开关磁阻电机及其控制系统

合集下载

基于ARM的开关磁阻电机控制系统

基于ARM的开关磁阻电机控制系统
迫 札 与柱 弗U 用 2 1,8( 应 0 13 4)
控制 与应 用技术 E A MC
基 于 AR 的 开 关 磁 阻 电机 控 制 系 统 M
鲍远 慧 , 段 琼 , 杨 艳 丽 ( 肥 工业 大 学 电气 与 自动 化 工程 学 院 , 合 安徽 合肥

200 ) 3 0 9
A s a t w t e e ca c o rdie( R b t c :A s i h d rl tn e m t r r c u o v S D) o t e —h s 8 s i h d rl tn e m t S M ) f h e p a e 1 / w t e e ca c oo r 2 c u r( R
ln h o ro r ro a h ph s Ha d r ic is a ot r ta e is o we nv re n t rv p i ig t e p we — n o de fe c a e. r wa e cr ut nd s f wa e srt ge fpo ri et ra d isd ie, os—
Ke r s s i h d r lca c tr( R ) o e o v r r p s in d tci ywo d : w t e e tn emoo S M ;p w rc n e t ; o io ee t n c u e t o
0 引 言
开 关 磁 阻 电 机 ( wth d R lcac tr S i e e t e Mo , c u n o
b s d o RM sp e e td . h ae n A wa r s ne T e ARM P 2 4 rg ltd s e d o RM yc l ci gf e b c i n l a d c nr l L C 21 e u a e p e f S b o l t d a k sg as n o t — e n e o

开关磁阻电机调速控制系统硬件设计

开关磁阻电机调速控制系统硬件设计

6 4 I 建援辍磐 瘟嘲 ・ 2 0 1 4 年 第1 期
R e s e a r c h& D e s i g n研 究 与 设 计
变频 辩 www c hi n a b i a np i n. c o m
利 于减少 转矩 脉动 , 但结 构复 杂 , 且 主开 关器 件 多 , 成 本 高, 目前应用较多 的是 四相 ( 8 / 6 ) 结 构和三相 ( 1 2 / 8 ) 结 构。 图1 是三相结构 S R M电动机原理 图。为简单计 , 图中只画 出 A相绕组及其供 电电路 。S R M 的运行原 理遵 循“ 磁阻最 小原理 ” 一 磁通 总要沿着磁 阻最小 的路径 闭合 ,而具有 一 定 形状 的铁心在移动 到最小磁 阻位 置时 , 必使 自己的主轴 线与磁场的轴线 重合 。 图 2中 , 当定子 C — C’ 极励磁 时 , 1 - 1 ’ 向定子轴线 C — C ’ 重合的位置转动 ,并使 C相励磁 绕组的 电感最大 。若 以图中定 、 转 子所处 的相对 位置作为起 始位 置, 则依次 给 c —A — B相 绕组通 电, 转子 即会 逆着励 磁顺 序 以逆 时针方 向连续 旋转 ; 反之 , 若 依次给 B —A — c相通
D S P控制器 、 位置检 测 电路 、 电流检测 电路 、 信号转 换 、 显
示电路等组成 。本系统的硬件框 图如 图所示。
的全部 优点 , 而且具有结构 简单 、 成本低 、 起 动性能好 、 调
速 范围宽等优点 ,所 以被广 泛应用 于各种工程 控制领域
中。
在 现 代 调 速 系统 中 ,开 关 磁 阻 电机 调 速 ( S w i t c h e d R e l u c t a n c e D r i v e , S R D ) 系统具有结构简单 、 成本低 、 损耗小 、

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统开关磁阻电机Switched Reluctance Drivesystem, SRD开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。

这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。

SR电机是一种机电能量转换装置。

根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。

开关磁阻电机的发展概况和发展趋势“开关磁阻电机(Switched reluctance motor)”一词源见于美国学者S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。

