压轴题目突破练——函数与导数

合集下载

高考数学压轴大题规范练(2)——函数与导数.docx

高考数学压轴大题规范练(2)——函数与导数.docx

高中数学学习材料马鸣风萧萧*整理制作专题分层训练(三十三) 压轴大题规范练(2)——函数与导数1.已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +ax (x >0), F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. 综上,F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞).(2)由F ′(x )=x -a x 2(0<x ≤3),得k =F ′(x )=x -a x 2≤12(0<x 0≤3)恒成立⇒a ≥-12x 20+x 0(0<x 0≤3)恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即实数a 的最小值为12.2.(2015·重庆卷)设函数f (x )=3x 2+axe x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +a e x, 因为f (x )在x =0处取得极值, 所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x , 故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1), 化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x , 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0, 故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0, 故f (x )为减函数.由f (x )在[3,+∞)上为减函数, 知x 2=6-a +a 2+366≤3, 解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.3.已知f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a ≠0,求函数f (x )的单调区间;(3)若不等式2x ln x ≤f ′(x )+a 2+1恒成立,求实数a 的取值范围. 解 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4,又f (1)=3,∴切点坐标为(1,3), ∴所求切线方程为y -3=4(x -1), 即4x -y -1=0.(2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ), 由f ′(x )=0,得x =-a 或x =a3. ①当a >0时,由f ′(x )<0,得-a <x <a3. 由f ′(x )>0,得x <-a 或x >a3, 此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞. ②当a <0时,由f ′(x )<0,得a3<x <-a . 由f ′(x )>0,得x <a3或x >-a ,此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和(-a ,+∞).综上,当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞. 当a <0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和()-a ,+∞. (3)依题意x ∈(0,+∞),不等式2x ln x ≤f ′(x )+a 2+1恒成立,等价于2x ln x ≤3x 2+2ax +1在(0,+∞)上恒成立,可得a ≥ln x -32x -12x 在(0,+∞)上恒成立, 设h (x )=ln x -3x 2-12x ,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2. 令h ′(x )=0,得x =1,x =-13(舍), 当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0. 当x 变化时,h ′(x )与h (x )变化情况如下表x (0,1) 1 (1,+∞)h ′(x ) + 0 - h (x )单调递增-2单调递减∴当x =1时,h (x )取得最大值,h (x )max =-2, ∴a ≥-2,即a 的取值范围是[-2,+∞). 4.(2015·全国卷Ⅱ)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.解 (1)f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1],g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1,不符题意; 当m <-1时,g (-m )>0,即e -m +m >e -1,不符题意. 综上,m 的取值范围是[-1,1].5.(2015·全国卷Ⅰ)已知函数f (x )=x 3+ax +14,g (x )=-ln x . (1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0), 则f (x 0)=0,f ′(x 0)=0,即⎩⎨⎧x 30+ax 0+14=0,3x 20+a =0.解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线. (2)当x ∈(1,+∞)时,g (x )=-ln x <0, 从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)上无零点. 当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0, 故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0, 故x =1不是h (x )的零点. 当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)上的零点个数.①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点; 当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3上单调递减,在⎝⎛⎭⎪⎫-a 3,1上单调递增,故在(0,1)中,当x = -a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a 3-a 3+14.a .若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)上无零点; b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点;c .若f ⎝ ⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.。

高考数学一轮复习 核心素养提升系列(一)函数与导数高考压轴大题的突破问题练习 新人教A版-新人教A版

高考数学一轮复习 核心素养提升系列(一)函数与导数高考压轴大题的突破问题练习 新人教A版-新人教A版

核心素养提升系列(一)1.(导学号14577259)(理科)(2018·湘西州一模)已知函数f (x )=x -a ln x ,g (x )=-1+ax,其中a ∈R ,e =2.718……(1)设函数h (x )=f (x )-g (x ),求函数h (x )的单调区间;(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,求a 的取值X 围. 解:(1)函数h (x )=x -a ln x +1+ax的定义域为(0,+∞),h ′(x )=1-a x -1+a x 2=x +1[x -1+a ]x 2.①当1+a ≤0,即a ≤-1时,h ′(x )>0,故h (x )在(0,+∞)上是增函数; ②当1+a >0,即a >-1时,x ∈(0,1+a )时,h ′(x )<0;x ∈(1+a ,+∞)时,h ′(x )>0,故h (x )在(0,1+a )上是减函数,在(1+a ,+∞)上是增函数. (2)由(1)令h (x 0)=f (x 0)-g (x 0),x 0∈[1,e], ①当a ≤-1时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1)=1+1+a <0,解得,a <-2; ②当-1<a ≤0时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1)=1+1+a <0,解得,a <-2;③当0<a ≤e-1时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1+a )=1+a -a ln(1+a )+1<0,无解;④当e -1<a 时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (e)=e -a +1+ae<0, 解得,a >e 2+1e -1.综上所述,a 的取值X 围为(-∞,-2)∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.1.(导学号14577260)(文科)(2017·某某某某市名校联考)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,某某数m 的取值X 围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数).解:(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,∴切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x-2x =-2x +1x -1x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e2<0,∴g (e )<g ⎝ ⎛⎭⎪⎫1e,∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e2,∴实数m 的取值X 围是⎝⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2ln x 1-ln x 2x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x-2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2ln x 1-ln x 2x 1-x 2. 下证4x 1+x 2-2ln x 1-ln x 2x 1-x 2<0(*),即证明2x 2-x 1x 1+x 2+ln x 1x 2<0,令t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=21-tt +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2t +1-21-t t +12+1t =t +12-4tt t +12=t -12t t +12,又0<t <1,∴u ′(t )>0,∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2x 2-x 1x 1+x 2+ln x 1x 2<0,故(*)式<0,即f ′⎝⎛⎭⎪⎫x 1+x 22<0成立.2.(导学号14577261)(文科)(2018·某某市一模)已知函数f (x )=(x 2-ax +a +1)e x. (1)讨论函数f (x )的单调性;(2)函数f (x )有两个极值点,x 1,x 2(x 1<x 2),其中a >0.若mx 1-f x 2e x 2>0恒成立,某某数m 的取值X 围.解:(1)f ′(x )=[x 2+(2-a )x +1]e x, 令x 2+(2-a )x +1=0(*),①Δ=(2-a )2-4>0,即a <0或a >4时, 方程(*)有2根,x 1=a -2-a 2-4a2,x 2=a -2+a 2-4a2,函数f (x )在(-∞,x 1),(x 2,+∞)递增,在(x 1,x 2)递减. ②Δ≤0时,即0≤a ≤4时,f ′(x )≥0在R 上恒成立, 函数f (x )在R 递增.综上,a <0或a >4时,函数f (x )在(-∞,x 1),(x 2,+∞)递增,在(x 1,x 2)递减;0≤a ≤4时,函数f (x )在R 递增.(2)∵f ′(x )=0有2根x 1,x 2且a >0,∴a >4且⎩⎪⎨⎪⎧x 1+x 2=a -2x 1x 2=1,∴x 1>0,mx 1-f x 2e x 2>0恒成立等价于m >f x 2x 1e x 2=x 22-ax 2+a +1x 1恒成立,即m >-x 22+2x 2+1恒成立. 令t =a -2(t >2),则x 2=a -2+a 2-4a2.令g (t )=t +t 2-42,t >2时,函数g (t )=t +t 2-42递增,g (t )>g (2)=1,∴x 2>1,∴-x 22+2x 2+1<2, 故m 的X 围是[2,+∞).2.(导学号14577262)(理科)(2018·某某市二模)已知三次函数f (x )的导函数f ′(x )=-3x 2+3且f (0)=-1,g (x )=x ln x +ax(a ≥1).(1)求f (x )的极值;(2)求证:对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).解:(1)依题意得f (x )=-x 3+3x -1,f ′(x )=-3x 2+3=-3(x +1)(x -1), 知f (x )在(-∞,-1)和(1,+∞)上是减函数,在(-1,1)上是增函数, ∴f (x )极小值=f (-1)=-3,f (x )极大值=f (1)=1. (2)证明:法一:易得x >0时,f (x )最大值=1,依题意知,只要1≤g (x )(x >0)⇔1≤x ln x +a x(a ≥1)(x >0). 由a ≥1知,只要x ≤x 2ln x +1(x >0)⇔x 2ln x +1-x ≥0(x >0). 令h (x )=x 2ln x +1-x (x >0),则h ′(x )=2x ln x +x -1, 注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)是增函数,h (x )最小值=h (1)=0即h (x )≥0.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2). 法二:易得x >0时,f (x )最大值=1,由a ≥1知,g (x )≥x ln x +1x(x >0),令h (x )=x ln x +1x(x >0)则h ′(x )=ln x +1-1x 2=ln x +x 2-1x2.注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)是增函数,h (x )最小值=h (1)=1,所以h (x )最小值=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2). 法三:易得x >0时,f (x )最大值=1.由a ≥1知,g (x )≥x ln x +1x (x >0),令h (x )=x ln x +1x (x >0),则h ′(x )=ln x +1-1x2(x >0).令φ(x )=ln x +1-1x 2(x >0),则φ′(x )=1x +1x3>0,知φ(x )在(0,+∞)递增,注意到φ(1)=0,所以,h (x )在(0,1)上是减函数,在(1,+∞)是增函数, 有h (x )最小值=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).3.(导学号14577263)(理科)(2018·东北三省(某某、某某、某某、某某四城市)联考)定义在R 上的函数f (x )满足f (x )=f ′12·e2x -2+x 2-2f (0)x ,g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a .(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)如果s 、t 、r 满足|s -r |≤|t -r |,那么称s 比t 更靠近r . 当a ≥2且x ≥1时,试比较e x和e x -1+a 哪个更靠近ln x ,并说明理由.解:(1)f ′(x )=f ′(1)e2x -2+2x -2f (0),所以f ′(1)=f ′(1)+2-2f (0),即f (0)=1. 又f (0)=f ′12·e -2,所以f ′(1)=2e 2,所以f (x )=e 2x+x 2-2x .(2)∵f (x )=e 2x-2x +x 2,∴g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a =e x +14x 2-x -14x 2+(1-a )x +a =e x-a (x -1),∴g ′(x )=e x -a .①当a ≤0时,g ′(x )>0,函数f (x )在R 上单调递增; ②当a >0时,由g ′(x )=e x-a =0得x =ln a , ∴x ∈(-∞,ln a )时,g ′(x )<0,g (x )单调递减;x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.综上,当a ≤0时,函数g (x )的单调递增区间为 (-∞,+∞);当a >0时,函数g (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ). (3)设p (x )=e x-ln x ,q (x )=e x -1+a -ln x ,∵p ′(x )=-e x 2-1x<0,∴p (x )在x ∈[1,+∞)上为减函数,又p (e)=0,∴当1≤x ≤e 时,p (x )≥0,当x >e 时,p (x )<0. ∵q ′(x )=ex -1-1x ,q ″(x )=e x -1+1x2>0,∴q ′(x )在x ∈[1,+∞)上为增函数,又q ′(1)=0,∴x ∈[1,+∞)时,q ′(x )≥0,∴q (x )在x ∈[1,+∞)上为增函数,∴q (x )≥q (1)=a +2>0.①当1≤x ≤e 时,|p (x )|-|q (x )|=p (x )-q (x )=e x -e x -1-a ,设m (x )=e x-e x -1-a ,则m ′(x )=-e x2-e x -1<0,∴m (x )在x ∈[1,+∞)上为减函数, ∴m (x )≤m (1)=e -1-a ,∵a ≥2,∴m (x )<0,∴|p (x )|<|q (x )|,∴e x比e x -1+a 更靠近ln x .②当x >e 时,设n (x )=2ln x -ex -1-a ,则n ′(x )=2x -e x -1,n ″(x )=-2x2-e x -1<0,∴n ′(x )在x >e 时为减函数,∴n ′(x )<n ′(e)=2e-e e -1<0,∴n (x )在x >e 时为减函数,∴n (x )<n (e)=2-a -e e -1<0,∴|p (x )|<|q (x )|,∴e x比e x -1+a 更靠近ln x .综上:在a ≥2,x ≥1时,e x比e x -1+a 更靠近ln x .3.(导学号14577264)(文科)(2018·某某市三调)已知函数f (x )=1x+a ln x (a ≠0,a∈R ).(1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,某某数a 的取值X 围. 解:(1)因为f ′(x )=-1x 2+a x =ax -1x2,当a =1,f ′(x )=x -1x 2. 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:所以x =1f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)∵f ′(x )=ax -1x 2,(a ≠0,a ∈R ). 令f ′(x )=0,得到x =1a.若在区间[0,e]上存在一点x 0,使得f (x 0)<0成立, 其充要条件是f (x )在区间(0,e]上的最小值小于0即可.①当x =1a<0,即a <0时,f ′(x )<0对x ∈(0,+∞)成立,∴f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e=1e+a . 由1e +a <0,得a <-1e . ②当x =1a>0,即a >0时,(ⅰ)若e≤1a,则f ′(x )≤0对x ∈(0,e]成立,∴f (x )在区间(0,e]上单调递减,∴f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e =1e +a >0,显然,f (x )在区间(0,e]上的最小值小于0不成立. (ⅱ)若1<1a <e ,即a >1e时,则有∴f (x )在区间[0,e]上的最小值为f ⎝ ⎛⎭⎪⎫a =a +a ln a.由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a=a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞). 综上,由①②可知:a ∈⎝⎛⎭⎪⎫-∞,-1e ∪(e ,+∞).4.(导学号14577265)(理科)(2018·某某市一模)已知函数f (x )=a ln x -x -ax+2a (其中a 为常数,a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,是否存在实数a ,使得当x ∈[1,e]时,不等式f (x )>0恒成立?如果存在,求a 的取值X 围;如果不存在,说明理由(其中e 是自然对数的底数,e =2.718 28…)解:(1)由于f (x )=a ln x -x -a x+2a ,(x >0), 则f ′(x )=-x 2+ax +ax2, ①a ≤0时,f ′(x )<0恒成立,于是f (x )的递减区间是(0,+∞). ②a >0时,令f ′(x )>0,解得:0<x <a +a 2+4a2,令f ′(x )<0,解得:x >a +a 2+4a2,故f (x )在⎝ ⎛⎭⎪⎫0,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,+∞递减.(2)a >0时,①若a +a 2+4a2≤1,即0<a ≤12,此时f (x )在[1,e]递减,f (x )min =f (e)=3a -e -a e=⎝ ⎛⎭⎪⎫3-1e a -e≤⎝⎛⎭⎪⎫3-1e ×12-e <0,f (x )>0恒成立,不合题意.②若a +a 2+4a2>1,a +a 2+4a2<e ,即12<a <e2e +1时,此时f (x )在⎝ ⎛⎭⎪⎫1,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,e 递减.要使在[1,e]恒有f (x )>0恒成立,则必有⎩⎪⎨⎪⎧f1>0fe >0,则⎩⎪⎨⎪⎧a -1>03a -e -ae >0,解得e 23e -1<a <e2e +1.③若a +a 2+4a2≥e,即a ≥e2e +1时,f (x )在[1,e]递增,令f (x )min =f (1)=a -1>0,解得a ≥e2e +1.综上,存在实数a ∈⎝ ⎛⎭⎪⎫e 23e -1,+∞,使得f (x )>0恒成立.4.(导学号14577266)(文科)(2018·某某市二模)已知函数f (x )=x 2-a2ln x 的图象在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线斜率为0. (1)讨论函数f (x )的单调性;(2)若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,某某数m 的取值X 围.解:(1)f (x )=x 2-a 2ln x 的定义域为(0,+∞),f ′(x )=2x -a 2x .因为f ′⎝ ⎛⎭⎪⎫12=1-a=0,所以a =1,f (x )=x 2-12ln x ,f ′(x )=2x -12x=2x -12x +12x .令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫12,+∞,单调递减区间是⎝ ⎛⎭⎪⎫0,12. (2)g (x )=x 2-12 ln x +12mx ,由g ′(x )=2x -12x +m 2=4x 2+mx -12x=0,得x =-m +m 2+168.设x 0=-m +m 2+168,所以g (x )在(0,x 0]上是减函数,在[x 0,+∞)上为增函数.因为g (x )在区间(1,+∞)上没有零点,所以g (x )>0在(1,+∞)上恒成立. 由g (x )>0,得12m >ln x 2x -x ,令y =ln x 2x -x ,则y ′=2-2ln x 4x 2-1=2-2ln x -4x24x 2. 当x >1时,y ′<0,所以y =ln x2x -x 在(1,+∞)上单调递减,所以当x =1时,y max =-1,故12m ≥-1,即m ∈[-2,+∞).。

