5.3.1平行线的性质(第1课时)

合集下载

5.3.1平行线的性质(说课以及说课教案)

5.3.1平行线的性质(说课以及说课教案)
∠3=____°;
∠4=____°.
练习3:如图所示,填空:
①∵ED∥AC(已知)
∴∠1=∠C ()
②∵DF∥(已知)
∴∠2=∠BED ()
③∵AB∥DF(已知)
∴∠A+∠AFD=180°()
④∵AC∥ED(已知)
∴∠=∠(两直线平行,内错角相等)
拓展练习:如图所示D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.
启发学生模仿上面的推导完成推理过程。
突破本节课难点。
鼓励学生大胆描述,并及时的给予肯定,培养学生的归纳、整理、表达的能力。
让学生进一步理解平行线的性质。为避免出现概念的混淆,渗透“命题”的概念。
到这里教学重点得以解决。
项目
内容
理论依据或意图




三.强化训练,掌握新知
问题回顾:“工人在施工过程中,始终保持钢架a和b平行,已测得∠1=50°,那么∠2应该等于多少度?
让学生学会“观察—猜想—验证—归纳”的研究数学问题的思想方法,培养学生创新、合作、探究的能力。
让学生理解平行线的性质1。
培养学生归纳、概括表达的能力。
项目
内容
理论依据或意图




(二)探究活动Ⅱ
(1)探索“两直线平行,内错角、同旁内角又有什么关系?”
小组得出猜想,并对猜想进行验证,同时鼓励学生利用其它方法进行探索验证。
(2)推理论证的方法验证“两直线平行,内错角相等;两直线平行,同旁内角互补。”
思考1:你能根据性质1“两直线平行,同位角相等”推出“两直线平行,内错角相等”吗?
说明:
因为a∥b(已知)

平行线的性质 优秀课件ppt

平行线的性质    优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a

2020-2021学年下学期人教版七年级数学下册5.3.1平行线的性质(1)课件

2020-2021学年下学期人教版七年级数学下册5.3.1平行线的性质(1)课件

.
4. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
1如图,AB∥CD,直线EF与AB,CD分别交于点M, N,过点N的直线GH与AB交于点P,则下列结论 错误的是( )
A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME
2.如图,AB∥CD∥EF,AC∥DF.若∠BAC=120°, 则∠CDF=( )
c
21 a
度数
34
角 ∠5 ∠6 ∠7 ∠8 度数
65b
1.∠1∠8中,哪些是同位角?它们的度数之7 8间有
什么关系?由此猜想两条平行线被第三条直线截
得的同位角有什么关系?
2.平行线的性质1是什么?几何语言是什么?
性质1 两条平行线被第三条直线 所 截,同位角相等. 简单说成: 性质1:两直线平行,同位角相等.
导入 平行线的判定
条件
结论
判定方法1 同位角相等,两直线平行.
判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
引出新课
条件
两 直 线 平 行
结论

引出新课
条件
结论
两条平行线 被第三条直 线所截
同位角? 内错角? 同旁内角?
5.3.1 平行线的性质 (第1课时)
课件说明
A.∠EMB=∠END
B.∠BMN=∠MNC
C.∠CNH=∠BPG
D.∠DNG=∠AME
2.如图,AB∥CD∥EF,AC∥DF.若∠BAC=120°,则∠CDF=( )
A.60° B.120° C.150° D.180°
3.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等
2.在解题过程中,首先要根据所给图形正确判断截线与被截线,才
能准确地得到角与角之间的关系,从而正确地作出解答.
轻松达标
1.如图5.3-2,//.∠1 = 58∘ ,则∠2的度数为( A ) .
图5.3-2
A.58∘
B.112∘
C.120∘
D.132∘
2.如图5.3-3所示,直角三角尺的直角顶点放在直线
图5.3-6
6.如图5.3-7,已知//,直线分别交,于,,平分∠,
若∠1 = 62∘ ,求∠2的度数.
解:∵ //,
∴ ∠1 + ∠ = 180∘ .
又∵ ∠1 = 62∘ ,
∴ ∠ = 118∘ .
∵ 平分∠,
∴ ∠ = 59∘ .
人教版七年级数学下册课件
第五章 相交线与平行线
5.3.1 平行线的性质
(3课时)
第1课时 两直线平行,同位角相等
自主学习
自主导学
同位角
平行线的性质1:两条平行线被第三条直线所截,________相等.
简单说成:两直线平行,同位角相等.
典例分享
例 如图5.3-1所示,在三角形中,∠ = 70∘ ,
图5.3-4
4.如图5.3-5,若∠1 = ∠3,则下列结论一定成立的是( C ) .
图5.3-5
A.∠1 = ∠4
B.∠3 = ∠4
C.∠1 + ∠2 = 180∘
D.∠2 + ∠4 = 180∘
5.如图5.3-6,直线,被直线所截,已知//,
50 ∘ .
∠1 = 130∘ ,则∠2 =____
∴ ∠2 =
180∘
− ∠ =
180∘