开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。

在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。

有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。

“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。

开关磁阻电机控制系统的结构组成。

开关磁阻电机控制系统的结构组成。

开关磁阻电机控制系统的结构组成包括以下几个方面:控制器:控制器是开关磁阻电机控制系统的核心部分,它根据输入的指令信号,经过处理后,向电机的主电路输出相应的控制信号,控制电机的转速和转向。

控制器主要由功率电路和控制电路组成,其中功率电路主要完成对电机主电路的控制,而控制电路则负责接收和处理输入的指令信号。

功率变换器:功率变换器是开关磁阻电机控制系统的重要组成部分,它能够根据控制器的控制信号,对电机的输入电源进行调制,从而实现对电机转矩和转速的控制。

功率变换器一般由开关管、二极管等电子元件组成。

位置检测器:位置检测器用于检测电机的转子位置和转速,将检测到的信号反馈给控制器,控制器再根据反馈信号调整控制信号,实现电机的闭环控制。

开关磁阻电机:开关磁阻电机是开关磁阻电机控制系统的被控对象,它是一种双凸极可变磁阻电机,其转子的凸极和定子的凸极相对,当电流通过电机绕组时,产生磁场使转子旋转。

总的来说,开关磁阻电机控制系统通过控制器、功率变换器、位置检测器和开关磁阻电机的协同工作,实现对电机的高效、精确控制。

开关磁阻电机控制系统

开关磁阻电机控制系统

开关磁阻电机控制系统摘要:开关磁阻电机(SRM)是一种新型调速电机,是继变频调速系统、无刷直流电动机调速系统的最新一代调速系统。

它的结构简单坚固,调速范围宽,系统可靠性高,可以进一步提升系统的安全稳定性。

关键词:驱动系统;电动机;开关磁阻电机1引言开关磁阻电机是SRD系统中实现能量转换的部件,也是SRD系统有别于其他电动机驱动系统的主要标志。

与反应式步进电机相似,SR电机系双凸极源可变磁阻电动机,其定,转子的凸极均由普通硅钢片叠压而成,且定,转子极数不同。

定子上装有简单的集中绕组,转子只由叠片构成,没有绕组和永磁体。

功率变换器向SR 电机提供运转所需的能量,由蓄电池和交流电整流后得到知的直流电供电。

控制器是系统的中枢。

它综合处理速度指令,速度反馈信号及电流传感器,位置传感器的反馈信息,控制功率变换器中道主开关器件的工作状态。

2电动机的种类区分如今最常使用的电动机分别有一下四类(1)直流电动机直流电动机的成本低廉、电路简单、易于实现平滑调速,同时有着良好的四象限运行能力,满足用于电动汽车的部分需求。