《导数大题压轴题难点突破》(PDF)

《导数大题压轴题难点突破》(PDF)

《难点突破》压轴题----函数与导数常考题型一、要点归纳1.曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+.2.若可导函数()y f x =在x x =处取得极值,则0()0f x '=.反之,不成立.3.对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。

4.函数()f x 在区间I 上递增(减)的充要条件是:x I ∀∈,()f x '0≥(0)≤恒成立(()f x '不恒为0).5.函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。

(若()f x '为二次函数且I=R ,则有0∆>).6.()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或()f x '0≤在I 上恒成立.7.若x I ∀Î,()f x 0>恒成立,则min ()f x 0>;若x I ∀∈,()f x 0<恒成立,则max ()f x 0<.8.若0x I ∃∈,使得0()f x 0>,则max ()f x 0>;若0x I∃∈,使得0()f x 0<,则min ()f x 0<.9.设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->.10.若对11x I ∀∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.11.已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆.12.若三次函数f(x)有两个极值点,当且仅当方程()0f x '=一定有两个不等实根12x x 、,若三次函数f(x)没有极值点,则方程()0f x '=有两个相等的实根或没实根..13.证题中常用的不等式:①1xe x≥+②1xex-≥-③xeex ≥④316xex >⑤ln +1(1)x x x ≤>-()⑥ln 1(1)12x x x x -<>+⑦22ln 11(0)22x x x x <->⑧111ln ()1(1)2x x x x x x x-≤≤-≤-≥⑨ln 11(0)x x x x≤->二、常考题型:题型一:恒成立求参数的最值或取值范围问题1.1()010.1xax f x e x x y x-==+-=+已知函数在处的切线方程为(Ⅰ)求a 的值;(Ⅱ)()1,f x <若求x 的取值范围.2.已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.3.已知函数ln(1)()(0)x f x x x+=>(Ⅰ)判断函数()f x 的单调性;(Ⅱ)是否存在实数a 使得关于x 的不等式ln(1)x ax +<在(0,)+∞上恒成立?若存在,求出a 的取值范围,若不存在,试说明理由.4.已知函数1ln ()xf x x+=.(Ⅰ)设a >0,若函数)(x f 在区间1(,2a a +上存在极值,求实数a 的取值范围;(Ⅱ)如果当x ≥1时,不等式2()1k kf x x -≥+恒成立,求实数k 的取值范围.5.已知函数2()23.xf x e x x =+-(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果当1x ≥时,不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.6.设()ln af x x x x=+,32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若存在12,[0,2]x x ∈,使12()()g x g x M-≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.7.设函数(),x f x xe =2().g x ax x =+(Ⅰ)若()f x 与()g x 具有完全相同的单调区间,求a 的值;(Ⅱ)若当0x ≥时恒有()(),f x g x ≥求a 的取值范围.8.已知函数()xf x e =,()1g x x =+(Ⅰ)判断函数()()f x g x -零点的个数,并说明理由;(Ⅱ)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.9.已知函数32()31()f x ax x a x R =++∈,.(Ⅰ)当0a <时,求函数f(x)的极值.(Ⅱ)设函数'1()()(21)13h x f x a x =+-+,(1,](1)x b b ∈->-,如果存在(,1],a ∈-∞-,对任意(1,]x b ∈-都有()0h x ≥成立,试求b 的最大值.10.设函数2()ln ,,f x a x bx a b R =-∈(Ⅰ)若函数()f x 在1x =处与直线12y =-相切,①求实数,a b 的值;②求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦的最大值;(Ⅱ)当0b =时,若不等式()f x m x ≥+对所有的(230,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,求实数m 的取值范围.11.已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >).(Ⅰ)若12x =是函数()f x 的一个极值点,求a 的值;(Ⅱ)求证:当02a <≤时,()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数;(Ⅲ)若对任意..的a ∈(1,2),总存在..01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(1)f x m a >-成立,求实数m 的取范围.12.已知函数()()()3212f x x a x a a x=+--+()a ∈R ,()'f x 为()f x 的导数.(Ⅰ)当3a =-时,证明()y f x =在区间()1,1-上不是单调....函数;(Ⅱ)设()19163g x x =-,是否存在实数a ,对于任意的[]11,1x ∈-,存在[]20,2x ∈,使得()()1122f x ax g x '+=成立?若存在,求出a 的取值范围;若不存在,说明理由.13.已知函数2()ln (1).xf x a x x a a =+->(Ⅰ)求()f x 的单调增区间;(Ⅱ)若存在[]12,1,1,x x ∈-使得12()()1(f x f x e e a -≥-是自然数),求实数的取值.范围14.设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.15.已知函数R a x x axx x f ∈-+-+=,1)1ln()(.(Ⅰ)当0>a 时,求函数)(x f 的单调区间;(Ⅱ)若存在0>x ,使)(11)(Z a x xx x f ∈+-<++成立,求a 的最小值.16.设函数()1.xf x e -=-(Ⅰ)证明:当1,();1x x f x x >-≥+时(Ⅱ)当0,()1xx f x ax ≥≤+时恒成立,求a 的取值范围.17.已知函数2()(1)(1).x f x x e x x =-->(Ⅰ)试判断方程()0f x =根的个数.(Ⅱ)()(1,),k k f x k ≤+∞若为整数,且不等式在上恒成立求的最大值.18.设函数()2xf x e ax =--(Ⅰ)求()f x 的单调区间(Ⅱ)若1,a k =为整数,且当0x >时,'()()10,x k f x x -++>求k 的最大值.题型二:导数与函数的切线问题19.已知函数312()ln ,()23f x x x g x ax x e=⋅=--.(Ⅰ)求()f x 的单调增区间和最小值;(Ⅱ)若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值;(Ⅲ)若2(0,]x e ∈时,函数()y f x =的图象恰好位于两条平行直线1:l y kx =;2:l y kx m =+之间,当1l 与2l 间的距离最小时,求实数m 的值.20.已知函数()ln().f x x a ax =-+(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若(,1),a ∈-∞-函数'()()g x a f x =的图象上存在12,P P 两点,其横坐标满足1216x x -<<<,且()g x 的图象在此两点处的切线互相垂直,求a 的取值范围.21.已知在函数321253y x x x =--+的曲线上存在唯一点P 00(,)x y ,过点P 作曲线的切线l 与曲线有且只有一个公共点P,则切线l 的斜率k =______________.22.已知函数2(),.xf x e ax ex a R =+-∈(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .题型三:导数与函数的零点及零点关系问题23.已知函数3()sin (),[0]22f x ax x a R π=-∈且在,上的最大值.π-3为2(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()f x 在(0,)π内的零点个数,并加以证明.24.已知函数()xf x x ae=-()a R Î有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明12x x +随着a 的减小而增大.25.已知函数()2ln ()2a f x x x x x a a R =--+Î,在其定义域内有两个不同的极值点.(Ⅰ)求a 的取值范围;(Ⅱ)记两个极值点为12,x x ,且12x x <,已知0λ>,若不等式112e x x ll+<×恒成立,求λ的取值范围.26.已知函数()(0)axf x x e a =->.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点12,x x ,且12x x <,试证明12x ae x <.27.已知函数()f x =1x x e-(x ∈R)(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当x >2时,()f x >()g x ;(Ⅲ)如果1x ≠2x ,且1()f x =2()f x ,证明:12x x +>4.28.已知函数2)1(2)(-+-=x a e x x f x)(有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:x 1+x 2<2.29.已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=-+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;32.已知()()ln ().f x x x mx m R =-∈(Ⅰ)当1m =时,()f x 的图象在()1,1-处的切线l 恰与函数(01)xy a a a =>≠且的图象相切,求实数a 的值.(Ⅱ)若函数21()ln 212F x x x mx =+-+的两个极值点为1212,,x x x x <且,求证:21()1()f x f x <-<.33.设函数'()ln(1),()(),0,f x x g x xf x x =+=≥其中'()f x 是()f x 的导函数.(Ⅰ)令11()(),()(()),,n n g x g x g x g g x n N ++==∈求()n g x 的表达式;(Ⅱ)若()()f x ag x ≥恒成立,求实数a 的取值范围;(Ⅲ)设n N +∈,比较(1)(2)()g g g n ++⋅⋅⋅+与()n f n -的大小,并加以证明.34.已知函数f(x)=e x-kx,x∈R.(Ⅰ)若k=e ,试确定函数f(x)的单调区间;(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k 的取值范围;(Ⅲ)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>()122nn e++(n∈N *).《难点突破》(答案)压轴题----函数与导数常考题型二、常考题型:题型一:恒成立求参数的最值或取值范围问题2.解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+,由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

高考数学压轴专题人教版备战高考《函数与导数》技巧及练习题附答案

高考数学压轴专题人教版备战高考《函数与导数》技巧及练习题附答案

高考数学《函数与导数》课后练习一、选择题1.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.2.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.3.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.4.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.5.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.6.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .【答案】B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.7.33 ax⎛⎫-⎪⎪⎝⎭的展开式中,第三项的系数为1,则11adxx=⎰()A.2ln2B.ln2C.2D.1【答案】A【解析】【分析】首先根据二项式定理求出a,把a的值带入11adxx⎰即可求出结果.【详解】解题分析根据二项式33ax⎛⎫-⎪⎪⎝⎭的展开式的通项公式得2212133()4aT C ax x+⎛⎫=-=⎪⎪⎝⎭.Q第三项的系数为1,1,44aa∴=∴=,则4411111d d ln2ln2ax x xx x===⎰⎰.故选:A【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk nT a b-+=.属于中等题.8.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为()时,其容积最大.A.34B.23C.13D.12【答案】B【解析】【分析】设正六棱柱容器的底面边长为x,)31x-,则可得正六棱柱容器的容积为()())()32921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)12x -,所以正六棱柱容器的容积为()())()329214V x x x x x x x =+-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.9.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D .【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.10.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-,令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增,∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <.故选:C. 【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.11.若点1414(log 7,log 56)在函数()3f x kx =+的图象上,则()f x 的零点为( ) A .1 B .32C .2D .34【答案】B 【解析】 【分析】将点的坐标代入函数()y f x =的解析式,利用对数的运算性质得出k 的值,再解方程()0f x =可得出函数()y f x =的零点.【详解】141414141414log 56log 4log 1412log 212(1log 7)32log 7=+=+=+-=-Q ,2k ∴=-,()2 3.f x x =-+故()f x 的零点为32,故选B.【点睛】本题考查对数的运算性质以及函数零点的概念,解题的关键在于利用对数的运算性质求出参数的值,解题时要正确把握零点的概念,考查运算求解能力,属于中等题.12.函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】 【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x=>,排除CD ,得到答案. 【详解】()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A 【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.13.函数()32xy x x =-⋅的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】排除法:根据函数()32xy x x =-⋅为奇函数,故图象关于原点对称;函数有1-,0,1三个零点;当2x =时,函数值为正数,进行选项排除即可. 【详解】函数()32xy x x =-⋅为奇函数,故图象关于原点对称,故排除D ; 函数有1-,0,1三个零点,故排除A ; 当2x =时,函数值为正数,故排除B . 故选:C . 【点睛】本题考查函数的图象,根据解析式求图像通常利用排除法,依据有函数奇偶性、单调性、零点、定义域、值域、特殊值等,属于中等题.14.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为()A .b a c <<B .c b d <<C .b c a <<D .a b c <<【答案】A 【解析】 【分析】 根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系.()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c << 本题正确选项:A 【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.15.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.16.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0C .x +y -2=0D .3x -y -2=0【答案】A 【解析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.17.函数()3ln 2xf x x x=+的图象在点()()1,1f 处的切线方程为( ) A .64y x =- B .75y x =- C .63=-y x D .74y x =-【答案】B 【解析】 【分析】首先求得切线的斜率,然后求解切线方程即可. 【详解】由函数的解析式可得:()221ln '6xf x x x-=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.18.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <aB .b <a <cC .c <a <bD .a <b <c 【答案】D【解析】【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】 132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<. 故选:D【点睛】 本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.19.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( ) A .20152016B .20162017C .20172018D .20182019【答案】D【解析】【分析】 求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+, 因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直, ()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++.因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D.【点睛】 本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.20.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +, ⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.。

高考数学压轴专题新备战高考《函数与导数》经典测试题含答案

高考数学压轴专题新备战高考《函数与导数》经典测试题含答案

【最新】单元《函数与导数》专题解析一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.4.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +,4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.5.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】 【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.6.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.7.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

