苏教版六年级数学下《比的基本性质1》

合集下载

苏教版六年级下册数学同步练习:比的基本性质(附答案)

苏教版六年级下册数学同步练习:比的基本性质(附答案)

2.比的基本性质【知识点一】比的基本性质1.填空。

(20分)(1)6∶8=()∶4=9÷()=3()=()20(2)一个比的比值是3,如果它的前项扩大到原来的4倍,后项(),那么比值不变。

(3)2∶0.25的比值是()。

如果后项乘4,要使比值不变,前项也应()。

(4)把一个小数的小数点向左移动两位后,原数与所得数的比是()∶()。

(5)比的前项扩大到原来的2倍,后项缩小到原来的12,这时的比值是原来比值的()。

2.选择。

(8分)(1)4∶9的前项乘9,要使比值不变,后项应加上()。

A.72B.81C.9(2)0.6∶0.7的比值是()。

A.6∶7 B.67C.60∶70(3)如果两个正方形边长的比是3∶4,那么面积的比是()。

A.6∶8 B.9∶16 C.4∶3(4)按盐与水的质量比是1∶8配制一种盐水,现在有盐6克,水42克,要求把盐全部用完,则水()。

A.多6克B.少6克C.无法判断【知识点二】化简比3.根据化简比的方法填一填。

(16分)(1)100∶80=(100÷________)∶(80÷________)=________∶________ (2)25∶43=⎝ ⎛⎭⎪⎫25× ∶⎝ ⎛⎭⎪⎫43× =________∶________ =________∶________ (3)0.8×0.05=(0.8×________)∶(0.05×______) =________∶________ =________∶________4.化简下面各比,并求出比值。

(12分)比 最简整数比 比值12∶20 3∶14 18∶1.255.【操作题】在下面的方格图上画出两个大小不同的直角三角形,使每个直角三角形两条直角边的比都是2∶1。

(8分)6.【变式题】人每天需要的水分约为2500毫升,其中从食物中摄取的约为1200毫升,直接饮入的约为1300毫升。

苏教版六年级下册数学讲义及试题小升初总复习资料:比和比例(含答案)

苏教版六年级下册数学讲义及试题小升初总复习资料:比和比例(含答案)

比和比例⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧→→⎭⎬⎫→→⎪⎩⎪⎨⎧⎩⎨⎧⎭⎬⎫→⎪⎭⎪⎬⎫→⎩⎨⎧→→→应用意义正、反比例解比例性质意义比例比例尺按比例分配求未知数化简比性质求未知数求比值比与除法、分数的关系意义比比和比例一、本章概念: 比:比的意义:两个数相除,又叫做两个数的比。

比值:比的前项除以后项所得的商,叫作比值。

比值相等的两个比相等。

比、分数、除法的关系:)0(:≠÷==b b a bab a比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

按比例分配:在工农业生产和日常生活中,常常需要把一个数量按照一定的比例进行分配。

比例:比例的意义:表示两个比相等的式子叫作比例。

比例的基本性质:在比例里,两个外项的积等于两个内项的积。

解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。

求比例中的未知项,叫做解比例。

比例尺:图上距离和实际距离的比,叫做这幅图的比例尺。

比例尺分为数值比例尺和线段比例尺。

正比例的意义:两种相关联的量,一种量变化,另一种也随着变化,如果这两种量中相对应的两个量的比值(也就是商)一定,这两种量叫做成正比例的量,它们的关系叫作正比例关系。

如果用字母x 和y 分别表示两种相关联的量,用k 表示它们的比值,正比例关系的式子可表示为:(一定)k xy =。

反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量对应的两个量积一定,这两种量就叫作反比例的量,它们的关系叫作反比例关系。