然而传统直流电机存在机械换向器和电刷,运行中会产生电火花和电磁辐射,从而干扰到车辆的电子控制系统,不利于车联网体系的建立。

除此之外,机械换向器有着极为复杂的结构,难以简单制造且使车速到达高速。

(2)交流感应电机交流感应电机一般采用六用鼠笼型的结构,对比与其他电机,三相鼠笼型电动机成本较低,运行效率高,拥有良好的可靠性的同时便于维修的优点,而且体积小。

通过一定的控制策略,,交流感应电机也可以实现类似于直流电机的良好调速特性。

但与此同时,交流感应电机用电量大,在使用过程中发热严重,调速性能不佳,控制系统复杂且需要一定的成本。

(3)无刷永磁电机永磁电机是一种高性能新兴电机。

永磁无刷直流电机结构中不含换向器和电刷,这样一来永磁电机一方面继承了直流电机优秀的调速性能又避免了机械换向器和电刷带来的负面影响。

相较于此前介绍的几种电机,永磁电机有更高的功率和转矩,极限转速高、制动性能好。

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统首先,让我们来了解开关磁阻电机的原理。

它由一组互相串联的磁电阻元件组成,安装在定子上。

这些磁电阻元件是由永磁材料制成的,具有高磁导率。

当电流通过磁阻元件时,它们变为“ON”状态,并形成低磁阻通路,允许磁通通过。

当电流终止时,它们恢复为“OFF”状态,形成高磁阻通路,磁通不再通过。

这种可逆性允许电机在电流方向改变时,磁通的方向也随之改变,从而实现了转子的转动。

1.电源:为电机提供所需的电能。

通常使用直流电源来驱动开关磁阻电机,但也可以使用交流电源。

2.驱动电路:将电源提供的直流电转换为适合电机工作的电流和电压。

驱动电路通常由功率放大器和控制电路组成。

功率放大器用于放大驱动电流,以控制磁阻元件的磁化状态。

控制电路用于监测电机的运行状态,并根据需要调整驱动信号。

3.控制电路:根据用户的指令或外部传感器的反馈信号,控制电机的运行速度和转向。

控制电路根据需要向驱动电路发送控制信号,以改变驱动电流的大小和方向。

开关磁阻电机的驱动系统通过控制磁化状态来改变磁通,从而控制电机的转动。

当需要驱动电机时,控制电路向驱动电路发送启动信号,驱动电路放大信号并向磁阻元件提供足够的电流,使其进入“ON”状态。

这时,磁通开始通过,产生转矩,驱动转子开始转动。

当需要改变电机的转向时,控制电路改变驱动电流的方向,使磁通方向相应改变。

需要注意的是,开关磁阻电机的驱动系统需要根据具体的电机参数和工作要求进行设计和调整,以实现最佳的性能和效率。

驱动系统应能提供足够的功率和精确的控制,以满足电机的转矩和速度需求,并确保电机的稳定运行。

综上所述,开关磁阻电机的工作原理基于磁阻效应,并由驱动系统控制。

驱动系统由电源、驱动电路和控制电路组成,通过改变磁化状态来改变磁通,从而驱动电机的转动。

这种电机具有结构简单、转速范围广、效率高等特点,适用于许多工业应用领域。

电子教案 项目16 开关磁阻电机

电子教案 项目16 开关磁阻电机
讲授、情景设问
环节3:
1、开关磁阻电机的特点
开关磁阻电机(Switched Reluctance,SR)是集现代微电子技术、数字技术、电力电子技术、红外逃匿电技术及现代电磁理论、设计和制作技术为一体的光、机、电一体高新技术,广泛应用于家用电器、航空、航天、电子、机械及电动车辆等领域。
(1)开关磁阻电机的优点
1)电机结构简单,成本低,可用于高速运转;
2)功率电路简单可靠;
3)系统可靠性高;
4)启动转矩大,启动电流低;
5)适用于频繁启停及正反向转换运行;
6)可控参数多,调速性能好;
7)效率高,损耗小;
8)可通过机和电的统一协调设计满足各种特殊使用要求。
(2)开关磁阻电机的缺点:
1)有转矩脉动;
2)开关磁阻电机传动系统的噪声与震动比一般电机大;
(4)掌握开关磁阻电动机的特点及应用。
能力目标
(1)掌握开关磁阻电机的结构组成
(2)掌握开关磁阻电机的工作原理
(3)掌握开关磁阻电机控制系统的工作原理。
二、教学内容
开关磁阻电机的结构,工作原来及控制技术
三、重点难点
教学重点
1.开关磁阻电机控制系统的结构组成
教学难点
1.开关磁阻电机控制系统的工作原理。
3.开关磁阻电动机控制技术
开关磁阻电动机调速系统SRD (Switched Reluctance Drive)是继变频调速系统、无换向器电动机调速系统之后发展起来的最新一代交流无级调速系统。它具有结构简单、坚固、成本低、工作可靠、控制灵活、运行效率高等诸多优点,由其构成的传动系统具有交、直流传动系统所没有的优点。
在宽广的转速与功率范围内均具有较高的效率。
电动机的转矩脉动比较大,目前致力于减小电动机转矩脉动的控制方法是该领域的研发热点之一。