压轴题04 函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.【解析】(1)当12a =时,()211ln 42f x x x x x =--+,其定义域为(0,+∞),且()1ln 112f x x x =+--'1ln 2x x =-,所以()1ln 2g x x x =-,所以()112(0)22xg x x x x'-=-=>,令()0g x '>,得02x <<;令()0g x '<,得2x >,所以()g x 在(0,2)上单调递增,在(2,)+∞上单调递减.①当12t +≤,即01t <≤时,()g x 在[t ,t +1]上单调递增,所以()()()()max 111ln 122h t g x g t t t ==+=+--;②当2,12t t ≤+>,即12t <≤时,()()()max 2ln21h t g x g ===-;③当2t >时,g (x )在[t ,t +1]上单调递减,所以()()()max 1ln 2h t g x g t t t ===-,综上所述11ln(1),01,22()ln 21,12,1ln , 2.2t t t h t t t t t ⎧+--<≤⎪⎪=-<≤⎨⎪⎪->⎩(2)因为112emmx x +<,所以121ln ln m x m x +<+,由题意知()f x 的定义域为(0,),+∞()ln f x x ax '=-,故12,x x 是关于x 的方程()ln 0f x x ax '=-=的两个根,所以()()111222ln 0,ln 0f x x ax f x x ax ='-=-'==,即1122ln ,ln x ax x ax ==,所以121ln ln m x m x +<+,等价于()12121m ax max a x mx +<+=+.因为120,0m x x ><<,所以原式等价于121ma x mx +>+,又1122ln ,ln x ax x ax ==,作差,得()1122lnx a x x x =-,即1212lnx x a x x =-,所以原式等价112122ln 1xx m x x x mx +>-+,因为120x x <<,所以()()1212121lnm x x x x x mx +-<+恒成立.令12x t x =,则(0,1)t ∈,故不等式()()11ln m t t t m+-<+在(0,1)t ∈上恒成立,令()()11()ln m t t t t mϕ+-=-+.又因为()()()()()()2222111t t m m t t t m t t m ϕ--+'=-=++,当21m ≥时,得(0,1)t ∈,所以()0t ϕ'>在(0,1)上单调递增,又()10ϕ=,所()0t ϕ<在(0,1)上恒成立,符合题意;当21m <时,可得2(0,)t m ∈时,()0t ϕ'>,()2,1t m ∈时,()0t ϕ'<,所以()t ϕ在2(0,)m 上单调递增,在2(,1)m 上单调递减,又因为()10ϕ=,所以()t ϕ在(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式112emmx x +<恒成立,只需满足21m ≥,又0m >,故m 1≥,即正数m 的取值范围为[1,)+∞.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.【解析】(1)函数()22ln f x x x x =+的定义域为()0,∞+,又()()2ln 22ln 3f x x x x x x x '=++=+,令()0f x '<得320e x -<<,令()0f x ¢>得32e x ->,所以()f x 在320,e -⎛⎫ ⎪⎝⎭上单调递减,在32e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x 在32e x -=处取得极小值3321e e 2f --⎛⎫=- ⎪⎝⎭,无极大值.(2)由()2e x f x x m x≥+得2ln e x x x x x m -+≥,即对任意的1,e x ∞⎡⎫∈+⎪⎢⎣⎭,2ln exx x x xm -+≤恒成立,令()2ln e xx x x xh x -+=,1,e x ∞⎡⎫∈+⎪⎢⎣⎭,则()()()1ln 2e x x x x h x '--+=,令()ln 2x x x ϕ=-+,则()1xx xϕ'-=,所以当11ex <<时()0x ϕ'>,当1x >时()0x ϕ'<,所以()x ϕ在1,1e ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,又1110e e ϕ⎛⎫=-> ⎪⎝⎭,()110ϕ=>,()22e 4e 0ϕ=-<,所以当1,e x ∞⎡⎫∈+⎪⎢⎣⎭时()x ϕ在()21,e 内存在唯一的零点0x ,所以当1,1e x ⎛⎫∈ ⎪⎝⎭时()0x ϕ>,()0h x '>,()h x 单调递增,当()01,x x ∈时()0x ϕ>,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时()0x ϕ<,()0h x '>,()h x 单调递增,所以()()0min1,e h x h x h ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,12e 1e e h --⎛⎫=- ⎪⎝⎭,因为()000ln 20x x x ϕ=-+=,所以00ln 11x x -+=-,020e x x -=,所以()()00000220000000002ln 1ln e 1e e e e ex x x x x x x x x x x x x h x --+-+--=====-,因为e 122e e ---->-,所以()01e h h x ⎛⎫> ⎪⎝⎭,所以()()02min 1e h x h x ==-,所以实数m 的取值范围为21,e ⎛⎤-∞- ⎥⎝⎦.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.【解析】(1)当1a =时,()111221f =-+=,且()()11,11f x x f x=-+'∴=',∴函数()f x 在点()()1,1f 处的切线方程112y x -=-,即2210x y --=.(2)()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,∴方程21ln 02x x x a-+=,即22ln 20x a x ax --=在()0,∞+有唯一实数解.设()22ln 2g x x a x ax =--,则()2222x ax ag x x--'=.令()0g x '=,即20.0,0,x ax a a x --=>> 20x ax a ∴--=的两个根分别为1402a a a x =(舍去),2x =当()20,x x ∈时,()()0,g x g x '<在()20,x 上单调递减,当()2,x x ∈+∞时,()()0,g x g x '>在()20,x 上单调递增,当2x x =时,()()0,g x g x '=取最小值()2g x ,要使()g x 在()0,∞+有唯一零点,则须()()220,0,g x g x ⎧=⎪⎨='⎪⎩即22222222ln 20,0,x a x ax x ax a ⎧--=⎨--=⎩()22222ln 0,0,2ln 10.*a x ax a a x x ∴+-=>∴+-= 设函数()2ln 1,h x x x =+-当0x >时()h x 是增函数,()h x ∴至多有一解.⋅()10,h =∴ 方程()*的解为21x =1=,解得12a =,∴实数a 的值为12.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.【解析】(1)由已知可得,函数()f x 定义域为()0,∞+,()1ea f x x =-'.①当0a ≤时,()10eaf x x =->'在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增,此时函数()f x 无极值;②当0a >时,()e e axf x x-=',解()e 0e axf x x-=='可得e x a =.当e 0x a <<时,()0f x ¢>,所以()f x 在e 0,a ⎛⎫⎪⎝⎭上单调递增;当e x a >时,()0f x '<,所以()f x 在e ,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以,函数()f x 在ex a=处取得极大值e f a ⎛⎫ ⎪⎝⎭.由已知,e 1f a ⎛⎫≥ ⎪⎝⎭,即e e ln 11f a a ⎛⎫=-≥ ⎪⎝⎭,解得10ea <≤,所以,a 的取值范围为10,e ⎛⎤⎥⎝⎦.(2)因为()()()112211e 212e 22x x x f x x x f x --⎛⎫⎛⎫+-++=++- ⎪ ⎪⎝⎭⎝⎭,又因为0x >,所以只需证明()12e212x f x x -<-+即可.当e a =时,()ln f x x x =-,由(1)知()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以,()f x 在1x =处取得极大值,也是最大值()()max 11f x f ==-.记()12e212x g x x -=-+,0x >,则()1112222211ee e 221122x x x x x g x x x ---⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭'==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增,所以,()g x 在12x =处取得极小值,也是最小值()min 112g x g ⎛⎫==- ⎪⎝⎭.因为()max f x 与()min g x 不能同时取到,所以结论成立.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.【解析】(1)由题可知(0)0,()(cos sin )e 2πx f f x x x x -'==--+,因为(0)1πf =+',所以,()y f x =在(0,(0))f 处的切线方程为(1π)y x =+.(2)()f x m =存在两个非负零点12,x x ,设12x x <,由(1)可知()y f x =在(0,(0))f 处的切线方程为(1π)y x =+,注意到π1(π)0,(π)πe f f =-'=-,所以,()y f x =在(π,0)处的切线方程为π1π(π)e y x ⎛⎫=--- ⎪⎝⎭.下证:当[0,π]x ∈时,()(1π)f x x ≤+,且π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.(i )要证()(1π)f x x ≤+,即证2sin e xx x x ≤+,只需证()2sin e x x x x ≤+.①设()sin ,0,()1cos 0g x x x x g x x -=-'=≥≥,故()g x 在[0,)+∞上单调递增,故()(0)0g x g ≥=,即sin ,[0,)x x x ≤∀∈+∞恒成立.要证①,只需证()2e xx x x ≤+.当0x =时上式成立;当0x >时,即证1(1)e x x ≤+,此时,由于11,e 1x x +≥≥,故(1)e 1x x +≥,于是,当0x ≥时,()(1π)f x x ≤+.(ii )要证1()π(π)e x f x x ⎛⎫≤--- ⎪⎝⎭,只需证2πsin 1ππ(π)e e x x x x x ⎛⎫-+≤--- ⎪⎝⎭,即证2sin 1ππ(π)0,[0,π]e e x x x x x x x ⎛⎫-+++-≤∈ ⎪⎝⎭.设2πsin 1()ππ(π),[0,π]e e x x h x x x x x ⎛⎫=-+++-∈ ⎪⎝⎭,则πcos sin 1()2ππ,(π)0e e x x x h x x h -''=-+++=.设πcos sin 1()2ππ,[0,π]e e xx x m x x x -=-+++∈,则()2cos cos 221e e x x x x m x -⎛⎫=-=-+ ⎝'⎪⎭.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,cos 0,e 0,()0x x m x ≥><',当,2x π⎛⎤∈π ⎥⎝⎦时,π2cos 0,|cos |1,e e 1x x x <≤>>,故cos 10,()0e x x m x '+><.于是()0,[0,π]m x x <∀∈'恒成立,故()m x 在[0,]π上单调递减.从而()(π)0m x m ≥=,即()0,[0,π]h x x ≥∀∈'恒成立,故()h x 在[0,]π上单调递增,从而()(π)0h x h ≤=,于是π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.设(1π)x m +=的零点为31,π(π)e x x x m ⎛⎫---= ⎪⎝⎭的零点为4x ,则()341(1π),ππe x m x m π⎛⎫+=---= ⎪⎝⎭.因为()311(1π)(1π)x m f x x +==≤+,所以31x x ≤,因为()()()422π11ππππe e x m f x x π⎛⎫⎛⎫---==≤--- ⎪ ⎪⎝⎭⎝⎭,所以42x x ≥,又34π,π11ππex m mx ==-++,所以2143π2ππ11π1ππe mm m x x x x -≤-=--≤-+++,所以212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.【解析】(1)当2a =-时,可得()212ln 2f x x x x =+-,可得()2(2)(1)1x x f x x x x+-'=+-=,所以()22f '=且()242ln 2f =-,所以切线方程为(42ln 2)2(2)y x --=-,即22ln 20x y --=,即曲线所以曲线()y f x =在点(2,(2))f 处的切线方程为22ln 0x y x --=.(2)由函数()()211ln 2f x x a x a x =-++,可得函数()f x 的定义域为(0,)+∞,又由()()(1)x a x f x x--'=,令()0f x '=,解得1x a =,11x =,当a<0时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,1)1(1,)+∞()f x '-+()f x极小值↗所以函数的极小值为()112f a =--,也是函数()f x 的最小值,所以当a<0时,函数()f x 的最小值为12a --(3)当0a =时,()212f x x x =-,令()0f x =,解得122,0x x ==(舍去)所以函数()y f x =在(0,)+∞上有一个零点;当01a <<时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,)a a(,1)a 1(1,)+∞()f x '+0-0+()f x ↗极大值极小值↗所以函数()f x 在(0,)a 单调递增,在(,1)a 上单调递减,此时函数()f x 的极大值为()21ln 02f a a a a a =--+<,所以函数()y f x =在(0,1)上没有零点;又由()1102f a =--<且函数()f x 在(1,)+∞上单调递增,且当x →+∞时,()f x →+∞,所以函数()f x 在(1,)+∞上只有一个零点,综上可得,当01a ≤<时,()f x 在(0,)+∞上有一个零点.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.【解析】(1)函数()f x 的定义域为()0,∞+,由题意,()11ax f x a x x-'=-=.当0a ≤时,()0f x ¢>,函数()f x 在()0,∞+上单调递增,不合题意;当0a >时,由()0f x ¢>得10x a <<,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.又函数()y f x =在区间[)1,+∞上单调递减,所以,11a≤,即1a ≥.因此,实数a 的取值范围是[)1,+∞.(2)由题意()2ln 10f x x ax +=-+=,于是1122ln 1ln 1x ax x ax +=⎧⎨+=⎩,令21x t x =,则由212x x >可得,2t >.于是221111ln 1ln ln 1ln 1ln 1x x t x t x x x +++===++,即1ln ln 11t x t =--.从而21ln ln ln ln 11t tx t x t =+=--.另一方面,对212332e x x >两端分别取自然对数,则有12ln 2ln 5ln 23x x +>-,于是,即证ln 2ln 35ln 2311t t t t t +->---,即()12ln 5ln 21t t t +>-,其中2t >.设()()12ln 1t t g t t +=-,2t >.则()()()()()221212ln 112ln 3ln 2111t t t t t t t t t g t t t +⎛⎫+--+-+-- ⎪⎝⎭'==--,设()13ln 21t t t tϕ=-+--,2t >.则()()()22222113123120t t t t t t t t t ϕ----+'=++==>在()2,+∞上恒成立,于是,()t ϕ在()2,+∞上单调递增,从而()()1523ln 2413ln 2022t ϕϕ>=-+--=->.所以,()0g t '>,即函数()g t 在()2,+∞上单调递增,于是()()25ln 2g t g >=.因此,212332e x x >,即原不等式成立.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.【解析】(1)证明:由()e cos 2xf x x =+-可得()00e cos020f =+-=,当0x <时,e 1x <,cos 1≤x ,所以e cos 2x x +<,故e cos 20x x +-<,故()f x 在区间(),0∞-上无零点.当0x ≥时,()e sin xf x x '=-,而e 1x ≥,sin 1x -≥-,且等号不会同时取到,所以()e sin 0xf x x =->',所以当0x ≥时,函数()f x 单调递增,所以()()00f x f ≥=,故函数()f x 在区间[)0,∞+上有唯一零点0,综上,函数()f x 在定义域上有唯一零点.(2)由()sin f x ax x >-在区间()0,∞+上恒成立,得e cos 2sin x x ax x +->-,即e sin cos 20x x x ax ++-->在区间()0,∞+上恒成立.设()e sin cos 2xg x x x ax =++--,则()0g x >在区间()0,∞+上恒成立,而()e cos sin xg x x x a =+--',()e cos sin x m x x x a =+--,则()e sin cos x m x x x =-'-.设()e 1xh x x =--,则()e 1x h x '=-,当0x >时,()0h x '>,所以函数()h x 在区间()0,∞+上单调递增,故在区间()0,∞+上,()()00h x h >=,即在区间()0,∞+上e 1x x >+,设函数()()0n ,si ,p x x x x ∞=-∈+,则()1cos 0p x '=-≥,所以函数()p x 在区间()0,∞+上单调递增,故在区间()0,∞+上()()00p x p >=,即在区间()0,∞+上,sin x x >,所以在区间()0,∞+上,e 1sin cos x x x x >+>+,即()e sin cos 0xm x x x =-->',所以在区间()0,∞+上函数()g x '单调递增.当2a ≤时,()020g a '=-≥,故在区间()0,∞+上函数()0g x '>,所以函数()g x 在区间()0,∞+上单调递增.又()00g =,故()0g x >,即函数()sin f x ax x >-在区间()0,∞+上恒成立.当2a >时,()020g a '=-<,()()()ln 22cos ln 2sin ln 2g a a a a a '+=+++-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()π2ln 204a ⎛⎫=+-> ⎪⎝⎭,故在区间()()0,ln 2a +上函数()g x '存在零点0x ,即()00g x '=,又在区间()0,∞+上函数()g x '单调递增,故在区间()00,x 上函数()()00g x g x ''<=,所以在区间()00,x 上函数()g x 单调递减,又()00g =,所以在区间()00,x 上函数()(0)0g x g <=,与题设矛盾.综上,a 的取值范围为(],2-∞.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2xx >,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.【解析】(1)2221()ln ,()a a ax x af x x ax f x a x x x x-+-'=-+∴=--= ,①当12a ≥时,此时2140a ∆=-≤,则()0f x '≤恒成立,则()f x 的减区间为()0,∞+,②当102a <<时,令()0f x ¢>,解得11,22x a a ⎛+∈⎪ ⎪⎝⎭,则()f x 的增区间为⎝⎭令()0f x '<,解得1141140,,22x a a ⎛⎫⎛⎫∈⋃+∞ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,则()f x 的减区间为110,,,22a a ⎛⎛⎫+∞⎪ ⎪ ⎪⎝⎭⎝⎭,综上当12a ≥时,()f x 的减区间为()0,∞+,无增区间;当102a <<时,()f x 的增区间为⎝⎭,减区间为110,,22a a ⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2)欲证2ln 2e ()2e 10,2xx x a g x a x x-=+-+<需证ln 22e 02e xxax x ax x +-+<,即需证()ln 2e 2e 02ex xxax ax x -+<,令2e x t x =,即需证ln 0a t at t-+<,设()ln a h t t at t =-+12e x t x => ,由(1)知当12a ≥时,()h t 的减区间为()0,,∞+所以()(1)0,h t h <=故()0.g x <(3)由(2)知,当11,2t a >=时,11ln 2t t t ⎛⎫<- ⎪⎝⎭,令()*21N t n n=+∈,则2121122ln 11122222(21)1n n n n n n n n n n ⎛⎫⎪⎛⎫⎛⎫⎛⎫+<+-=+-=< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎪+⎝⎭+即2ln(2)ln n n n+-<所以2ln(3)ln(1)1n n n +-+<+2ln(4)ln(2)2n n n +-+<+2ln(5)ln(3)3n n n +-+<+......ln(21)ln(21)212n n n +--<-ln(22)l )22n(2n n n+-<以上各式相加得:11111ln(22)ln(21)ln ln(1)212212n n n n n n n n n ⎛⎫+++--+<+++⋯++ ⎪++-⎝⎭()()()212211111112ln ln 4ln 212212212n n n n n n n n n n ++⎛⎫+++⋯++>=+> ⎪++-+⎝⎭10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.