35∘

平行线的性质(一)

平行线的性质(一)
展示问题 利用同位角相等,或者内错角 相等,或者同旁内角互补,可以判 学生思考并讨论 定两条直线平行。反过来,如果两 条直线平行,同位角、内错角、同 旁内角各有什么关系呢? 学生探究 训练学生的思维能力 利用坐标纸 上的直线或者用 c d 直尺和三角尺画 两条平行线 a∥b, 1 2 然后,画一条截线 a 3 4 c 与这两条平行 线相交,标出这些 5 6 角. b
问题与情境 活动 3 练习: 1.如图,直线 a∥b,∠1=54º,那么∠2、 ∠3、∠4 各是多少度?
1 2 4 3
a
师生行为 设计意图 教师出示练 巩固本节课所学的 习 , 并 叫 学 生 演 内容。 板。同时巡视全 班。 学生独立完 成,完成后交流。 教师在学生 完成后讲评。 学生对照检 查。
培养学生的归纳小 学 生 总 结 本 结能力 节课的收获, 不全的内容 进一步巩固本节所 教师补充。 学内容并及时反馈 教学效果,以便调整 教师布置, 学 教学。 生记录
教学反思
1、这节课我比较满意的是: ① 这节课是在学生已学习平行线判断方法的基础上进行的,所以我通过创设一 个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激 发学生的思考,进而引导学生进行平行线性质的探索。 ②对教学的方式进行了一定的尝试,注重学生的自己分析,启发学生用不同方法 解决问题。 ③尽量有意识地锻炼学生使用规范性的几何语言。 2、我觉得不足的地方有: ①自身对课程内容的讲解时缺乏灵活性; ② 引导学生时,语言不够到位; ③师生之间的互动配合默契程度还需加强。
7 8
师生行为 教师出示问题
设计意图 通过提出的问题,使学 生自己思考由两条直 线平行可以得到有关 同位角、内错角、同旁 内角的结论。
培养学生的动手能力 及观察总结的能力 度量这些角,把结果填入下表: 角 ∠1 ∠2 ∠3 ∠4 度数 角 ∠5 ∠6 ∠7 ∠8 度数 各对同位角、内错角、同旁内 角的度数之间有 什么关系?写出你的猜想: 两条平行线被第三条直线所 皆 , 同 位 角 ____________, 内 错 角 ____________, 同 旁 内 角 ___________. 再任意画一条截线 d,同样度 量并计算各个角的度数,你的猜想还 成立吗? 请你总结一下有什么规律?

人教版七年级数学下册教学课件《平行线的性质》(第1课时)

人教版七年级数学下册教学课件《平行线的性质》(第1课时)

