )
1 2
[
A1
(1) ( n1)
An ]
I A2 (P0 )
A(P) A2 A4
(a) k为奇数 A1 A3
Ak
A2 A4 (b) k为偶数
A(P)
波带法中的振幅矢量
(5)求遮住前n个半波带的圆屏衍射中心场 点Po处的合振幅
2.半波带法 (1)要解决的问题
求菲涅耳衍射中心场点Po处的光强度 (2)解决方法
采用近似处理的方法
U(P) dU(P) Ui (P)
()
(3)步骤
1)把波前分割成为一系列环形半波带,使得相邻
两个波带的边缘点到P点的光程差等于半个波长
l
M 1 P O P M 2 P M 1 P M 3 P M 2 P 2
4)比较各个振幅的大小
球冠面积:
M
R
r
2R2 (1 cos) S
O b P0
, 其中:cos R2 (R b)2 r 2
2R(R b)
d 2R2 sin d sin d rdr
R(R b)
得: d 2Rdr
r Rb
把d看成半波带面积 k
则:dr l / 2
k Rl 是一个常量
M4 Cb+2l b+3l/2
M3
b+l
R M2
M1 b+l/2
P0
S
O
b
圆孔的菲涅耳衍射与波带分割原则
2)写出每个半波带的复振幅
U1(P0 ) A1(P0 )ei1 U2 (P0 ) A2 (P0 )ei(1 )
U3(P0 ) A3(P0 )ei(12 )
3) 求P0点的合振幅
U (P0 ) A(P0 )ei ( A1 A2 A3 )ei1 则:A(P0 ) A1 A2 A3 (1)(n1) An
4)由圆屏衍射的振幅公式 可知:
随圆屏半径的增大,
A(P0 )
1 2
An1
无论n是奇还是偶,中心场点总是亮的。
5)半波带法的适用条件 能将圆孔或圆屏整分成半波带时的情况, 较简单,否则较困难。
3.矢量图解法
(1) 菲涅耳波半带法的优缺点: 简便,但近似性较大.
(2) 振幅矢量叠加法的基本思路: 将由菲涅耳波带法分割的每个波带再行
分割,使被限制的波面细分为许多面积大小 相等的细波带。
(3)处理步骤
1) 将半波带分割成 m个更窄的小环带
2) 写出每个小环带在P0点的复振幅
U1(P0 ) A(P0 )ei0 U2 (P0 ) A(P0 )ei(0 m) U3 (P0 ) A(P0 )ei(0 2 /m)
………….
Um (P0 ) A(P0 )ei(0 )