【解析】(1)当1a =时,1()e ln x f x x -=-,函数()f x 的定义域为(0,)+∞,求导得11()e x f x x-'=-,显然函数()f x '在(0,)+∞上单调递增,且()01f '=,因此当(0,1)x ∈时,()0,()'<f x f x 单调递减,当(1,)x ∈+∞时,()0,()'>f x f x 单调递增,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)[0,π]x ∈,令()2(1)cos 2e 2ln(1)cos x g x f x x a x x =+-=-+-,求导得2()2e sin 1x ag x x x '=-++,当0a ≤时,()0g x '>,则()g x 在[0,π]上单调递增,0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,当0a >时,设()()h x g x '=,则22()2e cos 0(1)xah x x x '=++>+,因此函数()h x ,即()g x '在[0,π]上单调递增,而0(0)2e 2sin 022g a a '=-+=-,(i)当01a <≤时,()(0)220,()g x g a g x ''≥=-≥在[0,π]上单调递增,于是0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,(ii)当π2(π)2e sin π0π1ag '=-+≤+,即π(π1)e a ≥+时,对[0,π],()0x g x '∀∈≤,则()g x 在(0,π)上单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,(iii )当π1(1)e a π<<+时,因为()g x '在[0,π]上单调递增,且π2(0)(π)(22)(2e )0π1ag g a ''=--<+,于是0[0,π]x ∃∈,使()00g x '=,且当()00,x x ∈时,()g x '单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,所以实数a 的取值范围为(,1]-∞.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.【解析】(1)()ln ()ln ln (())e e e e ()xh x g x x x x x y f h x x g x =======(2)利用复合函数的求导法则可求得2(2)2(2)(ln 21)x g x x x '=+,令2(2)2(2)(ln 21)0x g x x x '=+=,可求得:令(2)0g x '=,0x >,20(2)x x ∴>,所以ln 210x +=,解得12e x =,当102e x <<时,(2)0g x '<,此时()2g x 单调递减,当12e x >时,(2)0g x '>,此时()2g x 单调递增,所以函数(2)y g x =的最小值为e 11e ⎛⎫ ⎪⎝⎭.(3)()()e ()ln xf x h x H x x a x x ax x-=++=-++由()2222e (1)e (1)1e (1)()1x x x x x x x x x H x x x x x +----+'=-+==,0,e 0x x x >∴+> ,令()0H x '>,解得1x >,此时()H x 单调递增,令()0H x '<,解得1x <,此时()H x 单调递减,因为函数()()y H x H x =⋅'有三个不相同的零点123,,x x x .而()y H x '=的零点为1,不妨设31x =,则()y H x =的零点为12,x x .不妨设12x x <,则()()12121101,1,0x x H x H x x <<<>==.令1()()K x H x H x ⎛⎫=- ⎪⎝⎭,则()11222211e 1e (1)1(1)()e e 11x x x x x x x x x K x x x x x x x⎛⎫⎛⎫+- ⎪ ⎪+-⎛⎫⎝⎭-⎝⎭'=+⨯=+-- ⎪⎝⎭.令1()e e 1x xp x x x =+--,则()111211e 1e e e 1e 1xxx xx p x x x x ⎛⎫=+-+⨯=++- ⎝'⎪⎭,所以当(0,1)x ∈时,()0p x '>,所以当(0,1)x ∈时,()p x 是严格单调递增的,所以当(0,1)x ∈时,()(1)0p x p <=,所以当(0,1)x ∈时,()0K x '>,则1()()K x H x H x ⎛⎫=- ⎪⎝⎭在(0,1)上单调递增,所以在(0,1)上,1()()(1)0K x H x H K x ⎛⎫=-<= ⎪⎝⎭,所以()1110H x H x ⎛⎫-< ⎪⎝⎭.又()()120H x H x ==,所以()2110H x H x ⎛⎫-< ⎪⎝⎭,即()211H x H x ⎛⎫< ⎪⎝⎭.又函数()y H x =在(1,)+∞上单调递增,所以211x x <,即121x x <.综上,1231x x x <.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >【解析】(1)由题意得,函数()f x 的定义域为(0,)+∞.由2()ln f x x ax =-得:2112()2ax f x ax x x-'=-=,当0a ≤时,()0,()'>f x f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>得0x <()0f x '<得x >所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.(2)因为12,x x 是方程2ln 0x ax -=的两不等实根,即12,x x 是方程22ln 20x ax -=的两不等实根,令2(0)t x t =>,则221122,t x t x ==,即12,t t 是方程ln 2ta t=的两不等实根.令ln ()tg t t=,则21ln ()t g t t -'=,所以()g t 在(0,e)上递增,在(e,)+∞上递减,1(e)eg =,当0t →时,()g t →-∞;当t →+∞时,()0g t >且()0g t →.所以102a e <<,即102ea <<.令121e t t <<<.(i )要证22122e x x +>,只需证122e t t +>,解法1:令()()(2e ),(1,e)h t g t g t t =--∈,则ln ln(2e )(2e )ln ln(2e )()()(2e )2e (2e )t t t t t t h t g t g t t t t t ----=--=-=--,令()(2e )ln ln(2e )t t t t t ϕ=---,则()22e 2e ()1ln ln(2e )ln 2e 2e 2e t t tt t t t t t t t tϕ-'=----+=+--+--2e 202e t t t t->+->-,所以()t ϕ在(1,e)上递增,()(e)0t ϕϕ<=,所以()()(2e )0h t g t g t =--<,所以()(2e )g t g t <-,所以()()()2112e g t g t g t =<-,所以212e t t >-,即122e t t +>,所以22122e x x +>.解法2:先证121212ln ln 2x x x xx x -+<-,令120x x <<,只需证212121ln 2ln x x x x x x -<+-,只需证2112ln 011x x x x x x ⎛⎫--<=> ⎪+⎝⎭,令1()2ln (1)1x x x x x ϕ-=->+,22241(1)()0(1)(1)x x x x x x ϕ--'=-=<++,所以()ϕx 在(1,)+∞上单调递减,所以()(1)0x ϕϕ<=.因为1212ln ln t t t t =,所以1212121212ln ln ln ln 2t t t t t t t t t t +-+=<+-,所以12ln ln 2t t +>,即212e t t >,所以122e t t +>>.解法3:由()1212121e ln ln t t t t t t =<<<,设112111ln ln ln (0),t t t t t t λλλλ+=>=,所以11ln ln ln t t λλ+=,即1212ln ln (1)ln ln ,ln ,ln ln 111t t t t λλλλλλλλ+==+=---,构造函数2(1)()ln (1)1x g x x x x -=->+,22214(1)()0(1)(1)x g x x x x x -'=-=>++,所以()g x 在(1,)+∞上单调递增,所以()(1)0g x g >=.(ii)要证:12x x >12e 2t t a >,只需证:12ln ln 1ln 2t t a +>-,只需证:12221ln 2at at a +>-,只需证:121ln 22at t a-+>,212121ln ln 2t t t tt t -+<-令112t a =得22211222ln 22t t a aat a -+<+即222ln 212(ln 21)02a at a t a a+-++>①令212t a =得1111122ln 222t t a aa at -+<--即211ln 212(ln 21)02a at a t aa ⎛⎫----+>⎪⎝⎭②①+②得:()()2221212(ln 21)0a t t a t t -+-->,即121ln 22at t a-+>.13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.【解析】(1)法一:首先证明sin x x ≤,[)0,x ∈+∞,理由如下:构造()sin j x x x =-,[)0,x ∈+∞,则()cos 10j x x '=-≤恒成立,故()sin j x x x =-在[)0,x ∈+∞上单调递减,故()()00j x j ≤=,所以sin x x ≤,[)0,x ∈+∞,()()sin ln 1f x x x =-+,[]0,1x ∈,()22111cos 12sin 1212121x x f x x x x x ⎛⎫'=-=--≥--⎪+++⎝⎭()21111012121x x x x x=--≥--≤≤++,故()()2122202222x x x x x f x x x-+---'≥=>++在[]0,1x ∈上恒成立,所以()f x 在[]0,1单调递增,故()()00f x f ≥=法二:()()sin ln 1f x x x =-+,[]0,1x ∈,()1cos 1f x x x'=-+,且()00f '=,令()()1cos 1f x x xq x '=-=+,则()()21sin 1q x x x '=-++,令()()()21sin 1w q x x x x =-+='+,则()()32cos 01w x x x '=--<+在[]0,1x ∈上恒成立,所以()()21sin 1q x x x '=-++单调递减,又()010q '=>,其中π1sin1sin62>=,故()1sin1014q =-+<',故()00,1x ∃∈,使得()00q x '=,且当()00,x x ∈时,()0q x '>,当()0,1x x ∈时,()0q x '<,所以()f x '先增后减,又()00f '=,()11cos102f '=->,∴()0f x ¢>在()0,1x ∈上恒成立,所以()f x 单调递增,()()00f x f ≥=;(2)法一:()()2e 2sin ln 1xg x x a x =--++,()()()()()2e 1sin ln 11ln 10x g x x x x x x a x =--+-+-++++≥,下证:()e 100xx x --≥≥,()0sin 0x x x -≥≥,()()0ln 10x x x -+≥≥,且在0x =处取等号,令()()0e 1x x r x x -=-≥,则()()e 100x r x x -≥'=≥,故()()0e 1xx r x x -=-≥单调递增,故()()00r x r ≥=,且在0x =处取等号,()0sin 0x x x -≥≥在(1)中已证明;令()()()0ln 1t x x x x =-≥+,则()()101011x t x x x x '=-≥++≥=,故()()()0ln 1t x x x x =-≥+单调递增,故()()00t x t ≥=,且在0x =处取等号,当0x >时,()ln 10x +>,当10a +≥时,即1a ≥-时,()0g x ≥符合题意,当1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞;法二:()()2e 2sin ln 1x g x x a x =--++,()2e cos 1xag x x x '=-++,()0,πx ∈,①当0a ≥时,()2e 10xg x '≥->,()0,πx ∈,()g x 在[]0,π单调递增,且()()00g x g ≥=符合题意,②当a<0时,()2e cos 1xag x x x '=-++在()0,π单调递增,()0211g a a '=+-=+,③当10a +≥时,即10a -≤<时,()()010g x g a ''≥=+≥()g x 在[]0,π单调递增,()()00g x g ≥=符合题意,②当10a +<时,即1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)【解析】(1)1()cos 1f x a x x'=-+ (10-<≤x )a 为正实数,∴函数()f x '在区间(1,0]-上单调递增,且(0)1f a '=-.①当01a <≤时,()(0)0f x f ''≤≤,所以函数()f x 在(1,0]-上单调递减,此时()(0)0f x f ≥=,符合题意.②当1a >时,11(0)10,1cos 10f a f a a a a a a ⎛⎫⎛⎫''=->-=--<-= ⎪ ⎪⎝⎭⎝⎭,由零点存在定理,0(1,0)x ∃∈-时,有()00f x '=,即函数()f x 在()01,x -上递减,在()0,0x 递增,所以当()0,0x x ∈时,有()(0)0f x f <=,此时不符合.综上所述,正实数a 的最大值为1.(2)由(1)知,当1,(1,0)a x =∈-时,sin ln(1)x x >+,令21x i =-时,有2222111sin ln 1ln i i i i -⎛⎫⎛⎫->-= ⎪ ⎪⎝⎭⎝⎭,即2221sin ln 1i i i <-,累加得,2212232sinln ln ln 2ln ln 2132111ni n n n i n n n =⎛⎫<⋅⋅==+< ⎪+++⎝⎭∑ .(3)因为1()e ln(1)x g x x +=-+,所以11()e 1x g x x +'=-+,即函数()g x '在(1,)-+∞上递增,又1(0)e 10,202g g ⎛⎫''=->-=< ⎪⎝⎭,由零点存在定理,11,02x ⎛⎫∃∈- ⎪⎝⎭时,有()10g x '=,即1111e 1x x +=+,因此()11111lnln 11x x x +==-++,而函数()g x 在()11,x -上递减,在()1,x +∞上递增,所以()()()11111min 111111e ln 1ln 1111x m g x g x x x x x x +===-+=+=+++++,即52,2m ⎛⎫∈ ⎪⎝⎭.要证方程1e ln(1)0x m x +--+=有唯一的实数解,只要证方程1e e ln(1)0x m x +-+=有唯一的实数解.设15()ee ln(1)22xmH x x m +⎛⎫=-+<< ⎪⎝⎭,则()1e e 1mxH x x+'=-+,所以函数()H x '在(1,)-+∞上递增,又(0)e e 0mH '=-<,e (1)(1)0mm H m m-'-=>,由零点存在定理,2(0,1)x m ∃∈-时,2()0H x '=,即212e e1mx x +=+,因此()221ln 1m x x =+++,又1111ln 11m x x =+++,设()ln m x x x =+,则函数()m x 在(0,)+∞上递增,于是21111x x +=+且()21ln 11x x +=+,而函数()H x 在()21,x -上递减,在()2,x +∞上递增,()()()()()21min 2221121()e e ln 1e ln 1e 1101x m m m H x H x x x x x x +⎛⎫∴==-+=-+=+-+= ⎪+⎝⎭,即函数()H x 有唯一零点2x ,故方程1e ln(1)0x m x +--+=有唯一的实数解.15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.【解析】(1)由()e ln xf x a x =-,可得()1e x f x a x'=-,因为()f x 在[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即1e xa x ≥在[)1,+∞上恒成立,令()()1,1e x g x x x =≥,则()()()2211e e 0e e x x x x x g x x x x +'=-+=-<在[)1,+∞上恒成立,即()g x 在[)1,+∞上单调递减,所以()()max 11eg x g ==,由1e x a x ≥在[)1,+∞上恒成立,可得()max1ea g x ≥=,所以实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为函数()e 1x x x φ=--,()e 1xx φ'=-,令()0x φ'=,则0x =,即0x >时,()0x φ'>,则()x φ单调递增;即0x <时,()0x φ'<,则()x φ单调递减;所以()()0110x φφ≥=-=,即e 1x x ≥+(当且仅当0x =取等号),因为函数()ln 1x x x ϕ=-+,()0x >,则()11x xϕ'=-,令()0x ϕ'=,则1x =,当01x <<时,()0x ϕ'>,则函数()x ϕ单调递增;当1x >时,()0x ϕ'<,则函数()x ϕ单调递减;所以()()10110x ϕϕ≤=-+=,即ln 1≤-x x (当且仅当1x =取等号),因为21ea ≥,且e 1xx ≥+(当且仅当0x =取等号),ln 1≤-x x (当且仅当1x =取等号),所以()()221e ln e 1e 1exxx f x a x x x -=->⋅--=-+(两个等号不同时成立这里反为大于号),令()()2e1,0x h x x x -=-+>,即证()0h x ≥,因额为()2e1x h x -'=-,令()0h x '=,可得20e e 1x -==,所以2x =,当02x <<时,()0h x '<,则函数()h x 单调递减;当2x >时,()0h x '>,则函数()h x 单调递增;所以()()22min 2e 210h x h -==-+=,所以()()20h x h ≥=,即当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.【解析】(1)因为()ln af x x x=+,所以21()a f x x x '=-,又()f x 在1x =处的切线方程为y b =,所以(1)10,f a ='-=故1a =,又()1ln11f a =+=,所以切线方程为1y =,故1b =,所以()1ln f x x x=+,则22111().x f x x x x -'=-=当01x <<时,()0f x '<,()f x 单调递减;当1x ≥时,()0f x '≥,()f x 单调递增.综上,()f x 的单调递减区间为()0,1,单调递增区间为[)1,+∞.(2)22e ()e e ln e ln (),0,1x x x x x f x mx x x mx x mF x x x x x x x -+++===>---且1x ≠.由曲线()y F x =恒在直线1y x =+的上方,知e ln 11x x m x x +>+-.当1x >时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +>-,即2e ln 10.x x x m -++>设2 ()e ln 1(1),x g x x x m x =-++>则112()e (ln )2e (ln )ex xx x g x x x x x x '=+-=+-.由(1)可知,当1x >时,()1ln f x x x=+单调递增,所以()()11f x f >=.设2()e x x h x =,则2(1)()e xx h x -'=,当1x >时,()0h x '<,所以()h x 在()1,+∞上单调递减,所以2()(1)1eh x h <=<.所以当1x >时,12()e (ln 0exx xg x x x '=+->,所以()g x 在()1,+∞上单调递增,所以()(1)g x g m >=,所以0m ≥.当01x <<时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +<-,即2e ln 10.x x x m -++<设2()e ln 1(01),x g x x x m x =-++<<由①可知12()e (ln e x xxg x x x '=+-.。