5.3 平行线的性质
考 点 1 利用“两直线平行,同位角相等”求角的度数 如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,
∠AED=40°.(1)DE和BC平行吗?为什么?
A
(2)∠C是多少度?为什么?
D
E
解:(1)DE∥BC,
B
C
∵∠ADE=60°,∠B=60°,∴∠ADE= ∠B.
解: ∵ AB∥DE( 已知 ),
C
∴∠A= ∠__C__P_D_ ( 两直线平行,同位角相等 ).
∵AC∥DF( 已知 ),
B
DP A
E
∴∠D+ _∠__C_P_D__=180o ( 两直线平行,同旁内角互补 ).
∴∠A+∠D=180o( 等量代换 ).
课堂检测
拓广探索题
5.3 平行线的性质
如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子
解: ∵a//b (已知),
∴ 1= 2(两直线平行,同位角相等). a
1
∵ 1+ 4=180°(邻补角的性质),
4
∴ 2+ 4=180°(等量代换).
b
2
c
探究新知
5.3 平行线的性质
性质3:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
几何语言:
∵a∥b(已知),
∴∠2+∠4=180 °
a
1
b
4 2
(两直线平行,同旁内角互补).
c
探究新知
5.3 平行线的性质
考 点 1 利用“两直线平行,同旁内角互补”求角的度数
如图是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角的度数分别是多少?

5.3.1 平行线的性质(1) -李欢

5.3.1 平行线的性质(1)长海三中李欢教材分析:本节课的主要内容是平行线的三条性质等内容,首先在研究了平行线的判定的基础上研究平行线的性质,学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系,因此从平行线的判定关系入手,引入对平行线性质的探究。

