一次函数与二元一次方程组_图文.ppt
合集下载
《用二元一次方程组确定一次函数表达式》优秀ppt课件

间的关系,观察图象,回答下列问题: L2
(1)途中乙发生了什么事? s
(2)他们几时相遇?
L1
P
D
12
E
10
AB
8
0 0.5 1 1.2
t
10
例:某长途汽车客运站规定,乘客可以免费携带一定 质量的行李,但超过该质量则需购买行李票,且行 李费y(元)是行李质量x(千克)的一次函数,现 知李明带了60千克的行李,交了行李费5元,王华 带了90千克的行李,交了行李费10元 (1)写出y与x之间的函数表达式 (2)旅客最多可免费携带多少千克的行李?
s 与t 之间的关系图象, 20 找出交点的横坐标就行了!
0
11 22(A)33 4 t
7
用方程 解 行程问题
A、B 两地相距150千米,
1 时后乙距A地
甲、乙两人骑自行车分别从A、
120千米,即乙的
B 两地同时相向而行。假设他 小彬 速度是 30千米/时,
们都保持匀速行驶,则他们各
自到A地的距离s(千米)都是骑 车时间t(时)的一次函数. 1 时后乙距A地120千米, 2 时后甲距A地 40千米.
12
2、仿例题,做习题, 完成P127的随堂练习1-2题。
13
课堂检测
1.已知一次函数 y kx 5与y 3x b的图象 交点为 P(2,3), 则k _1__, b -_9__ . 2.已知一次函数 y 2x a与y x b的图象都 经过点 A(2,0), 且与 y轴分别交于 B, C两点,则
5.7 用二元一次方程组确 定一次函数表达式
1
任意一个二元一次方程都可以转 化成y=kx+b的形式,所以每个二 元一次方程都对应一个一次函数.
北师大版八年级上册数学《二元一次方程与一次函数》二元一次方程组PPT课件

平均数 众数 中位数
课堂小测
1.如下图所示的是某市5月份某一周的最高气温统计图,则这 组数据(最高气温)的众数与中位数分别是( A )
A.28 ℃,29 ℃ C.28 ℃,30 ℃
B.28 ℃,29.5 ℃ D.29 ℃,29 ℃
天数
最高气温/℃
课堂小测
2.如图是某射击选手5次射击成绩的折线图,根据图示信息,这5
八年级数学北师版·上册
第六章 数据的分析
从统计图分析数据的集中趋势
新课引入
如何确定一组数 据的平均数?
平均数
x
1 n
( x1 x 2 ... x n )
新知探究
如何确定中位数?
确定中位数,应先把这组数据按大小顺 序排列,最中间位置的一个数据或最中 间两个数据的平均数即为中位数.
新知探究
什么时候中位数取最中间位 置的一个数据,什么时候取最
课堂小测
(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)一一记录 下来,则在这组数据中,众数是多少?
(3)因为初中生最多, 所以众数为10元.
新知探究
(3)在上面的问题中,如果不知道调查的总人数,你 还能求平均数吗?如果把算式中的小括号去掉,你 有什么发现?
约去20后可以写成 100×10%+80×25%+50×40%+30×20%+20×5%,其中的百 分比就是扇形统计图中各项对应的百分比.事实上,这些百 分比就是“权”,所以平均数也可以直接这样算: 100×10%+80×25%+50×40%+30×20%+20×5%=57(元).
(1)变函数:把方程组 k1 x y b1
k2 x y b2
二元一次方程与一次函数PPT