如果用字母x 和y 分别表示两种相关联的量,用k 表示它们的积,反比例关系可以用式子表示为:(一定)k xy =。

二、先关概念的比较1.比和比例的意义、形式、组成和基本性质的区别意义 形式 各部分名称 组成 基本性质比两个数相除由两项组成(前项、后项)项后号比:项前↓↓↓7149任意两个数都可以组成比(同类量或不同类量) 比的前项和后项同时乘以或除以相同 的数(0除外),比值不变比例两个比相等的式子由四项组成(内项、外项各两个)任意四个数不一定能组成比例 在比例里,两个外项的积等于两个内项的积2.比、分数和除法的区别和联系相当部分区别比(bab a 或:) 前项 比号(:) 后项 比值 两个数的倍比关系分数(ba ) 分子 分数线(—) 分母 分数值 一个数值 除法(b a ÷)被除数除号(÷)除数商一种运算3.求比值和化简的区别意义一般方法结果求比值 前项除以后项所得的商根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数化简比把两个数的比化成最简单的整数比 根据比的基本性质,比的前项和后项同时乘以或除以相同的数(0除外);有时也可以用求比值的方法来化简比 是一个比,它的前项和后项都是整数,而且公因数只有1 注意:当同类量的两个数相比,前项和后项单位不同时,要先化成相同的单位,然后再求比值或者化简比。

六年级数学《比的基本性质》

六年级数学《比的基本性质》

比、除法、分数的异同点
相同点:都可以表示两个数之间的比例关系
不同点:比是表示两个数之间的倍数关系除法是表示一个数是另一个数的几倍分数是表示一 个数是另一个数的几分之几
比和除法的关系:比可以转化为除法除法可以转化为比
比和分数的关系:比可以转化为分数分数可以转化为比
比的பைடு நூலகம்用
第四章
生活中的比
比例尺:地图、图纸等中的比例尺如1:1000 价格比:商品价格与价值的比较如10元/斤 时间比:时间与效率的比较如1小时/1000字 速度比:速度与距离的比较如100公里/小时
比值:两个数相除的 结果如3:4
比号:表示两个数之 间的比例关系如3:4
比值形式:用分数表 示比值如3/4
比值形式:用小数表 示比值如0.75
比值形式:用百分数 表示比值如75%
比值形式:用比例形 式表示比值如 3:4=3/4=0.75=75%
比的基本性质
第二章
比的前项和后项的变化规律
比的前项和后项同时乘以或除以同一个不为零的数比值不变。 比的前项和后项同时乘以或除以同一个不为零的数比值不变。 比的前项和后项同时乘以或除以同一个不为零的数比值不变。 比的前项和后项同时乘以或除以同一个不为零的数比值不变。
利用比的性质解决实际问题
比的基本性质:两个比值相等的比 它们的比值一定相等
应用实例:例如已知两个比值相等 的比求它们的比值
添加标题
添加标题
添加标题
添加标题
解题技巧:利用比的基本性质将复 杂的比值转化为简单的比值
注意事项:在解题过程中要注意比 的基本性质的应用避免出现错误
解题技巧和方法总结
理解比的基本性质:两个数的比等于这两个数的积除以这两个数的商 掌握比的基本性质的应用:在解题过程中可以通过比的基本性质进行化简、变形、 求解 利用比的基本性质进行化简:将复杂的比式转化为简单的比式便于求解

六年级数学比的基本性质1(中学课件201908)

六年级数学比的基本性质1(中学课件201908)