平行线的性质是教学中的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是教学中的一个难点。

在教学过程中可以告诉学生,从角的关系得到两直线平行式判定,由已知直线平行,得出角的相等或互补关系,是平行线的性质。

教学目标:1、经历探索平行线的性质的过程,掌握平行线的性质。

2、会用平行线的性质进行简单的推理和计算。

3、经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理的表达能力。

重点:平行线性质的探索。

难点:有条理的表达和简单的推理计算。

教学方法:有目的有计划的设计问题,引导学生进行观察、实验、猜测和推理等活动,从而使学生完成自己对数学知识的理解和有效的学习策略。

教学过程:一、复习1、复习平行线的判定方法。

2、把它们已知和结论颠倒一下,可以得到怎样的语句?它们成立吗?(通过复习回忆平行线的判定来引入新课。

)二、深入探究1、画图活动。

学生利用三角板和直尺画出两条平行线a∥b,再画一条截线c,与直线a、b相交,标出所形成的八个角。

老师板演,利用几何画板画出几何图形。

(画平行线的这个过程主要是让学生明白,确定平行线性质的前提是要有两条平行线。

)2、已知a∥b,度量∠1和∠5的大小,会发现同位角∠1 ∠5。

同时还会发现其他同位角∠2和∠6,,∠3和∠7,∠4和∠8也。

3、学生说出猜想,师生一起归纳平行线的性质1:两条平行线被第三条直线所截,同位角相等。

(通过学生自己的操作发现,验证出平行线的性质。

)4、(1)通过观察发现,∠5的同位角∠1与∠3是,所以∠1与∠3是相等的,又因为∠1=∠5,所以∠3=∠5,所以猜想两直线平行,不仅同位角相等,内错角也。

柯玉磊5.3.1-平行线的性质(第1课时)教学设计

5.3.1 平行线的性质(第1课时)土门中学柯玉磊一、教学内容解析本节课的教学内容是平行线的性质. 平行线的性质是平面几何的一个重要内容,它是研究几何图形位置关系与数量关系的基础也是学习简单的逻辑推理的素材,是证明角相等、研究角的关系的重要依据.平行线的性质不但为三角形内角和定理的证明提供了转化的方法,也为今后学习三角形、四边形、平移等知识奠定基础.图形的性质是研究图形构成要素之间的关系,它和图形的判定是几何中研究的两个重要方面.平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用.教科书由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性.平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的(在九年级《圆》这一章中再作证明),然后在性质1的基础上经过进一步推理得到性质2和性质3,体现了由实验几何到论证几何的过渡,渗透了简单推理的思想方法,从而逐步构建起学习几何的“基本套路”,实现对逻辑思维的培养,体现数学在培养良好思维品质方面的价值.因此可以确定本节课的重点为:平行线的三条性质.二、学生学情分析东直门中学是北京市示范性中学,我的授课班级数学基础较好,学生个性活泼,思维活跃,积极性高.但是,学生初次接触图形的性质,对于平行线的性质的研究过程和研究方法都是陌生的,所以,本节课学生需要在老师的引导下来构建平行线性质的研究过程.作为培养学生推理能力章节,对于性质2和性质3的论证,学生可以做到“说理”,但把推理过程从逻辑上叙述清楚存在困难,需要老师做示范,学生进行模仿.对于证明过程的严密化,对于刚刚接触平面几何的初一学生而言,具有一定的难度,为此,在推理过程符合逻辑的前提下,对于学生在证明过程中使用文字语言或符号语言来进行表述的方式不作限制,更多关注学生对证明本身的理解.本课的教学难点是:平行线性质推理过程的严谨表达.三、教学目标设置1.目标(1)理解平行线的性质;(2)经历平行线性质的探究过程,体会研究平行线性质的方法,感受数学活动中的探索性和创造.2.目标解析达成目标(1)的标志是:学生知道平行线三条性质的条件和结论并能初步运用平行线性质进行简单推理.达成目标(2)的标志是:学生知道三条性质的关系,能独立完成由性质1推导性质2、性质3.四、教学策略分析(1)在学习课标、研读教材的基础上,把平行线的性质这部分内容划分为两课时,第a bc1 2一课时即本节课得到平行线的性质,第二课时了解平行线性质和判定的区别并综合运用平行线性质和判定解决问题.(2)本节课采取教师启发引导与学生实验探究相结合的方式,使学生亲身体验平行线性质的探索和验证全过程.(3)在学生思维最近发展区提出问题,引导学生逐步构建平行线性质的研究思路.(4)课前要求学生准备了三角板、直尺、量角器、剪刀、图形计算器等学习用品,使学生能够根据自身需要,选择不同方法来验证性质1成为可能,在推理性质2和性质3的过程中,从说理到说清理再到书写推理过程,为学生搭建“台阶”,提供展示的机会.(5)依据学生课上实际表现、课后完成作业及目标检测的情况,进行学生学习效果评价.五、教学过程1.梳理旧知,引出新课问题1上节课,学习了哪些平行线的判定方法?