专题1 函数与导数压轴小题(解析版)

专题1函数与导数压轴小题一、单选题1.(2021·重庆·西南大学附中高三月考)已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x ∈R ,()(2)f x f x =-;③当[0,1]x ∈时,3()2f x x =;④()(4)g x f x =.若过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则直线l 斜率k 的取值范围是( ) A .60,11⎛⎫ ⎪⎝⎭B .30,5⎛⎫ ⎪⎝⎭C .(0,1)D .330,8⎛⎫ ⎪⎝⎭【答案】A 【分析】结合①②可知()f x 是周期为2的函数,再结合④可知()g x 是周期为12的函数,结合③作出()g x 在[0,2]上的图像,然后利用数形结合即可求解. 【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-, 又因为对于任意x ∈R ,()(2)f x f x =-,所以()(2)()f x f x f x =-=-, 从而()(2)f x f x =+,即()f x 是周期为2的函数,因为()(4)g x f x =,则()g x 图像是()f x 的图像的横坐标缩短为原来的14得到,故()g x 也是偶函数,且周期为11242⨯=, 结合当[0,1]x ∈时,3()2f x x =,可作出()g x 在[0,2]的图像以及直线l 的图像,如下图所示:当74x =时,易知3()2g x =,即73(,)42A ,则直线MA 的斜率362711(1)4MAk -==--,过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点, 则只需6011MA k k <<=,即直线l 斜率k 的取值范围是60,11⎛⎫ ⎪⎝⎭.故选:A.2.(2021·江西·高三月考(理))已知0.2111.2,,9a b c e ===,则( ) A .a b c << B .c a b << C .a c b << D .c b a <<【答案】C 【分析】构造函数()()10xf x e x x =-->,()(1)(1)(01)x xg x x e x e x -<--<=+,利用导数研究函数的单调性,得出()f x ,()g x 的单调性,得出1(0)xe x x >+>,令0.2x=,可得出a c <,再由得出的21(01)1x xe x x+<<<-,令0.1x =,得出c b <,从而得出结果.【详解】 解:先证1(0)xe x x >+>,令()()10x f x e x x =-->,则()10x f x e '=->,可知()f x 在()0,∞+上单调递增,所以()()00f x f >=,即1(0)x e x x >+>,令0.2x =,则0.2 1.2e >,所以a c <;再证21(01)1xxe x x+<<<-即证(1)(1)x x x e x e -+>-, 令()(1)(1)(01)x x g x x e x e x -<--<=+,则()()0x xg x x e e -'=->, 所以()g x 在()0,1上单调递增,所以()()00g x g >=,即21(01)1xxe x x+<<<-, 令0.1x =,则0.2119e <,所以c b <,从而a c b <<. 故选:C.3.(2021·上海市吴淞中学高三期中)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,12l l //,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于点E 、D ,设弧FG 的长为x (0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是( )A .B .C .D .【答案】D 【分析】根据给定条件求出函数()y f x =的解析式,再借助函数性质即可判断作答. 【详解】依题意,正ABC 的高为1,则其边长BC =如图,连接OF ,OG ,过O 作ON ⊥l 1于N ,交l 于点M ,过E 作EH ⊥l 1于H ,因OF =1,弧FG 的长为x (0)x π<<,则FOG x ∠=,又12////l l l ,即有1122FON FOG x ∠=∠=,于是得cos cos 2x OM OF FON =⋅∠=,1cos 2x EH MN ON OM ==-=-,2cos )sin 6032EH xEB ==-,因此,2cos )22x xy EB BC CD EB BC =++=+=-=,即()2xf x =,0πx <<,显然()f x 在(0,)π上单调递增,且图象是曲线,排除选项A ,B ,而23124332f ππ+⎛⎫==-<= ⎪⎝⎭⎭,C 选项不满足,D 选项符合要求,所以函数()y f x =的图像大致是选项D. 故选:D 【点睛】方法点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.4.(2021·四川资阳·高三月考(理))若不等式()e 2ln 0xx a x a x -+-≥恒成立,则a 的取值范围是( )A .10,e ⎡⎤⎢⎥⎣⎦B .20,e ⎡⎤⎢⎥⎣⎦C .1e 0,1,e 2⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦D .[]20,1,e e ⎡⎤⋃⎢⎥⎣⎦【答案】A 【分析】把不等式转化为()e 2ln xx a x x ≥++对x >0恒成立,对a 是否为0分类讨论:当0a =时直接判断;当0a ≠时,利用分离参数法,记()e 2ln xx x xf x ++=,利用导数判断单调性,求出最值,即可求出a 的取值范围. 【详解】由不等式()e 2ln 0x x a x a x -+-≥恒成立,可知()e 2ln xx a x x ≥++对x >0恒成立.当0a =时,0e x x ≥对x >0恒成立.当0a ≠时,()ln 2h x x x =++,(x >0),()110h x x'=+>, 可知()h x 在()0,∞+上单增.当0x +→,()0h x <;当x →∞,()0h x >;所以()00,x ∃∈+∞,使得()00h x =,即00ln 20x x ++=. 当()0,x x ∈+∞时,有()0h x >,所以e 2ln xx a x x+≤+ 令()()0e 2,,ln xf x x x x xx =∈+∞++,则()()()()2e 1ln 12ln xx x f x x x x '+++=++. 因为00ln 20x x ++=,则令11ln 10x x ++=,可得10x x >,所以()f x 在()01,x x 上单减,在()1,x +∞上单增,所以()f x 在1x x =处取得最小值. 因为11ln 10x x ++=,所以11ln 1x x +=-,所以11ln 1x x e e+=,即111x x e e =所以()11111e 2l 1n x x f x x x e ++==. 所以1a e≤当()00,x x ∈时,有()0h x <,所以e 2ln xx a x x+≥+. 令()()0e 2ln ,0,xf x xx x x x =++∈.因为()0f x '<,所以()f x 在()00,x 上单减, 当0x +→,()0f x →. 所以0a ≥综上所述:a 的取值范围是10,e ⎡⎤⎢⎥⎣⎦.故选:A 【点睛】 恒成立问题①参变分离,转化为不含参数的最值问题;②不能参变分离,直接对参数讨论,研究()f x 的单调性及最值;③特别地,个别情况下()()f x g x >恒成立,可转换为()()min max f x g x >(二者在同一处取得最值). 5.(2021·安徽·六安一中高三月考(理))已知函数21()()2x f x x x e -=-,若当1x >时,()10f x mx m -++≤有解,则实数m 的取值范围为( ) A .(,1]-∞ B .(,1)-∞- C .(1,)-+∞D .[1,)+∞【答案】C 【分析】设1t x =-,可将()10f x mx m -++≤简化,利用参变分离来求解. 【详解】()10f x mx m -++≤有解,即21(211)(1)1x x x e m x --+-≤--,设1t x =-,则0t >,不等式转化成2(1)1ttemt 在0t >时有解,则2(1)1t t e mt 有解,记2(1)1()t t e h t t ,则322(1)1()t t t t e h t t ,再令32()(1)1t g t t t t e , 则32()(4)0tg t t t t e ,那么()g t 在0t >时递增,所以()(0)0g t g >=,于是()0h t '>,()h t 在0t >时递增,故20(1)1()lim t t t e h t t,记()()21tt t e ϕ=-,0()(0)()lim (0)10t t h t t ,于是2(1)1t t e mt有解,只需要1m >-. 故选:C6.(2021·广西桂林·模拟预测(理))已知函数2170()ln e e x x f x x x -⎧+-≤≤=⎨≤≤⎩,,,2()2g x x x =-,设a 为实数,若存在实数m ,使()2()0f m g a -=,则实数a 的取值范围为( ) A .[1,)-+∞ B .(,1][3,)-∞-⋃+∞ C .[1,3]- D .(,3]-∞【答案】C 【分析】由含绝对值的函数和对数函数的单调性,可求得2170()ln e e x x f x x x -⎧+-≤≤=⎨≤≤⎩,,的值域记为A ,若存在实数m ,使()2()0f m g a -=,即2()g a A ∈,结合二次不等式的解法可解得a 的取值范围【详解】 ,当70x -≤≤时,()1f x x =+的值域为[]0,6 当2e x e -≤≤时,()f x lnx =的值域为[]2,1-所以2170()ln e e x x f x x x -⎧+-≤≤=⎨≤≤⎩,,的值域记为[]2,6A =- 若存在实数m ,使()2()0f m g a -=,即2()g a A ∈,即224a a -∈[]2,6-, 解得a 的取值范围为[1,3]- 故答案为:C7.(2021·北京市第十三中学高三期中)在长方形ABCD 中,44AD AB ==,点E 是边BC 上任意一点,设BE x =,sin y AED =∠,y 与x 的函数关系式记为()y f x =,则( )A .函数()f x 有一个极大值,无极小值B .2x =是函数()f x 的对称轴C .函数()f x 的最大值为(2)fD .函数()f x 的增区间为[0,2]【答案】B 【分析】首先结合两角和的正弦公式表示出函数()f x 的解析式,进而结合对称性的定义证得函数()f x 关于直线2x =对称,即可判断B 选项,再结合函数的对称性,先研究函数在()0,2上的图象与性质,即可判断ACD 选项.【详解】因为44AD AB ==,BE x =,所以AE DE =所以sin AEB AEB ∠=∠=cos DEC DEC ∠∠=因为()AED AEB DEC ∠=-∠+∠π, 所以()sin sin AED AEB DEC ∠=-∠+∠⎡⎤⎣⎦π()sin AEB DEC =∠+∠sin cos cos sin AEB DEC AEB DEC =∠∠+∠∠,则()f x =因为()()4f x f x -==,所以函数()f x 关于直线2x =对称,故B 正确;由函数的对称性,不妨先讨论[]0,2x ∈上的图象与性质,令()()()()()22221411817g x x x x x x ⎡⎤=+-+=+-+⎣⎦, 则()()()()()222218171817g x x x x x x x '''=+-+++-+ ()()()222817281x x x x x =-++-+ ()324692x x x =-+-令()[]32692,0,2h x x x x x =-+-∈,则()()[]223129343,0,2h x x x x x x '=-+=-+∈,所以()0,1x ∈时,()0h x '>,()h x 单调递增;()1,2x ∈时,()0h x '<,()h x 单调递减; 且()00h <,()20h =,所以存在()00,1x ∈使得()00h x '=,且()00,x x ∈时,()0h x <,即()0g x '<,所以()g x 单调递减,且()0,1x x ∈时,()0h x >,即()0g x '>,所以()g x 单调递增,且()()()124f x g x -==,结合复合函数的单调性可知()f x 在()00,x x ∈单调递增,在()0,1x x ∈单调递减,所以()f x 在0x x =处取得极大值,由函数的对称性可知,所以()f x 在()3,4内也有一个极大值,故AD 错误;又()1,2x ∈时,()0h x >,即()0g x '>,所以()g x 单调递增,结合复合函数的单调性可知()f x 在()1,2x ∈单调递减,因此2x =处不是最大值,故C 错误; 故选:B. 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.8.(2021·山西吕梁·高三月考(理))设0.02e a =,0.017b =,()21.02c =2.646≈,ln 20.6931≈,则( ) A .a b c << B .b c a <<C .c a b <<D .b a c <<【答案】D 【分析】根据幂函数0.02y x =的单调性判断,a b 的大小,构造2()e (1)x f x x =-+利用导数研究单调性,进而确定(0.02)f 的符号即可判断,a c 的大小. 【详解】0.10020.7eb a =<==,而()22(10.02)1.02c =+=,令2()e (1)x f x x =-+,则()e 2(1)x f x x '=-+,()e 2x f x ''=-, ∴ln 2x <时()0f x ''<,()'f x 递减;而(ln 2)2ln 2f '=-,(0)1f '=-, ∴(0,ln 2)上()0f x '<,即()f x 递减,则在(0,ln 2)上()(0)0f x f <=, ∴由0.02(0,ln 2)∈,则(0.02)0f <,即()20.02e 1.02a c <==. 综上,b a c <<. 故选:D9.(2021·山西吕梁·高三月考(理))关于函数()sin xf x e x =+,(),x ππ∈-,下列四个结论中正确的个数为( )个①()f x 在(),0π-上单调递减,在()0,π上单调递增; ②()f x 有两个零点;③()f x 存在唯一极小值点0x ,且()010f x -<<; ④()f x 有两个极值点. A .0 B .1C .2D .3【答案】C 【分析】①反证,求导并发现相同区间的单调性不一致②转化并数形结合发现零点③用零点存在定理和函数的单调性可求证④转化成用导数证明恒成立问题,结合零点存在定理和函数的单调性求解. 【详解】()sin x f x e x =+()'cos x f x e x =+因为,02x π⎛⎫∈- ⎪⎝⎭时,0x e >,cos 0x >,所以()'0f x >所以()f x 在,02π⎛⎫- ⎪⎝⎭上单调递增,故①错误.()f x 有两个零点等价于sin 0x e x +=有两个根,即函数x y e =与sin y x =-有两个交点,根据x y e =与sin y x =-的图象,可知在(),ππ-上有两个交点,故②正确.'202f e ππ-⎛⎫-=> ⎪⎝⎭,3'434331cos 44f e e ππππ-⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎭⎝⎭∵233422e e e ππ⎛⎫=>> ⎪⎝⎭,∴34e π>341eπ ∴'304f π⎛⎫-< ⎪⎝⎭∴存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得()'00f x =且00cos 0xe x +=∴在()0,x π-上,()'0f x <,在()0,x π上,()'0f x >,在()0,x π-上,()f x 单调递减,在()0,x π上,()f x 单调递增, ∴()f x 在(),ππ-上存在唯一极小值点0x .()000000sin sin cos 4x f x e x x x x π⎛⎫=+=-=- ⎪⎝⎭∵03,42x ππ⎛⎫∈-- ⎪⎝⎭,则03,44x πππ⎛⎫-∈-- ⎪⎝⎭()01,04x π⎛⎫-∈- ⎪⎝⎭,故③正确.令()'()g x f x =cos x e x =+则()'sin xg x e x =-,当(),0x π∈-时,01x e <<,sin 0x <,sin 0x e x ->, 当()0,x π∈时,e 1x >,0sin 1x <<.