05
因式分解法:将方程组中的方程进行因式分 解,然后求解
换元法:引入新的未知数,将原方程组转化 为新的方程组,然后求解
实际应用
01
02
03
04
求解线性方程组: 通过解二元一次 方程,可以求解 线性方程组。
求解最优化问题: 二元一次方程可 以用于求解最优 化问题,如线性 规划、二次规划 等。
求解几何问题: 二元一次方程可 以求解几何问题, 如直线与直线、 直线与圆、圆与 圆的位置关系等。
方程与函数的关 系:方程的解就 是函数的零点, 函数图像与x轴 的交点就是方程 的解
方程与函数的转化
二元一次方程与一次函 数的关系:二元一次方 程可以转化为一次函数,
反之亦然。
转化方法:通过代入法、 消元法等方法,可以将 二元一次方程转化为一
次函数。
转化意义:方程与函数 的转化可以帮助我们更 好地理解和解决实际问
题。
实际应用:在解决实际 问题时,我们可以根据 需要选择使用方程或函
数进行表达和求解。
实际应用案例
01
线性规划:求解线性方程组,确定最 优解
02
工程问题:求解工程问题中的二元一 次方程,如桥梁设计、建筑结构等
03
经济问题:求解经济问题中的二元一 次方程,如生产成本、利润最大化等
04
数学建模:利用二元一次方程和一次 函数建立数学模型,解决实际问题
c=0
应用:求解实际问题中 04
的二元一次方程,如行 程问题、利润问题等
求解方法
01
代入消元法:将方程组中的一个方程的未知 数用另一个方程的未知数表示,然后代入另 一个方程求解
03
02
加减消元法:将方程组中的两个方程相加或 相减,消去一个未知数,然后解另一个未知 数
因式分解法:将方程组中的方程进行因式分 解,然后求解
换元法:引入新的未知数,将原方程组转化 为新的方程组,然后求解
实际应用
01
02
03
04
求解线性方程组: 通过解二元一次 方程,可以求解 线性方程组。
求解最优化问题: 二元一次方程可 以用于求解最优 化问题,如线性 规划、二次规划 等。
求解几何问题: 二元一次方程可 以求解几何问题, 如直线与直线、 直线与圆、圆与 圆的位置关系等。
方程与函数的关 系:方程的解就 是函数的零点, 函数图像与x轴 的交点就是方程 的解
方程与函数的转化
二元一次方程与一次函 数的关系:二元一次方 程可以转化为一次函数,
反之亦然。
转化方法:通过代入法、 消元法等方法,可以将 二元一次方程转化为一
次函数。
转化意义:方程与函数 的转化可以帮助我们更 好地理解和解决实际问
题。
实际应用:在解决实际 问题时,我们可以根据 需要选择使用方程或函
数进行表达和求解。
实际应用案例
01
线性规划:求解线性方程组,确定最 优解
02
工程问题:求解工程问题中的二元一 次方程,如桥梁设计、建筑结构等
03
经济问题:求解经济问题中的二元一 次方程,如生产成本、利润最大化等
04
数学建模:利用二元一次方程和一次 函数建立数学模型,解决实际问题
c=0
应用:求解实际问题中 04
的二元一次方程,如行 程问题、利润问题等
求解方法
01
代入消元法:将方程组中的一个方程的未知 数用另一个方程的未知数表示,然后代入另 一个方程求解
03
02
加减消元法:将方程组中的两个方程相加或 相减,消去一个未知数,然后解另一个未知 数
二元一次方程组与一次函数课件(张)

x
1 -4 -3 -2 -1 O
1 2 3 用图象法解二元一次方程组 2x-y=2 (2) x ► 由(1)得 y= +1 2
由此可得
x-2y=-2 (1)
x=0
x=-2
y 5
y=2x-2
y=1
进而作出 y= 象 由此可得
x 2
y=0
+1的图
x 2
即: 二元一次方程 (数)
对应
相应的一次函数的图象(形)
探索题:
1.有一组数同时适合方程x+y=2和x+y=5吗? 2.一次函数y=-x+2,y=-x+5的图象之间有 何关系? 3.你能从中“悟”出些什么吗?
7 6 5 y= - x+5 y= - x+2 4 3 2 1 -3 -2 -1 0 1 2 3 4 5 6 -1 -2
做一做
x+y=5 x=0 y=5 2x-y=1 x=0
y=-1 x+y=5 2x-y=1
► y=5-x x=5 y=0 ► y=2x-1 x=0.5
y=0 的解
1) 在同一直角坐标系中分别作一次 函数Y=5-X和Y=2X-1的图象,这两个 图象有交点吗?
y 5 4 3 2
y=2x-1
P(2,3) y=5-x
(2) 已知直线y=2x+k与直线y=kx-2的交点横坐 (2,10) 标为2,则k的值是 6 , 交点坐标为_______
y=x+2 (3) 如图所示的两条直线 1 9 ( , ) 的交点坐标是_________ 4 4 y=-3x+3
练习6
如图所示的两条直线的
1 9 ( , ) 交点坐标是________________ 4 4
1 -4 -3 -2 -1 O
1 2 3 用图象法解二元一次方程组 2x-y=2 (2) x ► 由(1)得 y= +1 2
由此可得
x-2y=-2 (1)
x=0
x=-2
y 5
y=2x-2
y=1
进而作出 y= 象 由此可得
x 2
y=0
+1的图
x 2
即: 二元一次方程 (数)
对应
相应的一次函数的图象(形)
探索题:
1.有一组数同时适合方程x+y=2和x+y=5吗? 2.一次函数y=-x+2,y=-x+5的图象之间有 何关系? 3.你能从中“悟”出些什么吗?
7 6 5 y= - x+5 y= - x+2 4 3 2 1 -3 -2 -1 0 1 2 3 4 5 6 -1 -2
做一做
x+y=5 x=0 y=5 2x-y=1 x=0
y=-1 x+y=5 2x-y=1
► y=5-x x=5 y=0 ► y=2x-1 x=0.5
y=0 的解
1) 在同一直角坐标系中分别作一次 函数Y=5-X和Y=2X-1的图象,这两个 图象有交点吗?
y 5 4 3 2
y=2x-1
P(2,3) y=5-x
(2) 已知直线y=2x+k与直线y=kx-2的交点横坐 (2,10) 标为2,则k的值是 6 , 交点坐标为_______
y=x+2 (3) 如图所示的两条直线 1 9 ( , ) 的交点坐标是_________ 4 4 y=-3x+3
练习6
如图所示的两条直线的
1 9 ( , ) 交点坐标是________________ 4 4
八年级数学下册教学课件《一次函数与二元一次方程组》