(1)你认为这三个判定方法中条件和结论分别是什么?(2)在这三种条件下,都可以得到两条直线平行的结论,反过来,在两条直线平行的条件下,同位角、内错角、同旁内角又各有什么关系呢?师生活动:学生代表回答,如出现错误或不完整,请其他学生修正或补充.教师点评.设计意图:复习上节课所学的平行线的三种判定方法并引入探究课题,有意识让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程做好铺垫.2.动手操作,归纳性质1类比研究平行线判定的思路,首先来研究两条直线平行时,同位角的数量关系.问题2 两条平行线被第三条直线截得的同位角会具有怎样的数量关系?师生活动:学生首先对结论进行猜想,然后在老师的引导下独立探究,学生代表演示、说明.(1)猜想:在两条平行线被第三条直线所截的条件下,同位角有什么关系?(相等)(2)你能验证你的猜想吗?说明:在此过程中教师要关注:学生能否准确标记角;能否准确找出同位角,能否正确使用工具比较角的大小.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探究活动.(3)你能与同学交流一下你的验证方法吗?师生活动:给学生提供充分的展示机会,如果出现操作或表达不规范的地方教师给与指正. 学生可能想到的方法:(1)度量法:用量角器进行测量或使用图形计算器进行验证. (2)叠合法:通过剪纸、拼图进行比较.(4)如果改变截线的位置,你发现的结论还成立吗?说明:学生小组合作,制定方案,进行说明. 学生可能作出多个图形,分别通过度量验证,也可能使用图形计算器的相关功能让截线运动起来,发现同位角不变的数量关系.(5)你能结合图形,表达你得到的结论吗?如果ba//,那么∠1= ∠2 .(6)你能用文字语言表达这个结论吗?(性质1 两直线平行,同位角相等.)G F E DC B A a b c 123a b c 1234E DC B A 1234设计意图:让学生充分经历动手操作—独立思考—合作交流—验证猜想的探究过程得到性质1,并且在这一过程中,锻炼学生由图形语言转化为文字语言,文字语言转化为符号语言的归纳能力和表达能力.为下一步推理性质2、性质3及今后进一步学习推理打下基础.3.简单推理,得出性质2和性质3问题3在两条平行线被第三条直线所截的条件下,你会采取什么样的方法来说明内错角或同旁内角的关系呢?(1)你能用性质1和其他相关知识说明理由吗?师生活动:学生口述推理过程(学生可能使用邻补角或对顶角的关系推导内错角的关系) 学生之间进行点评,指出问题或互相作补充.教师给予鼓励和肯定.(2)你能写出推理过程吗?师生活动:学生代表做板演. 根据板演情况,师生共同做修改或补充.在此更多关注推 理过程是否符合逻辑,不过多强调格式,多给学生鼓励.(3)类比性质1,你能用文字语言表达出上述结论吗?(性质2 两直线平行,内错角相等.)(4)你能用符号语言表达性质2吗?如果 b a //,那么 32∠=∠.设计意图:在教师引导下逐步构建研究思路,循序渐进地引导学生思考,从“说点儿理”向“说清理”过渡.问题4在两条直线平行的条件下,我们研究了同位角和内错角,那么同旁内角之间又有什么关系呢?你能由性质1推出同旁内角之间的关系吗?文字语言:性质3 两直线平行,同旁内角互补.符号语言:如果 b a //, 那么 ︒=∠+∠18043.师生活动:学生独立完成,学生代表使用实物投影进行展示和说明.设计意图:逐步培养学生的推理能力.使学生初步养成言之有据的习惯,从而能进行简单的推理.4.巩固新知,深化理解例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么?(2) 从︒=∠1101可以知道3∠是多少度吗?为什么?(3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么?F E D C B A 3214321ba 师生活动:学生独立思考回答,教师组织学生互相补充,并演示准确形式.设计意图:帮助学生巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.5.归纳小结,布置作业教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)本节课通过简单推理得到性质2和性质3,在推理过程中需要注意哪些问题?设计意图:通过小结,帮助学生梳理本节课所学内容,掌握本节课的核心——平行线的性质, 引领学生回顾探究平行线性质的过程,体会研究平行线性质的方法.布置作业 : 教科书习题5.3第2,4,6题.六、目标检测设计1. (教科书练习第1题)如图,直线b a //,︒=∠541,那么2∠,3∠,4∠各是多少度?设计意图:检测学生对平行线的性质的掌握.2.如图,填空:①∵ AC ED //(已知),∴C ∠=∠1 ( ) .②∵ DF AB //(已知),∴ ∠=∠3 ( ).③∵ ED AC //(已知),∴ ∠ =∠ (两直线平行,内错角相等).设计意图:检测学生对三线八角图的识别和平行线性质的直接应用.。