开关磁阻电机1.ppt

开关磁阻电机1.ppt

运动电动势 (转子位置改变)
机械运动方程:
d2
d
Te
J dt2
D dt
TL
式中 Te——电磁转矩; J—— 系 统 的 转 动 惯 量 ; K——摩擦系数;
TL——负载转矩。
电磁转矩:
SR电机的瞬时电磁转矩Te可由磁共能Wc导出:
Te
Wc (i, )
磁共能的表达式为:
Wc i (i, )di 0
SR电动机常用的相数与极数组合
相数
SR电机常用方案 34567
89
定子极数 6 8 10 12 14 16 18
转子极数 4 6 8 10 12 14 16
步进角(度) 30 15 9 6 4.28 3.21 2.5
相数与转矩、性能关系:
相数越大,转矩脉动越小,但成本越高,故常 用三相、四相,还有人在研究两相、单相SRM
5、需要根据定、转子相对位置投励。不能像普 通异步电机一样直接投入电网运行,需要与控制 器一同使用。
2.1.3 开关磁阻电动机的相数与结构
相数与级数关系
Ns 2km Nr Ns 2k)
1、为了避免单边磁拉力,径向必须对称,所以 双凸极的定子和转子齿槽数应为偶数。
2、定子和转子齿槽数不相等,但应尽量接近。 因为当定子和转子齿槽数相近时,就可能加大定 子相绕组电感随转角的平均变化率,这是提高电 机出力的重要因素。
各种不确定性干扰的新型控制策略 – 智能控制策略
• SR电机的无位置传感器控制 • • SR电机应用研究:电动车、发电机、一体化电机等
2.2 SR电机基本方程与性能分析
+
R1
i1
u1
d1/dt
-
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SR电动机运行特性
CCC方式下的斩波电流波形
角度位置控制时相电流波形
不同开通角下的相电流波形
电压PWM控制时的相电流波形
基于模糊控制算法的系统控制方式
8.3 SRD系统功率变换器
功率变换器是SR电动机运行时所需能量的供给者,也是电 机绕组通断指令的执行者。SR电动机的功率变换器相当于PWM 变频调速异步电动机的变频器一样,在调速系统中占有重要地位, 功率变换器设计是提高SRD系统性能价格比的关键之一。由于 SR电动机工作电压、电流波形并非正弦波,且波形受系统运行 条件及电机设计参数的制约,变化很大,难以准确预料,因此, SR电动机功率变换器的设计是与SR电动机、控制器的设计密切成电路----EXB841应用电路
8.4 开关磁阻电动机控制器
控制器好比SRD系统的神经中枢、大脑,它接收电机的 转子位置信号、绕组电流信号、外围给定信号,给出电机每 相绕组的通断信号,计算电机的转速等。
控制器框图
中央处理芯片一般采用数字信号处理器(DSP)来实现, TMS320LF2XXX系列的DSP为当前的主要款型,从上图这个 典型控制器原理控制可以看出, DSP负责判断转子的位置信 息,并综合各种保护信号和给定信息、转速情况,给出相通断 信号,以及产生一路定频调宽的PWM信号以利于使用PWM控制 方式。最后通过逻辑综合将信号传递给功率变换器中主开关器 件的驱动电路,以便通过主开关的通断来进行电机绕组的通断 控制。
可控参数多,既可调节主开关 一般只通过调节电源步进脉 管的开通角和关断角,也可采 冲的频率来调节转速 用调压或限流斩波控制
SR电机与反应式同步磁阻电机的主要差别
SR 电 机
反应式同步磁阻电机
定、转子均为双凸极结构
定子为齿、槽均匀分布的光滑内腔
定子绕组是集中绕组
定子嵌有多相绕组,近似正弦分布
励磁是顺序施加在各相绕组上的 电流脉冲
形象的说,SRD系统的几大部分,控制器好比人的大脑,功率变换器与电 动机一起相当于人的四肢,人劳动需要能量(电源),劳动之前需要一定的 计划、要求(转速给定),劳动的对象即负载。
SRD系统与其他系统的比较
SRD系统与反应式步进电机系统的主要差别
SRD 系 统
反应式步进电机系统
利用转子位置反馈信号运行于 工作于开环状态,无转子位 自同步状态,相绕组电流导通 置反馈。多用于伺服控制系 时刻与转子位置有严格的对应 统,对步距精度要求很高, 关系,并且绕组电流波形的前 对效率指标要求不严格,只 后沿可以分别独立控制,即电 作电动状态运行。 流脉冲宽度可以任意调节。多 用于功率驱动系统,对效率指 标要求很高,功率等级至少可 达到数百千瓦,甚至数千千瓦, 并可运行于发电状态
1.0 83 80
电动机容量/体积
1.0
0.9
控制能力
1.0
0.5
控制电路复杂性
1.0
1.8
可靠性
1.6
0.9
噪声/dB
65
72
>1.0 0.9 1.2 1.1
72
8.2 开关磁阻电动机的控制方式
SRD系统的控制方式是指电动机运行时如何通过一定的 控制参数进行电机的控制,使得电动机达到给定的转速值、 转矩值等运行工况,并保持较高的效率。和大多数其他电 动机不同,SRD系统中,可以说,没有控制就没有SR电机, 因为没有对电机绕组通电顺序的选择与控制,电机是不会 运行的,不像其他电机,即使没有控制装置,电机是可以 启动运行的,只不过其运行的方式一般比较单一,可控性 差而已。
定、转子相对位置及相绕组电感曲线
数学模型:(电压方程)
Uk
Rkik
k
ik
dik k dt