∴()'sin 0xg x e x =->在(),ππ-恒成立,∴()g x 单调递增且()()cos 10g ee ππππ---=--+<=,22cos 220g e e ππππ--⎛⎫⎛⎫-=+-= ⎪ ⎪⎭⎝⎭>⎝, ∴()g x 存在唯一零点0,2x ππ⎛⎫∈-- ⎪⎝⎭,使得00cos 0xe x +=∴()0,x x π∈-,()0<g x ,即()'0f x <,()0,x x π∈,()0>g x ,即()'0f x >,∴()f x 在0x 处取得极小值 故有唯一极小值点,故④错误. 故选:C.10.(2021·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤=⎨->⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( ) A .109,32⎛⎫⎪⎝⎭B .(0,1)C .510,23⎛⎫⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭【答案】A 【分析】根据分段函数解析式研究()f x 的性质,并画出函数图象草图,应用数形结合及题设条件可得123412345x x x x <<<<<<<<、348x x +=、12(1)(1)1x x --=,进而将目标式转化并令11121t x x =-+,构造1()21g x x x =-+,则只需研究()g x 在3(,2)2上的范围即可. 【详解】由分段函数知:12x <≤时()(,0]f x ∈-∞且递减;23x <≤时()[0,1]f x ∈且递增;34x <<时,()(0,1)f x ∈且递减;4x ≥时,()[0,)f x ∈+∞且递增;∴()f x 的图象如下:()f x a =有四个实数根1x ,2x ,3x ,4x 且1234x x x x <<<,由图知:01a <<时()f x a =有四个实数根,且123412345x x x x <<<<<<<<,又348x x +=, 由对数函数的性质:121212(1)(1)()11x x x x x x --=-++=,可得21111x x =-, ∴令()3411122111112214x x x x x t x x x ++=+=-+=,且1322x <<,由1()21g x x x =-+在3(,2)2上单增,可知31()21(2)2g x g x<-+<,所以10932t << 故选:A11.(2021·安徽·淮南第一中学高三月考(理))若0a >,0b >,且22ln(2)ln 1a b a b +≥+-,则a b +=( ) ABCD【答案】A 【分析】由于对数函数的存在,故需要对ln(2)ln a b +进行放缩,结合1ln x x -(需证明),可放缩为22211ab a b -+-,利用等号成立可求出,a b ,进而得解. 【详解】令()ln 1g x x x =--,1()1g x x'=-,故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g =,故()ln 10g x x x =--,即1ln x x -,当且仅当1x =,等号成立.所以21ab -ln(2)ln(2)ln ab a b =+,当且仅当21ab =时,等号成立,又22ln(2)ln 1a b a b ++-,所以22211ab a b -+-,即2()0a b -,所以a b =,又21ab =,所以a =b =a b + 故选:A .12.(2021·山西·太原五中高三月考(理))关于x 的方程ln ln 0xm x x x x++=-有三个不等的实数解1x ,2x ,3x ,且1231x x x <<<,则2123123ln ln l (1)(1)(1n )x x x x x x ---的值为( ) A .e B .1 C .4 D .1m -【答案】B 【分析】 令n 1l t x x =-,用导数画出其图象,得到23t t =,将关于x 的方程ln ln 0xm x x x x++=-有三个不等的实数解1x ,2x ,3x ,转化为方程()110t m t+++=有两个不等的实数解12,t t ,结合韦达定理求解.【详解】 令n 1l t xx=-, 则21ln xtx ,当x e >时,0t '<,当0x e <<时,0t '>, 所以t 在(),e +∞上递减,在()0,e 上递增, 所以当x e =时,函数取得最大值11e-,函数n 1l t xx=-的图象如图所示:则312123123ln ln n ,1l 1,1t t t x x x x x x -=-=-=, 由图象知:23t t =, 因为关于x 的方程ln ln 0xm x x x x++=-有三个不等的实数解1x ,2x ,3x , 所以方程()110t m t+++=有两个不等的实数解12,t t ,由韦达定理得:121t t ⋅=, 所以222231212312123(1)(1)ln ln (1ln 1)x t t t t t x x x x x ---=⋅⋅=⋅=, 故选:B13.(2021·陕西·西北工业大学附属中学高三月考(理))设()f x '是函数()2cos 3f x x x x =-+的导数,()()ln ln 6f a '=,则( ) A .()()()ln ln f x f a ≥ B .()()()ln ln f x f a ≤ C .()()()ln log a f x f e ≥ D .()()()ln log a f x f e ≤【答案】C 【分析】令()ln ln t a =,利用()6f t '=可求得2sin 3t t +=;设()()g x f x '=,利用导数可确定()g x 单调性,结合()0g t -=可得()f x 单调性,从而确定()f x 的最小值.【详解】令()ln ln t a =,则()6f t '=,()2sin 3f x x x '=++,()2sin 36f t t t '∴=++=,即2sin 3t t +=,令()()g x f x '=,则()2cos 0g x x '=+>,()g x ∴在R 上单调递增, 又()2sin 30g t t t -=--+=,∴当(),x t ∈-∞-时,()0g x <,即()0f x '<,()f x 单调递减;当(),x t ∈-+∞时,()0g x >,即()0f x '>,()f x 单调递增; ()()()()()()1ln ln ln ln log ln a f x f t f a f f e a ⎛⎫∴≥-=-== ⎪⎝⎭.故选:C. 【点睛】关键点点睛:本题解题关键是能够将问题转化为()f x 最值的求解问题,利用导数确定()f x 单调性,利用单调性确定最值点,从而确定大小关系.14.(2021·全国·模拟预测)若点()1,P a 不在函数()3f x x ax =-的图象上,且过点P 仅能作一条直线与()f x 的图象相切,则a 的取值范围为( )A .()1,0,2⎛⎫-∞+∞ ⎪⎝⎭B .()1,0,4⎡⎫-∞+∞⎪⎢⎣⎭C .(]1,0,2⎛⎫-∞⋃+∞ ⎪⎝⎭D .(]1,0,4⎡⎫-∞⋃+∞⎪⎢⎣⎭【答案】A 【分析】根据题意,可知12a ≠,对函数求导得()23f x x a '=-,设切点为()3,Q t t at -,利用导数的几何意义可知切线的斜率()PQ f t k '=,结合两点间的斜率公式化简得322320t t a -+=,构造新函数设()32232g t t t a =-+,将问题可转化为()g t 仅有1个零点,再利用导数研究函数的单调性和零点,从而可知()()010g g ⋅>,列出关于a 的不等式,即可求出a 的取值范围. 【详解】解:已知点()1,P a 不在()3f x x ax =-的图象上,则()11f a a =-≠,所以12a ≠, 而()23f x x a '=-,设过点()1,P a 的直线与()3f x x ax =-的图象切于点()3,Q t t at -,则切线的斜率()PQ k f t k '==,则3231t at at a t ---=-,整理得322320t t a -+=,设()32232g t t t a =-+,由于过点P 仅能作一条直线与()f x 的图象相切,则问题可转化为()32232g t t t a =-+仅有1个零点,()266g t t t '=-,令()0g t '=,解得:0t =或1t =,令()0g t '>,即2660t t ->,解得:0t <或1t >, 令()0g t '<,即2660t t -<,解得:01t <<,所以函数()g t 在区间()(),0,1,-∞+∞上单调递增,在区间()0,1上单调递减, 可知()g t 在区间(),0-∞或区间()1,+∞上必有一个零点, 所以可知()0g 与()1g 同号,则()()010g g ⋅>,即()()2120a a ⋅-+>,解得:0a <或12a >, 所以a 的取值范围为()1,0,2⎛⎫-∞+∞ ⎪⎝⎭.故选:A.15.(2021·黑龙江·哈尔滨三中高三期中(理))设函数()f x 在R 上的导函数为()f x ',若()()1x f f x '+>,()()6f x f x ''=-,()31f =,()65f =,则不等式()ln 210f x x ++<的解集为( )A .()0,1B .()0,3C .()1,3D .()3,6【答案】A 【分析】构造函数()1(),xf xg x e +=得到()g x 也是R 上的单调递增函数.,分析得到函数()f x 关于点(3,1)对称.由()ln 210f x x ++<得到(ln )(0)g x g <,即得解.【详解】 构造函数()1()()1(),()0x xf x f x f xg x g x e e '+--'==>,所以()g x 也是R 上的单调递增函数.因为()()6f x f x ''=-,所以()'f x 关于直线3x =对称,所以12()(6),()(6)f x dx f x dx f x c f x c ''=-∴+=--+⎰⎰,(12,c c 为常数), 21()(6)f x f x c c ∴+-=-,令3x =,所以21212(3),(3)2c c f c c f -=-∴=. 因为()31f =,所以212,c c -=所以()(6)2f x f x +-=,所以函数()f x 关于点(3,1)对称. 由(3)1,(6)5f f ==得到(0)3f =-,因为()()ln ln 210ln 122x f x x f x x e ++<∴+<-=-,, 所以()ln ln 12xf x e +<-,所以031(ln )2(0)g x g e -+<-==, 所以(ln )(0)g x g <, 所以ln 0,01x x <∴<<. 故选:A16.(2021·云南·峨山彝族自治县第一中学高三月考(理))已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a a a ++⋅⋅⋅+=,则下列成立的是( )A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅< D .以上均有可能【答案】C 【分析】由题设可得01n a <<且1n n a a +>,根据等式条件有122021(1)(1)(1)1a a a -+-+⋅⋅⋅+-=-,应用放缩法可得202111(1)1102020a a ----<-<<,构造()ln 1f x x x =-+并利用导数研究单调性可得01x <<上|ln ||1|x x >-,则1202112021ln ln |(1)||(1)|a a a a ⋅>--即可得到答案.【详解】由题设,()10,1a ∈,1221nn n a a a +=+,即数列{}n a 均为正项,∴1222111n n n nn a a a a a +==≤=++,当1n a =时等号成立,当121211n n n a a a --==+时,有11n a -=,以此类推可得11a =与题设矛盾, 综上,01n a <<,故12211n n n a a a +=>+,即1n n a a +>. ∵1220212020a a a ++⋅⋅⋅+=, ∴11202120212021120201202020202020120202020a a a a a a -+⇒⇒<<-,令()1ln 1,f x x x =-+,则()211f x x x-'=,当01x <<时()0f x '<,即()f x 递减,当1x >时()0f x '>,即()f x 递增, ∴()()10f x f >=,故01x <<上10ln 1x x>>-,即10ln 1x x <-<-,∴()()1120211202112021111111120201ln ln ln ln 1111202020202020a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-⋅=-⋅-<--<--=< ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 故选:C 【点睛】关键点点睛:由条件等式结合放缩法得到12021(1),(1)a a --的不等关系,再利用导数研究()ln 1f x x x =-+的单调性确定01x <<有|ln ||1|x x >-,根据目标式12021ln ln a a ⋅作放缩处理得到关于2021(1)a -的二次函数形式求最值.17.(2021·内蒙古·海拉尔第二中学高三月考(文))已知函数()f x 满足()()f x f x =-,且当(],0x ∈-∞时,()()0f x xf x '+<成立,若()()0.60.622a f =⋅,()()ln2ln2b f =⋅,2211loglog 88c f ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c >> B .c b a >> C .a c b >> D .c a b >>【答案】B【分析】构造函数()()g x x f x =⋅,利用奇函数的定义得函数()g x 是奇函数,再利用导数研究函数的单调性,结合0.621log 0ln 2128<<<<,再利用单调性比较大小得结论. 【详解】因为函数()f x 满足()()f x f x =-,且在R 上是连续函数,所以函数()f x 是偶函数, 令()()g x x f x =⋅,则()g x 是奇函数,且在R 上是连续函数,则()()()g x f x x f x ''=+⋅, 因为当(],0x ∈-∞时,()()0f x xf x '+<成立,即()0g x '<,所以()g x 在(],0x ∈-∞上单调递减, 又因为()g x 在R 上是连续函数,且是奇函数,所以()g x 在R 上单调递减, 则()0.62a g =,(ln 2)b g =,21log8c g ⎛⎫= ⎪⎝⎭, 因为0.621>,0ln 21<<,21log 308=-<, 所以0.621log 0ln 2128<<<<,所以c b a >>, 故选:B. 【点睛】关键点点睛:本题考查的是比较大小问题,涉及到的知识点包括函数的奇偶性以及利用导数研究函数的单调性,解题的关键是构造函数()g x ,属于中档题.18.(2021·全国·模拟预测(理))已知a >0,函数f (x )=2e ax ﹣x ,若函数()(())F x f f x x =-恰有两个零点,则实数a 的取值范围是( ) A .[22e ,1e ) B .(0,1e ]C .(0,1e)D .[22e ,1e] 【答案】C 【分析】转化函数()(())F x f f x x =-恰有两个零点为f (x )=x 有两个解,即e ax =x 恰有两个解,即a lnxx=恰有两个解,研究函数g (x )lnxx=的单调性和取值范围,分析即得解 【详解】因为函数()()()2()22af x af x ax F x e f x x e e =--=-, 因此F (x )=0,即e af (x )=e ax ,即af (x )=ax ,又a >0,所以函数F (x )恰有两个零点,即f (x )=x 有两个解, 即e ax =x 恰有两个解,即a lnxx=恰有两个解, 记函数g (x )lnxx=, 则'()g x 21lnxx -=, 令'()g x >0,解得0<x <e , 令'()g x <0,解得x >e ,(e)g 1lne e e==,0x →时,()g x →-∞,x →+∞时,()0g x → 所以g (x )在(0,)e 上单调递增,值域为1(,)e -∞,在(,)e +∞上单调递减,值域为1(0,)e,所以a lnxx =恰有两个解,1(0,)a e∈ 故选:C19.(2021·山东·济宁一中高三开学考试)已知不等式1e ln 23x x x x m +-≥++对()0,x ∀∈+∞恒成立,则m 取值范围为( )A .12m ≤-B .12m ≥-C .2m ≤-D .2m >-【答案】A 【分析】将问题转化为1e ln 23x x x x m +--≥+对()0,x ∀∈+∞恒成立,构造函数()1e ln xf x x x x +=--,进而通过导数方法求出函数的最小值,即可得到答案. 