人教版七年级数学下册教案:5.3.1 平行线的性质

《平行线的性质》(第一课时教学设计)教学分析:(一)教学内容:平行线的性质是空间与图形领域的基础知识。

在以后的学习中经常要用到,这部分内容也是后续内容学习的基础,不但为三角形内角和定理的证明提供了转化的方法,而且为今后学习三角形全等、三角形相似等知识内容奠定了理论基础。

同时本节课学习之前,学生已经了解了平行线的概念以及平行线的判定方法,本节内容则是在原有知识的基础上进行进一步的探究,去发现两条平行线被第三条直线所截,截得的同位角、内错角、同旁内角之间存在着怎样的联系。

综合来看,平行线的性质在教学内容中起着承上启下的基础作用。

(二)教学目标:根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:1、理解平行线的性质,掌握他们的图形语言、文字语言、符号语言,并灵活的进行实际应用。

2、经历观察、实验、猜想、验证等数学活动,培养他们分析问题和解决问题的能力。

3、体会几何知识来源于实践并反作用于实践,认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。

(三)教学重、难点分析:平行线的性质是后续知识内容学习的基础,让学生通过数学活动来发现结论,经历知识的“再发现”过程,可以增强学生对平行线性质的认识和理解,培养学生多发面的能力。

因此我将本节课的重点确定为:理解并应用平行线的性质。

由于学生刚刚接触平面图形的相关知识,对于数学活动的方法及思路还不够清晰,在探究时容易出现思维混乱,主题不明。

因此我将本节课的难点确定为:探究平行线的性质。

(四)教学辅助手段利用多媒体(几何画板、实物投影)、学案进行辅助教学第二部分:教学设计:问题4:如图,直线a、b 被直线c所截,在括号内为下面各小题填空:(1)性质1:∵a//b ∴∠1=∠2(两直线平行,同位角相等)(2)性质2:∵a//b ∴∠=∠(两直线平行,内错角相等)(3)性质3:∵a//b ∴∠+∠ =()三、拓展应用:例1:如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?(图见课本)练习1、如图,直线a//b,∠1=54°,那么∠2,∠3,∠4各是多少度?练习2、如图,∠ADE=∠ABC,若∠AED=42°,则∠B=_____,∠C=_______.四、本课小结,作业布第三部分:教学评价:本节课通过回忆已学知识,从而引入新课,衔接得当。