dt
Rkik
(LK
ik
LK ik
)
dik dt
ik
Lk

d
dt
上式表明,电源电压与电路中三部分电压降相平衡。其中 ,等式右端第一项为K相回路中电阻的压降;第二项是由电流变 化引起磁链变化而感应的电动势,所以称为变压器电动势;第三 项是由转子位置改变引起绕组中磁链变化而感应得电动势,所以 称为运动电势,它直接影响机电能量的转换。
开关磁阻电机及其控制系统
SRD系统的一些应用
SR电动机动作原理图
某三相SR电动机典型功率变换器主电路
某典型控制器硬件电路原理框图
检测单元由位置检测和电流检测环节组成,提供转子的位置信息从而确 定各相绕组的开通与关断,一般在电机内部会有几只判断转子实时位置的 传感器,位置传感器的目的在于确定开关磁阻电动机定、转子的相对位置, 即要用绝对位置传感器检测转子相对位置,然后位置信号反馈至逻辑控制 电路,以确定对应相绕组的通断;通过电流传感器提供电流信息给控制器, 来完成电流斩波控制或采取相应的保护措施以防止过电流。
6.93 88.3 85.7 11.2 5.50
7.72 85.0 —— 11.4 4.74
5.93 89.8 —— 10.4 4.26
SRD系统与直流和PWM变频调速系统性能比较
系统类型 比较项目
成本
效 率 额定转速

1/2额定转速
直流系统
1.0 76 65
PWM变频系统
1.5 77 65
SRD系统
各相励磁随转子位置作三角波或 梯形波变化,不随电流改变
励磁是一组多相平衡的正弦波电流
各相自感随转子位置作正弦变化, 不随电流改变
同功率(7.5kw)SRD系统与异步电动机系统性能比较
性能参数 定子直径(mm) 铁心长度(mm)
转矩/定子体积(kN·m/m) 转矩/转动惯量(kN·m/kg·m)
转矩/电磁重量(N·m/kg)
SRD系统的功率变换器主要由主开关器件及其主电路、主开关 驱动电路、保护电路、稳压电源电路等组成。
最少主开关型主电路
SRD功率变换器设计实例
1. 设计依据与原则 给定SRD原始数据如下: 定转子极数比:8/6(四相) 额定电压:260V(DC) 额定转速:1500r/min 额定功率:5.5KW 控制方式:变角度电压PWM斩波控制 调速范围:50-2000 r/min
SR电动机
205 179 8.68 3.74 1.43
普通异步 电动机 221 95 11.2 1.59 1.52
高效率异 步电动机 221 140 7.56 1.07 1.02
转矩/铜重(N·m/kg) 电动机效率(%) 系统效率(%) 峰值伏安容量(kVA/kW) 有效值伏安容量(kVA/kW)
相关文档
最新文档