【详解】不等式1e ln 23x x x x m +-≥++对()0,x ∀∈+∞恒成立,即1e ln 23x x x x m +--≥+对()0,x ∀∈+∞恒成立,令()()1e ln 0x f x x x x x +=-->,()()()11111e 11e x x f x x x x x ++⎛⎫'=+--=+- ⎪⎝⎭,而()11e x g x x +=-在()0,∞+单调递增(增+增),且()217161e 101e 16016g g ⎧=->⎪⎨⎛⎫=-<⎪ ⎪⎝⎭⎩,所以01,116x ⎛⎫∃∈ ⎪⎝⎭(x 0唯一),使得()01001e 0x g x x +=-=. 则()00,x x ∈时,()()00g x f x '<⇒<,()f x 单调递减,()0,x x ∈+∞时,()()00g x f x '>⇒>,()f x 单调递增.所以()()010000min e ln x f x f x x x x +==--根据()()001010000e 11e0ln 1x x x g x x x x ++⎧=⎪=-=⇒⎨=-+⎪⎩,所以()()00min 112f x x x =-++=,所以12232m m ≥+⇒≤-.故选:A. 【点睛】利用导数研究不等式恒成立问题的策略为:构造新函数或者进行参变分离,利用导数研究函数的单调性,求出最值,从而求得参数的取值范围.二、多选题20.(2021·山东烟台·高三期中)关于函数()e xf x =,()lng x x =,下列说法正确的是( )A .对x ∀∈R ,()1f x x ≥+恒成立B .对0x ∀>,()11g x x≥-恒成立C .函数()()y xf x x g x =--的最小值为e 1-D .若不等式()()g x f ax a≥对0x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【分析】利用导数证明()()10h x f x x =--≥恒成立,判断A ,A 中不等式绝对值变形的转换可判断B ,利用导数求出函数()()y xf x x g x =--的最小值判断C ,把不等式()()g x f ax a≥进行变形转化为不等式ax e x ≥恒成立,然后求得a 的范围判断D . 【详解】设()()1h x f x x =--e 1x x =--,()e 1x f x '=-,0x <时,()0h x '<,()h x 递减,0x >时,()0h x '>,()h x 递增,所以min ()(0)0h x h ==,所以()1(0)0f x x h --≥=,即()1f x x ≥+恒成立,A 正确; 在()1f x x ≥+中令ln x t =,则1ln t t ≥+,ln 1t t -≥-,1ln 1t t≥-,再令1x t=得1ln 1x x ≥-,B 正确;设()()()ln e xp x xf x x g x x x x =--=--,定义域为(0,)+∞,11()e e 1(1)(e )x x x p x x x x x'=+--=+-, 定义域内10x +>恒成立,令1()e xq x x =-是增函数,1()202q =<,(1)e 10q =->, 所以()q x 在1(,1)2即在(0,)+∞上存在唯一零点0x ,001e 0x x -=,00e 1xx =,00x x <<时,()0q x <,即()0p x '<,()p x 递减,0x x >时,()0q x >,即()0p x '>,()p x 递增,所以0min 0000()()e ln xp x p x x x x ==--000011ln11e x x x x =--=-+=,C 错; 不等式()()g x f ax a≥为ln e axx a ≥,e ln ax a x ≥,0x >,所以e ln ax ax x x ≥,即e ln e ln ax ax x x ≥,令()ln s t t t =,则()ln 1s t t '=+,10et <<时,()0s t '<,()s t 递减,1e t >时,()0s t '>,()s t 递增,min 11()()e e s t s ==-, 因为0,0a x >>,所以e 1ax >,因此不等式e ln e ln ax ax x x ≥恒成立,则e ax x ≥恒成立,ln ax x ≥,即ln xa x≥, 设ln ()xu x x=,21ln ()x u x x -'=,0e x <<时,()0u x '>,()u x 递增,e x >时,()0u x '<,()u x 递减,所以max 1()(e)eu x u ==,所以1e a ≥,即a 的最小值是1e ,D 正确.故选:ABD . 【点睛】本题考查用导数研究函数的性质,研究不等式恒成立问题,解题关键是掌握导数与函数单调性的关系,深深需要不断求导才能确定函数的单调性与极值.这是问题的难点所在,解题过程中需要不断引进新函数,研究新函数的单调性、极值点、零点等性质,本题属于困难题. 21.(2021·辽宁·渤海大学附属高级中学高三期中)对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的有( )A .函数()y f x =的图象关于y 轴对称B .()1f x <C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点间距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[],a b 上单调递减,且1b a -≥ 【答案】ABD 【分析】由函数奇偶性定义判断可知A 正确;构造函数()()e e sin 0x xh x x x -=-->,求导判断单调性,进而求得最值可判断B ;由()f x 的图象与x 轴的交点坐标为()π,0k (Z k ∈且)0k ≠可判断C ;求导分析()0f x '≤时成立的情况,即可判断选项D ,进而可得正确选项. 【详解】对于A :因为函数()f x 的定义域为{}|0x x ≠,()()sin sin e e e e x x x xx xf x f x ----===--所以()f x 为偶函数,图象关于y 轴对称,故选项A 正确; 对于B :由A 知()f x 为偶函数,当0x >时,e e 0x x -->, 若()sin 1e exxx f x -=<-即sin e e x x x -<-只需证e e sin 0x xx --->,令()()e e sin 0x xh x x x -=-->,()e e cos x x h x x -'=+±,因为e e 2x x -+>,所以()0h x '>,所以()h x 在()0,∞+上单调递增,所以()(0)0h x h >=,即()e e sin 0x xh x x -=-->,所以()sin 1e exxx f x -=<-恒成立,故选项B 正确;对于C :令()sin 0e e xxxf x -==-,可得sin 0x =,所以函数()f x 的图象与x 轴的交点坐标为()π,0k (Z k ∈且)0k ≠,交点()π,0-与()π,0间的距离为2π,而其余任意相邻两点之间的距离为π. 故选项C 错误;对于D :()()()()2e e cos e e sin 0eexx x x xx x xf x -----+'=≤-,即()()e cos sin e cos sin 0x x x x x x ---+≤,即()2e cos sin cos sin xx x x x -≤+,当()π3π2π,2πZ 44x k k k ⎛⎫∈++∈ ⎪⎝⎭时,cos sin 0x x -<,cos sin 0x x +>,区间长度为π12>,所以对于任意常数0m >,存在常数b a m >>,π3π,2π,2π,Z 44a b k k k ⎛⎫∈++∈ ⎪⎝⎭,使()f x 在[],a b 上单调递减且1b a -≥,故选项D 正确;故选:ABD. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()f x ',由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()f x ',解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()f x '的正负,由符号确定()f x 在子区间上的单调性.22.(2021·广东深圳·高三月考)若函数2()e ()x F x a x a R =-∈有两个极值点12,x x ,且12x x <,则下列结论中正确的是( ) A .101x << B .a 的取值范围是2,e ⎛⎫-∞ ⎪⎝⎭C .211e x x >D .12ln ln 0x x +<【答案】ACD 【分析】求()F x '结合题设,将问题转化为y a =与2e x x y =有两个交点()1,x a ,()2,x a ,利用导数研究2()e xxg x =的性质并画出图象,应用数形结合即可判断A 、B 的正误;由零点可得1212e e x x x x =,应用放缩即可判断C 的正误;令211x t x =>易得11tx x e t -=,应用分析法需证12ln (1)x x x x <-=>成立,结合导数研究1()2ln T x x x x ⎛⎫=-- ⎪⎝⎭的值域范围,即可判断D 的正误. 【详解】2()x F x ae x =-,a R ∈有两个极值点1x ,2x 且12x x <,∴()()2x F x f x ae x '==-,a R ∈有两个零点1x ,2x ,且在1x ,2x 各自两边()f x 异号, ∴y a =与2e xxy =有两个交点()1,x a ,()2,x a , 记2()e x xg x =,则()21()xx g x e-'=,易知:1x <时()0g x '>,1x >时()0g x '<, ∴()g x 在(),1-∞上递增,在1,上递减,即()h x 在(),1-∞上递增,在1,上递减.∴()g x 有最大值()21eg =,且0x <时()0<g x ;0x >时()0>g x ,又()2(2)'2lim lim lim 0'x x x x x x x x e e e →+∞→+∞→+∞===,0020lim0x x x e e→==, 由上()g x 的图象如下,∴当且仅当20ea <<时y a =与2e xxy =有两个交点,才符合条件,且1201x x <<<,故A 正确,B 不正确. 又()()12121212120e 20e 2e e x xx x x x f x f x a x a x ==⇔-==-⇔=, ∴211222211211e 1e e 1e e e x x x x x x x x x x >⇔>⇔>⇔>,故 C 正确. 令211x t x =>,则121121222x x tx x x tx a e e e===,∴11tx x e t -=,则1ln 1t x t =-,2ln 1t tx t =-,∴要证12ln ln 0x x +<,只需证1201x x <<,只需证2ln 1ln 1)1t t t t t ⎛⎫<⇔> ⎪-⎝⎭()2211ln 2ln (*1)x x x x x x x-⇔<⇔<-=,令1()2ln T x x x x ⎛⎫=-- ⎪⎝⎭,则2222121()10x x T x x x x-+'=--=-≤, ∴()T x 在1,上单调递减,即1x >时()()10T x T <=,不等式()*得证,故D 正确.故选:ACD 【点睛】关键点点睛:将问题转化为y a =与2e xxy =有两个交点()1,x a ,()2,x a ,应用导数研究函数性质,由数形结合判断参数范围;根据零点处的等量关系及放缩法证明不等式;由分析法转化证明的结论,再构造函数并利用导数研究函数值域,即可证明不等式.23.(2021·江苏省前黄高级中学高三开学考试)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD 【分析】由分段函数解析式判断函数性质并画出函数图象,讨论参数判断不同a 对应值域的()f x 的范围,结合函数图象判断解的情况,即可确定()g x 有7个零点时a 的范围. 【详解】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解, 当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >,∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg20.30103≈) 故选:BD 【点睛】关键点点睛:由解析式确定分段函数的性质并画出草图,进而讨论参数确定对应()f x 的取值范围,结合函数图象判断零点情况.24.(2021·海南·海口中学高三月考)如果两地的距离是600公里,驾车走完这600公里耗时6小时,那么在某一时刻,车速必定会达到平均速度100公里/小时.上述问题转换成数学语言:()f x 是距离关于时间的函数,那么一定存在:()()()f c b f b f a a-'=-,()f c '就是c 时刻的瞬时速度.前提条件是函数()f x 在[],a b 上连续,()f x 在(),a b 内可导,且a c b <<.也就是在曲线的两点间作一条割线,割线的斜率就是()()f b f a b a--,()f c '是与割线平行的一条切线,与曲线相切于C 点.已知对任意实数()12,1,3x x ∈,且12x x >,不等式()()()1212f x f x k x x -<-恒成立,若函数()22ln f x x k x =-,则实数k 的可能取值为( )A .7B .8C .9D .10【答案】CD 【分析】根据题意,问题转化为()k f x ≥'在()1,3x ∈上恒成立,进而通过分参和构造函数得到答案. 【详解】由已知()()()1212f x f x k x x -<-,12x x >恒成立,可得()k f x ≥'在()1,3x ∈上恒成立.因为()22ln f x x k x =-,所以()4k f x x x ='-,所以4k x k x -≤,即241x k x ≤+,整理得()44181x k x ++-≤+ ①. 因为()1,3x ∈,所以()12,4x +∈.令1t x =+,则()2,4t ∈,①式化为448t k t+-≤.记()()448,2,4g t t t t =+-∈,()()()224111410t t g t t t +-⎛⎫'=-=> ⎪⎝⎭,所以()g t 在()2,4上单调递增,所以()()2,9g t ∈,所以9k ≥,故选: CD . 【点睛】关键点睛:在证明恒成立问题时,构造函数利用导数求函数最值是解决问题的关键.25.(2021·江苏省镇江中学高三月考)若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()2f x x =(R x ∈),()1g x x=(0x <),()2eln h x x =(e 为自然对数的底数),则( )A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增B .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是[]4,1-C .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为1-D .()f x 和()h x 之间存在唯一的“隔离直线”e y =- 【答案】AD 【分析】令()()()m x f x g x =-,利用导数可确定()m x 单调性,判断A ;设()f x ,()g x 的隔离直线为y kx b =+,根据隔离直线定义可得不等式组22010x kx b kx bx ⎧--≥⎨+-≤⎩对任意(),0x ∈-∞恒成立;求得,k b 的范围,可判断BC ;假设隔离直线为e y kx =-,分别讨论0k =、0k <和0k >时,是否满足()()e 0f x kx x ≥->恒成立,从而确定k =()()e G x h x =--,利用导数可证得()0G x ≥恒成立,由此可确定隔离直线,判断D. 【详解】A :令()()()21m x f x g x x x =-=-,x ⎛⎫∈ ⎪⎝⎭,∴()2120m x x x '=+>,故()m x在⎛⎫ ⎪⎝⎭内单调递增,故A 正确; 对于B ,C :设()f x ,()g x 的隔离直线为y kx b =+,则21x kx bkx b x⎧≥+⎪⎨≤+⎪⎩对任意0x <恒成立,故22010x kx b kx bx ⎧--≥⎨+-≤⎩对任意0x <恒成立,由210kx bx +-≤对任意0x <恒成立,得0k ≤ 若0k =,则0b =符合题意,。