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
(2)∵ DE∥BC ) ∥
(已证) 已证)
∴∠AED=∠C (两直线平行,同位角相等 ∠ 两直线平行, ∴∠ 两直线平行 同位角相等) 又∵∠AED=40° 已知) ∵∠ ° 已知) ( ∴∠C=40 ° (等量代换) 等量代换) ∴∠
问题思考(一 问题思考 一)
小青不小心把家里的梯形玻璃块打碎了, 小青不小心把家里的梯形玻璃块打碎了,还剩下梯 形上底的一部分(如图)。要订造一块新的玻璃, )。要订造一块新的玻璃 形上底的一部分(如图)。要订造一块新的玻璃,已经 你想一想, 量得 ∠A =115°, ∠D =100° ,你想一想,梯形另外两个角 各是多少度? 各是多少度? A D 解:因为梯形上.下底互相平行,所以
∠ = ∠2 1
结论 两直线平行 a//b 两直线平行 a//b 两直线平行 a//b
内错角相等
∠3 = ∠2
同旁内角互补
∠2 +∠4 =180°
问题探究: 问题探究: 根据同位角相等可以判定两直线平行, 根据同位角相等可以判定两直线平行, 同位角相等可以判定两直线平行 反过来如果两直线平行 两直线平行同位角之间有 反过来如果两直线平行同位角之间有 什么关系呢? 什么关系呢? 内错角, 内错角,同旁内角之间又有什么关系 呢?
∠2 + ∠4 =180° (∠2与∠4互补)
a b
图形 1 2 c
已知 a//b
结果
∠ = ∠2 1
结论 两直线平行 同位角相等
a//b
∠3 = ∠2
两直线平行 内错角相等 两直线平行 同旁内角互补
如图: 如图:已知 ∠1= ∠ 2 求证:∠ BCD+ ∠ D=180° D=180° 求证: B 已知) 证明: 如图: 证明 如图: ∠1= ∠ 2(已知) BC ( 内错角相等,两直线平行 ) 内错角相等, D=180° ∠ ∴ BCD+ ∠ D=180° ( 两直线平行,同旁内角互补 ) 两直线平行, A 1 2 C D
∠2 + ∠4 = 180° ∠2 + ∠4 = 180°
a b
图形 1 2 c
已知
∠1a//b 2 ∠1= ∠ 2 =∠
结果
结论
两直线平行 同位角相等 ∠1 = ∠2 a//b 两直线平行 同位角相等 两直线平行 同位角相等 内错角相等 ∠3a//b 2 =∠ a//b 两直线平行 两直线平行 内错角相等 两直线平行 同位角相等 同旁内角互补 a//b (∠2与∠4互补 a//b ) 两直线平行 同旁内角互补 两直线平行
b
∵ a // b(已知) ∴∠2 + ∠3 = 180(两直线平行,同旁内角互补)
0
平行线的性质: 平行线的性质:
性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等. 性质3:两直线平行,同旁内角互补.
小结 平行线的性质 平行线的判定
同 位 角 内 错 角 同 内 角 a b a b 4 3 2 c
演示…… 演示……
结论 两条平行线被第三条直线所截,同位角相等。 两条平行线被第三条直线所截,同位角相等。 平行线被第三条直线所截
简单说成:两直线平行,同位角相等。 简单说成:两直线平行,同位角相等。
平行线的性质1 公理) 平行线的性质1(公理) 性质
∵ AB // CD(已知) 2 ∴∠1 = ∠(两直线平行,同位角相等)
(1)用直尺和三角尺画出两条平行线 a∥b,再画一条截线c,使之与直线 a,b相交,并标出所形成的八角. (2)测量上面八个角的大小,记录下 来.从中你能发现什么?
问题
如果两条直线平行,那么这两条平行线被 如果两条直线平行,那么这两条平行线被 两条平行线 第三条直线所截而成的同位角有什么数量关系? 第三条直线所截而成的同位角有什么数量关系?
∠A与 B互 , ∠D与 C互 . ∠ 补 ∠ 补
于 是 ∠B =180° -115° = 65°,
∠C =180° −100° = 80°.
B
C
梯形的另外两个 角分别是 65°,80°.
问题思考(二 问题思考 二)
如图,已知 如图 已知AB//CD, ∠B =142°,求∠C 已知 °求
C
D
解: AB∥CD(已知) 已知) ∵ ∥
性质2 性质2
E C P 2 D
A
1 F
B
E’ E C 6 4 8 5 3 A7 F’
结论
D 2
1B F
思考1 思考1
如图,已知: 如图,已知:a// b 那么∠ 与 有什么关系 有什么关系? 那么∠3与∠2有什么关系?
1 3 2 a b
例如:如右图因为 a∥b, 平行线的性质1 平行线的性质1 所以 ∠1= ∠2(____________), 又 ∠3 = ∠1 ___(对顶角相等), 所以∠ 2 = ∠3.
∴AD//
两直线平行, ∴∠B=∠ 两直线平行 内错角相等) ∴∠ ∠C (两直线平行,内错角相等 ( 又∵∠B=142°已知) ∵∠ °已知) ( ∴∠B=∠ ∴∠ ∠C=142° 等量代换) ° 等量代换)
A
B
谈一谈:本节课你有何收获? 谈一谈:本节课你有何收获?
小结 平行线的性质
同 位 角 内 错 角 同 内 角 a b a b 4 3 2 c 2 c a//b
a//b (已知)
解:
∠ 1= ∠ 2(两直线平行,同位角相等) ∠ 1+ ∠ 3=180°(邻补角定义) ∠ 2+ ∠ 3=180°(等量代换)
c a
2 3 1
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补 同旁内角互补 简单说成:两直线平行,同旁内角互补。 两直线平行, 两直线平行 同旁内角互补。
平行线的性质
(第一课时 第一课时) 第一课时
复习引入(一):已知直线AB 及其 复习引入 一 :已知直线AB 外一点P 画出过点P 的平行线。 外一点P,画出过点P的AB 的平行线。
P
A
B
复习引入( 复习引入(二): 平行线的判定方法有哪三种? 平行线的判定方法有哪三种?
同 位 角 内 错 角 同 旁 内 角 a b a b 4 3 2 c 2 c a b 图形 1 2 c 条件 同位角相等
已知 ∠ADE=60 ° ∠B=60 °∠AED=40° ° 证:(1)DE∥BC :(1 ∥ (2) ∠C的度数 的度数
A
已知) (1)∵∠ )∵∠ADE=60 ° ∠B=60 ° (已知) ∴∠ADE=∠B (等量代换) ∠ 等量代换) ∴∠
E
D
∴DE∥BC ∥
C
(同位角相等,两直线平行) 同位角相等,两直线平行 同位角相等
∠1 = ∠2 a//b 2 3=∠
2 c
(∠2与∠4互补)
∠1a//b 2 =∠
1.如图1,AB∥CD, Fra bibliotek1=45°, ∠D= ∠C, 依次求出∠D, ∠C, ∠B的度数. C D A 1 B
2.在下图所示的3个图中,a∥b,分别计 算∠1的度数.
1 a 1 b 36° a 1 b 120° a b
平行线的性质2 平行线的性质2 性质 两条平行线被第三条直线所截, 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。 简单说成:两直线平行,内错角相等。
∵ a // b(已知) ∴∠2 = ∠(两直线平行,内错角相等) 3
思考2 思考2
如图:已知a//b,那么∠2与∠ 3有什么关系呢? 与
相关文档
最新文档