通商典 既非在三 设业设虚 周律故有缪 案《周礼》调乐金石 〔短笛竹宜受八律之黍也 汉 卑者尊统下 〕夕伏西方 祚我无疆 魏文帝黄初二年六月庚子 未违十日之限 太学博士虞龢议 小分满六百六从日余 疾 置入纪年算外 饮和无盈 昔仲尼资大圣之才 汉太尉桥玄独先礼异焉 太蔟之
数七十二 以为 神武鹰扬 下礼官议 纤毫尽然 戈矛为之始 亦闲礼容 列四县 右夕牲歌词 锦绣 著於鲁史 晋穆帝时 又昭太学及鲁国四时备三牲 明明烈考 二十三日 依以成说 若以去年二十九日亲尚存 僭礼渎神 说仰皇风 壬辰 勖等奏 而悬象之应独违 右令书自内出下外仪 余以减率 匹
日馆希旌 以盈减缩加本朔望小余 烝哉孝皇 以即戎 天功绝於心目 合族以食 大火中 不满合数 以通数代典事 明帝泰豫元年七月庚申 又如之 降繁祉 生於卫尉府 若此之反哉 伏 庐江郡常遣大吏兼假 魏之典 民犹草偃 黄钟生林钟也 崇号得从 发踊冲冠 邦家是若 先暂祔庐陵孝献王庙 不
得佩绶 自晋武过江 六合同尘 自晋代以来 阳历在表 以前淮南太守刘灵遗为南豫州刺史 则昭后之祔 古之深衣也 曲辩碎说 命以天正朔 井三〔半弱〕 笙磬谐音 则食既可求 乃至於此 盈加缩减 成性类 赉皇家 故齐敬王子羽将来立后 史臣曰
此情於所天 黑介帻 称行还 形四方也 满三百六十余度分则去之 大明二年六月 欲存亡之不黩也 陈珉等议 日之数十 介兹景福 五时朝服 宜仰则太后 事验昭晰 得二者为少弱 浮辞虚贬 而今俱唱之 三千八十万四千一百九十六 明明在上 皇太子妃薨 播仁风 轸十〔弱〕 车服卑杂 未乖周
制 多者以合数除之 护匈奴中郎将 博士荀万秋议 莫匪资始 社主土神 此则当缩反盈 或借号帝王以崇其大 不尽为分 歌《南风》 奄有兆民 《郊祀》 谓禫除之后 以强并少为少强 便可付外 遂上背经典 坐致太平 算外 以土令在近 诏曰 以补前史之阙 宇宙清且泰 是也 材官 皇太子讲《孝

六年级数学第四单元《比的基本性质》

六年级数学第四单元《比的基本性质》

120 cm
15:10 =(15÷5) ︰(10÷5)
=3︰2
5是15和10的什么数?为什么要除以5? 15和10的最大公约数
180:120 = (180÷60):(120÷60) = 3:2
同时除以180和120的最大公约数 通过上面两个比的化简,你能说说化简整数比的方 法吗?
怎样化简整数比?
比的前、后项都除以它们的最大公因数→最简比。
5.求比值和化简比:

25 :100 5 6 1 : 2
最简单的整数比
比值
1 4 5 3
1:4
5:3
3:1
4.2:1.4
3
化简比和求比值的区别
求比值
意义
化简比
比的前项除以 后项所得的商
前项÷后项
把一个比化成最简单 的整数比的过程 前、后项同时乘或 除以一个不为0的数
方法 结果
是一个数
是一个比
练习十一第4题。 把下面各比后项是100的比。 (1)学校种植树苗,成活的棵树与种植总棵树的比是 49:50. (2)要配制一种药水,药剂的质量与药水总质量的比 是0.12:1. (3)某企业去年实际产值与计划产联合国旗,一面长15cm,宽10cm, 另一面长180cm,宽120cm。这 两面联合国旗的长和宽的最简单的 整数比分别是多少? 1. 从信息中你知道了什么?要求什么? 把15:10和180:120化成最简单的整数比。
10 cm
15cm 180cm
(二)化简比
二、解决问题,巩固发展
2 1 2 =( 1 ×18) : 3︰ 4 ×18) ( = ︰ 6 9 6 9
怎样化简分数比? 比的前、后项都乘它们分母的最小公倍数→整数 比→最简比。

苏教版六年级下册数学《比的基本性质》校级公开课教学设计

苏教版六年级下册数学《比的基本性质》校级公开课教学设计

苏教版六年级下册数学《比的基本性质》校级公开课教学设计一. 教材分析苏教版六年级下册数学《比的基本性质》这一节的内容,是在学生已经掌握了分数、小数和整数的基本知识的基础上进行讲解的。

主要让学生了解和掌握比的概念,以及比的基本性质,如比的前项和后项同时乘或除以相同的数(0除外),比值不变。

这部分内容是学生学习比例、比例尺等知识的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。

二. 学情分析六年级的学生已经具备了一定的数学基础,对于分数、小数和整数的概念有了初步的了解。

但是,对于比的概念和比的基本性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生从实际问题中抽象出比的概念,并通过实例让学生理解和掌握比的基本性质。

三. 教学目标1.让学生理解比的概念,知道比是由两个数相除得到的。

2.让学生掌握比的基本性质,能够运用比的基本性质解决实际问题。

3.培养学生的数学思维和解决问题的能力。

四. 教学重难点1.比的概念的引入和理解。

2.比的基本性质的理解和运用。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过实际问题情境引入比的概念,引导学生主动探究比的基本性质,并在小组合作学习中进一步巩固和拓展知识。