函数与导数经典例题--高考压轴题(含答案)

函数与导数1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。

(Ⅰ)解:当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+-(0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =-(Ⅱ)解:22()1266f x x tx t '=+-,令()0f x '=,解得.2t x t x =-=或因为0t ≠,以下分两种情况讨论:(1)若0,,2tt t x <<-则当变化时,(),()f x f x '的变化情况如下表: x,2t ⎛⎫-∞ ⎪⎝⎭,2t t ⎛⎫- ⎪⎝⎭(),t -+∞()f x '+ - + ()f x所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞ ⎪⎝⎭的单调递减区间是,2t t ⎛⎫- ⎪⎝⎭。

(2)若0,2tt t >-<则,当x 变化时,(),()f x f x '的变化情况如下表: x(),t -∞,2t t ⎛⎫- ⎪⎝⎭,2t ⎛⎫+∞ ⎪⎝⎭()f x ' + - + ()f x所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞⎪⎝⎭的单调递减区间是,.2t t ⎛⎫- ⎪⎝⎭(Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ⎛⎫ ⎪⎝⎭内的单调递减,在,2t ⎛⎫+∞⎪⎝⎭内单调递增,以下分两种情况讨论: (1)当1,22tt ≥≥即时,()f x 在(0,1)内单调递减, 2(0)10,(1)643644230.f t f t t =->=-++≤-⨯+⨯+<所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴题目突破练——函数与导数A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是() A.3x+y+2=0 B.3x-y+2=0C.x+3y+2=0 D.x-3y-2=0答案 A解析设切点的坐标为(x0,x30+3x20-1),则由切线与直线2x-6y+1=0垂直,可得切线的斜率为-3,又f′(x)=3x2+6x,故3x20+6x0=-3,解得x0=-1,于是切点坐标为(-1,1),从而得切线的方程为3x+y+2=0.2.设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0,∴(f(x)-g(x))′>0,∴f(x)-g(x)在[a,b]上是增函数,∴当a<x<b时f(x)-g(x)>f(a)-g(a),∴f(x)+g(a)>g(x)+f(a).3.三次函数f(x)=mx3-x在(-∞,+∞)上是减函数,则m的取值范围是() A.m<0 B.m<1 C.m≤0 D.m≤1答案 A解析f′(x)=3mx2-1,依题可得m<0.4. 已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23 B.43 C.83D.163答案 C解析 由图可知f (1)=0,f (2)=0,∴⎩⎪⎨⎪⎧ 1+b +c =0,8+4b +2c =0,解得⎩⎪⎨⎪⎧b =-3,c =2.∴f (x )=x 3-3x 2+2x ,∴f ′(x )=3x 2-6x +2. 由图可知x 1,x 2为f (x )的极值点, ∴x 1+x 2=2,x 1x 2=23.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 二、填空题(每小题5分,共15分)5. 设函数f (x )=sin θ3x 3+3cos θ2·x 2+tan θ,其中θ∈⎣⎡⎦⎤0,5π12,则导数f ′(1)的取值范围是________. 答案 [2,2]解析 ∵f ′(x )=sin θ·x 2+3cos θ·x , ∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎫θ+π3. ∵θ∈⎣⎡⎦⎤0,5π12,∴θ+π3∈⎣⎡⎦⎤π3,3π4, ∴sin ⎝⎛⎭⎫θ+π3∈⎣⎡⎦⎤22,1.∴f ′(1)∈[2,2]. 6. 已知f (x )=(2x -x 2)e x ,给出以下四个结论:①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )没有最小值,也没有最大值;④f (x )有最大值,没有最小值. 其中判断正确的是________. 答案 ①②④解析 f (x )>0⇔2x -x 2>0⇔0<x <2,∴①正确. 由f (x )=(2x -x 2)e x ,得到f ′(x )=(2-x 2)e x , 令f ′(x )=0,得到x 1=-2,x 2=2,∵在(-∞,-2)和(2,+∞)上f ′(x )<0,f (x )单调递减; 在(-2,2)上f ′(x )>0,f (x )单调递增,∴f (-2)是极小值,f (2)是极大值,故②正确.由题意知,f (2)为最大值,且无最小值,故③错误,④正确.7. 把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________. 答案 2∶1解析 设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝⎛⎭⎫6-x 2π2x =14π(x 3-12x 2+36x )(0<x <6), V ′=34π(x -2)(x -6).当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1. 三、解答题(共22分)8. (10分)已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值. 解 (1)由题意得f ′(x )=3ax 2+2x +b ,因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ), 即对任意实数x ,有a (-x )3+(3a +1)(-x )2+ (b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ], 从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2, 则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,- 2 ),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由上述讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值g (2)=43.9. (12分)已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在区间[-1,4]上的最大值是12.(1)求f (x )的解析式;(2)是否存在自然数m ,使得方程f (x )+37x =0在区间(m ,m +1)内有且只有两个不等的实数根?若存在,求出所有m 的值;若不存在,请说明理由. 解 (1)∵f (x )是二次函数,且f (x )<0的解集是(0,5), ∴可设f (x )=ax (x -5)(a >0).∴f (x )在区间[-1,4]上的最大值是f (-1)=6a . 由已知,得6a =12,∴a =2, ∴f (x )=2x (x -5)=2x 2-10x (x ∈R ).(2)方程f (x )+37x =0等价于方程2x 3-10x 2+37=0设h (x )=2x 3-10x 2+37,则h ′(x )=6x 2-20x =2x (3x -10).当x ∈⎝⎛⎭⎫0,103时,h ′(x )<0,h (x )是减函数; 当x ∈⎝⎛⎭⎫103,+∞时,h ′(x )>0,h (x )是增函数. ∵h (3)=1>0,h ⎝⎛⎫103=-127<0,h (4)=5>0, ∴方程h (x )=0在区间⎝⎛⎭⎫3,103,⎝⎛⎭⎫103,4内分别有唯一实数根,而在区间(0,3),(4,+∞)内没有实数根,∴存在唯一的自然数m =3,使得方程f (x )+37x =0在区间(m ,m +1)内有且只有两个不等的实数根.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 函数f (x )在定义域⎝⎛⎭⎫-32,3内的图象如图所示,记f (x )的导函数为f ′(x ),则不等式f ′(x )≤0的解集为( )A.⎣⎡⎦⎤-32,12∪[1,2) B.⎣⎡⎦⎤-1,12∪⎣⎡⎦⎤43,83 C.⎣⎡⎦⎤-13,1∪[2,3) D.⎝⎛⎦⎤-32,-13∪⎣⎡⎦⎤12,43∪⎣⎡⎭⎫43,3 答案 C解析 不等式f ′(x )≤0的解集即为函数f (x )的单调递减区间,从图象中可以看出函数f (x )在⎣⎡⎦⎤-13,1和[2,3)上是单调递减的,所以不等式f ′(x )≤0的解集为⎣⎡⎦⎤-13,1∪[2,3),答案选C.2. 已知函数f (x )(x ∈R )的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),那么函数f (x )的单调减区间是( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1),(1,2)D .[2,+∞)答案 C解析 根据函数f (x )(x ∈R )的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),可知其导数f ′(x )=(x -2)(x 2-1)=(x +1)(x -1)(x -2),令f ′(x )<0得x <-1或1<x <2.因此f (x )的单调减区间是(-∞,-1),(1,2).3. 给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称函数f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称函数f (x )在D 上为凸函数,以下四个函数在⎝⎛⎭⎫0,π2上不是凸函数的是 ( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x答案 D解析 对于选项A ,f (x )=sin x +cos x , 则f ″(x )=-sin x -cos x <0在⎝⎛⎭⎫0,π2上恒成立, 故此函数为凸函数; 对于选项B ,f (x )=ln x -2x ,则f ″(x )=-1x 2<0在⎝⎛⎭⎫0,π2上恒成立, 故此函数为凸函数;对于选项C ,f (x )=-x 3+2x -1, 则f ″(x )=-6x <0在⎝⎛⎭⎫0,π2上恒成立, 故此函数为凸函数; 对于选项D ,f (x )=-x e -x ,则f ″(x )=2e -x -x e -x =(2-x )e -x >0在⎝⎛⎭⎫0,π2上恒成立,故此函数不是凸函数. 二、填空题(每小题5分,共15分)4. 已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 因为f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x , 所以f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4sin π4+cos π4 ⇒f ′⎝⎛⎭⎫π4=2-1,故f ⎝⎛⎭⎫π4=f ′⎝⎛⎭⎫π4cos π4+sin π4⇒f ⎝⎛⎭⎫π4=1. 5. 函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________. 答案 21解析 因为y ′=2x ,所以过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,所以a 3=4,a 5=1.所以a 1+a 3+a 5=21.6. 若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值范围是________.答案 k ≤13解析 f ′(x )=3kx 2+6(k -1)x .由题意,知⎩⎪⎨⎪⎧k ≥0,f ′(4)≤0或⎩⎪⎨⎪⎧k <0,-6(k -1)2×3k<0,解得k ≤13.三、解答题7. (13分)(2012·辽宁)设f (x )=ln x +x -1,证明:(1)当x >1时,f (x )<32(x -1);(2)当1<x <3时,f (x )<9(x -1)x +5.(1)证明 方法一 记g (x )=ln x +x -1-32(x -1),则当x >1时,g ′(x )=1x +12x -32<0.又g (1)=0,所以有g (x )<0,即f (x )<32(x -1).方法二 当x >1时,2x <x +1,故x <x 2+12.①令k (x )=ln x -x +1,则k (1)=0,k ′(x )=1x -1<0,故k (x )<0,即ln x <x -1.②由①②得,当x >1时,f (x )<32(x -1).(2)证明 方法一 记h (x )=f (x )-9(x -1)x +5,由(1)得h ′(x )=1x +12x -54(x +5)2=2+x 2x -54(x +5)2<x +54x -54(x +5)2=(x +5)3-216x4x (x +5)2.令G (x )=(x +5)3-216x ,则当1<x <3时, G ′(x )=3(x +5)2-216<0, 因此G (x )在(1,3)内是减函数.又由G (1)=0,得G (x )<0,所以h ′(x )<0. 因此h (x )在(1,3)内是减函数. 又h (1)=0,所以h (x )<0. 于是当1<x <3时,f (x )<9(x -1)x +5.方法二 记h (x )=(x +5)f (x )-9(x -1), 则当1<x <3时,由(1)得h ′(x )=f (x )+(x +5)f ′(x )-9 <32(x -1)+(x +5)·⎝⎛⎭⎫1x +12x -9 =12x [3x (x -1)+(x +5)(2+x )-18x ] <12x ⎣⎡⎦⎤3x (x -1)+(x +5)⎝⎛⎭⎫2+x 2+12-18x =14x (7x 2-32x +25)<0. 因此h (x )在(1,3)内单调递减.又h (1)=0,所以h (x )<0,即f (x )<9(x -1)x +5.。

相关文档
最新文档