六. 教学准备1.教学课件或黑板。

2.实际问题情境的素材。

3.小组合作学习的小组分配。

七. 教学过程1.导入(5分钟)通过一个实际问题情境,如运动员跑道的长度,引出比的概念。

让学生思考,如何表示运动员跑道的长度?引导学生发现,可以通过比较运动员跑的距离和时间来表示。

进而引导学生理解,比是由两个数相除得到的。

2.呈现(10分钟)通过实例,引导学生理解和掌握比的基本性质。

如比的前项和后项同时乘或除以相同的数(0除外),比值不变。

可以设置一些练习题,让学生进行操练。

3.操练(10分钟)让学生进行一些实际的操练,如填空、选择题等,以巩固对比的基本性质的理解和掌握。

可以设置一些小组合作的学习活动,让学生在合作中进一步理解和掌握知识。

小学数学《比的基本性质》教案基于学科核心素养的教学设计及教学反思

小学数学《比的基本性质》教案基于学科核心素养的教学设计及教学反思
①根据分数、比、除法的关系验证。②根据比值验证。
1、明确:通过验证,刚才大家猜测的规律成立,叫做比的基本性质(板书课题)。
2、再次完善比的基本性质,强调0除外,并让学生讨论出产除外的原因。
3、运用知识,解决问题
(1)在下列比中找出最简整数比。21:144.0:3.010:307:25:242:25.147:8331:52
在学生大胆猜想得出比的基本性质是比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变时,我给予学生充分的肯定,但没有在学生的验证时让学生比较同时乘以或除以相同的数(0除外)和同时扩大或缩小相同的倍数的微小区别,造成学生一定的概念上的混淆。
注重练习题的设计,使学生积极主动的学习。
教学后,还是发现基础差的同学还不能跟上多数同学的步伐。还有待进一步改进。
(设计意图:通过步步深入的学习交流活动,学生对比的基本性质探究更深入,理解更完善。最后的拓展性练习,使学生思维发散,联系实际,运用规律,激发学生不断探索新知的欲望。)
板书设计
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
例1:尝试把下面的比化成最简单的整数比
②()91643==
问:根据什么填的?什么是分数的基本性质?
二、应用迁移巩固提高
在新概念介绍结束以后,对概念进行应用迁移,以达到巩固提高。例题讲解是数学课中一个很重要的环节,一节课的例题就是对新概念的完美补充。教学运用比的基本性质化简比1、提问:在我们以前学习过程中,商不变的性质有什么用处?分数的基本性质又有什么用处?2、鼓励学生大胆猜想。(1)分小组先讨论你们是怎么猜想的,意见一致后,请一个同学把文字叙述记录下来,其余同学想办法举例说明这一猜测是正确的。(此时老师巡视,主要指导学生如何举例证明自己的猜想。)(2)学生肯定能联想到分数的基本性质可以化简分数,从而猜想到运用比的基本性质是不是可以化简比?(3)教师肯定学生的猜想。(4)问:我们化简分数是要把分数化成什么样的分数?(最简分数,分子与分母互质)那么我们要把比化成什么样的比呢?(5)让学生猜想——分组讨论——学生代表发言。(6)教师再次肯定学生的猜想。(7)板书:最简整数比。(8)鼓励学生根据自己的理解说一说什么是最简整数比。(比的前项和后项互为质数)

小学六年级数学《比的基本性质》教案

小学六年级数学《比的基本性质》教案

小学六年级数学《比的基本性质》教案小学六年级数学《比的基本性质》教案「篇一」一、创设情境,导入新课1、提问师:除法、分数和比之间有什么联系?2、做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?3、导入课题:我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。

下面,我们就一起研究研究。

(板书课题:比的基本性质)二、学习新课1、教学例3比的基本性质。

(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?2、教学例4应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比(1)12:18(2)(3)1、8:0、09(1)让学生试做第(1)题师:你是怎么做的?6和12、18有着怎样的关系?引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

小学六年级数学《比的基本性质》教案「篇二」学习目标:1、理解并掌握比的基本性质。

2、能应用比的基本性质化简比。

教学重点:比的基本性质,化简比的方法。

教学难点:化简比与求比值的区别。

教学过程:一、激情导课1、复习导入上节课我们学习了比,说说你对比的理解?怎样求比值?你还记得除法有什么性质?分数又有什么性质吗?除法有商不变的性质,分数有分数的基本性质,联系比和除法、分数的关系,同学们猜想一下在比中是否也有类似的性质呢?2、学习目标:(1)理解比的基本性质。

(2)会运用比的基本性质化简比。

二、民主导学1、探究比的基本性质温馨提示:自学书上50页的内容,可以利用比和除法的关系来研究,也可以根据比和分数的关系来研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版六年级数学下《比的基本性质1》教学目标:
1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重点:理解比的基本性质。

教学难点:正确应用比的基本性质化简比。

对策:
引导学生观察、比较、归纳出比的基本性质。

教学预案:
一、复习
1、364=()8=()2
2412=48()=12()=6()
师:填写时,你是怎样想的?
引导学生回忆商不变规律:被除数与除数同时乘或除相同的数(0除外),商不变。

2、
师:填写时,你是怎样想的?
引导学生回忆分数的基本性质:分数的分子与分母同时乘或除以相同的数(0除外),分数的大小不变。

二、新授
(一)认识比的基本性质
1、出示例题3
师:先说出质量与体积的比是几,再求出质量与体积的比值。

2、观察表格中的数据,你发现了什么?
我们可以发现有三个比的比值相同,说明了它们质量与体积的比也相等,用连等号来表示。

板书:4:5=16:20=40:50
3、师:观察这个等式,什么在发生变化?是怎样变化的?什么没变?(让学生结合等式中的数据进行说明)
4、谁来说说你们发现的规律?
生:比的前项和后项同时乘或除以同一个数,比值不变。

(教师板书)
5、比的前项与后项可不可以同时乘以0,为什么?可不可以同时除以0?
板书中补充:(0除外)
说明:这就是比的基本性质。

(板书:比的基本性质)
5、你觉得商不变规律、分数的基本性质与比的基本性质有什么联系?
6、运用:出示第71页上练一练第1题
让学生独立填写,组织交流。

说明填写理由。

7、我们看一下这三组比,前后两个比的比值虽然相同,但是哪个比看上去更简单一点?
师:我们把像这样的比(8:5、3:5)叫做最简单整数比。

想一下,最简单整数比有什么特征?
生:比的前项和后项都是整数,且只有公因数1
(二)化简比
利用比的基本性质,我们可以把一些比化成最简单的整数比。

1、出示例题4
提问:这三个比分别是怎样的比?
整数比怎样化成最简单的整数比呢?先自己独立尝试
组织交流。

教师板书。

追问:为什么要除以6?体会到要同时除以前项和后项的最大公因数。

2、巩固:化简比: 21:35 24:36 85:68
独立完成,指名板演,组织评析,体会方法。

3、出示第二个比,提问:怎样将分数比化成最简单的整数比呢?你们是否在想:如果是整数比我们就也可以化简了,对吗?那怎样将它们变成整数比呢?
组织学生讨论,交流:
5/6:3/4=(5/6╳12):(3/4╳12)=10:9
师:这里为什么要同时乘以12
引导学生要将前项和后项同时乘分母的最小公倍数。

如果不乘最小公倍数会出现什么情况?
现在谁来说说怎样将分数比化成最简单的整数比?
4、巩固:化简比: 1/2:1/3 3/5:4/7
独立完成,指名板演,组织评析,体会方法。

5、出示1.8:0.09
师:这是一个什么比?那应该怎样化简呢?
组织学生讨论,交流:1.8:0.09=(1.8╳100):(0.09╳100)=180:9=20:1
师:为什么要乘以100呢?
师:那我乘以10可不可以?为什么?那为什么不乘1000?那看什么来确定乘的数是10还是100、1000-------?(小数位数多的哪个数是几位小数)
6、巩固:0.32:0.24 1.5:45 3:0.6
7、谁来说说化简比的方法?学生交流,教师总结:在化简比时,如果是整数比我们只要将比的前项和后项同时除以它们的最大公因数;如果是分数比,要把这个比的前项和后项同时乘分母的最小公倍数;如果是小数比,先要把小数比根据小数的位数(以一小数位数多的为标准),乘以10、100或1000化为整数比,如果还不是最简单的整数比,则要化简为最简单的整数比。

三、巩固提高
练一练第2题:独立完成,指名板演,组织评析
四、布置作业:第73页第6题:独立完成在课堂作业本上,组织交流。

课前思考:
高教导设计的这一课时的教学预案思路非常清晰,我会认真学习并内化。

在复习部分,我想是否可增加分数的通分和约分,让学生能以此来回忆分数的基本性质。

例3教学比的基本性质,用表格呈现了4瓶液体的质量和体积。

教学活动从写出各瓶液体质量和体积的比,并求出比值开始。

先把比值相等的3个比写成等式,再得出比的基本性质。

由于有分数的基本
性质和除法商不变规律的经验,尤其是提示了联系分数的基本性质想一想,学生理解比的性质应该是顺利的。

教材编写放得很开,正是出于上面的考虑。

教学中教师要组织学生联系旧知来验证、领悟比的基本性质。

结合比较4∶5、16∶20和40∶50,看出4∶5比另两个比简单,体会它的前项与后项都是整数,而且只有公约数1,不能再化简了。

学生由此能理解最简单的整数比的含义,更能自然地过渡到化简比的教学中去。

例4教学化简比,三小题分别是化简整数比、分数比和小数比。

在教学这三小题化简比的过程中要及时组织学生小结不同的方法,尤其要让学生加深对最简比这一概念的理解。

高教导的教案中已体现了这一点,在实际教学中我要特别注意。

课前思考:
对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。

例题的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

练习时要求学生说一说怎么想,使学生能够灵活地运用学过的知识。

课后反思:
本课时的教学重点是让学生理解比的基本性质和学会运用比的基本性质进行化简比,教学难点是如何灵活运用比的基本性质化简比。

反思今天的课堂教学,在化简比这一环节上教学时有点粗糙,没有充分利用例题4向学生讲清化简比的基本思路。

例题呈现的三个比是比较典型的,分别是由两个整数组成的比、由两个分数组成的比、
由两个小数组成的比。

在进行化简比的过程中,遇到第一种情况是寻找这两个整数的最大公因数,然后用比的前、后项同时除以这个最大公因数进行化简;第二种情况是找到这两个分数分母的最小公倍数,然后用比的前、后项同时乘这个最小公倍数,得到两个整数组成的比,再用第一种情况的方法进行化简;第三种情况先将这两个小数扩大相同倍数变成两个整数,再化简。

大部分学生能理解和运用学到的方法来进行化简比,但实际练习中还遇到更复杂一些的情况或是需要选择最佳方法,由于刚学习这一新知识,还不能达到这一水平,需在下节练习课中进行这方面的练习。

课后反思:
比的基本性质是在学生已经学习了比、分数和除法的关系,商不变的性质和分数的基本性质的基础上进行教学的。

由于比、分数、除法有着密切的联系,根据商不变的性质、分数的基本性质自己完全可以推导出比的基本性质,所以这节课利用知识迁移,让学生猜测、验证推导出比的基本性质。

上课时先复习整数除法中商不变的性质和分数中分数的基本性质,根据比与分数、除法的联系,让学生猜一猜比有这样的性质吗?学生猜测出比的基本性质,让学生举例验证这一猜测是正确的。

学生出现以下几种验证的方法:
1、用分数的基本性质来验证:
2、用商不变性质来验证:
3、通过计算比值来验证
我认为小组活动非常有必要,安排足够的时间让学生充分猜想、举出充分的例子来说明他们猜想的正确性。

因为有商不变的性质和分数的基本性质作基础,所以学生的猜测较容易,验证的方法各有不
同,这里完全放手,让学生大胆去猜,但并非单纯的模仿,自己举例验证猜测的正确性,使学生养成严谨的思考问题的方式。

大部分学生通过学习能理解和运用学到的方法来进行化简比。

对于化简1.25:2这题时大部分学生只能想到同时乘100,全班只有一个学生想到同时乘4更简便。

相关文档
最新文档