y
150
y=0.4x
y=30+0.3x, 解方程组
120
y=30+0.3x
y=0.4x,
90
60
x=300,
30
得
O
x
100 200 300 400
y=120.
y
y=0.4x 150
120
y=30+0.3x
90
60
30
O
x
100 200 300 400
Байду номын сангаас
所以两图象交于点(300,120). 当x=300 时,30+0.3x=0.4x.即当一个月内通话时间等于300min 时,选择两种计费方式费用相等.
2
解:根据图象可知,有交点.
1
令﹣x+5=2x﹣1,解得x=2.
–2 –1 O
将x=2代入y=﹣x+5,得y=﹣2+5=3,
–1 –2
所以交点的坐标为(2, 3).
–3
y=2x﹣1
x
123456 y=﹣x+5
思 考 : ( 2 ) 中交点的坐标与方程
y
组 x+y=5, 的解有什么关系?
6 5
2x﹣y=1
随堂练习
某销售公司推销一种产品,设x(单位:件)是每月推销产品的 数量 , y(单位 : 元)是付给推销员的月报酬.公司付给推销员 的月报酬的两种方案如图所示 , 推销员可以任选一种与公司 签订合同,看图解答下列问题:
( 1) 求每种付酬方案中y关于x的函数 解析式;
方案一:y=40x.
方案二:y=20x+600.
问题3:1号探测气球从海拔5m处出发,以1m/min的速度上 升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min 的速度上升.两个气球都上升了1h. (1)用式子分别表示两个气球所在位置的海拔y(单位:m) 关于上升时间x(单位:min)的函数关系.
《二元一次方程与一次函数》优秀课件-公开课课件【可编辑全文】

小明:以方程x+y=5的解为坐标的点组成的图象与一次函数y=5-x 的图象相同,都是一条直线。
以方程2x-y=1的解为坐标的点组成的图象与一次函数y=2x-1的图象相同,都是一条直线。
小林:一次函数的图象上的点的坐标都适合对应的二元一次方程。
小颖:我知道可以怎样做了!!
方法三:图象法
1、变形:将两个方程都变形成为y=kx+b; 2、作图:把方程对应的两条直线画出来; 3、找交点:确定其x、y的对应值; 4、得解:
二元一次方程,除了代入法、加减法,还可以这样解:
解方程: 你会怎样解呢?
1、变形:将两个方程都变形成为y=kx+b; 2、作图:把方程对应的两条直线画出来; 3、找交点:确定其x、y的对应值; 4、得解:
x+y=5 ……① 2x-y=1 ……②
解:1) 由①变形得:y=5-x 由②变形得:y=2x-1
2) 在同一个坐标系中画出y=5-x和y=2x-1的图象。
3) 找到交点
4) 所以原方程组的解为:
x=2 y=3
(2, 3)
在同一直角坐标系内, 一次函数y = x + 1 和y = x - 2 的象有怎样的位置关系?
方程组 解的情况如何?你发现了什么?
x-y=-1 x-y=2
人生犹如一本书,愚蠢者草草翻过,聪明人细细阅读。为何如此. 因为他们只能读它一次。
教学目标
1、体会二元一次方程与一次函数的关系。 2、能从“形”的角度理解二元一次方程和二元一次方程组,发展几何直观。
1、方程x+ y = 5的解有多少个?下列是这个方程的解吗?
x=2 y=3
x=-1 y= 6
x=1 y=4
以方程2x-y=1的解为坐标的点组成的图象与一次函数y=2x-1的图象相同,都是一条直线。
小林:一次函数的图象上的点的坐标都适合对应的二元一次方程。
小颖:我知道可以怎样做了!!
方法三:图象法
1、变形:将两个方程都变形成为y=kx+b; 2、作图:把方程对应的两条直线画出来; 3、找交点:确定其x、y的对应值; 4、得解:
二元一次方程,除了代入法、加减法,还可以这样解:
解方程: 你会怎样解呢?
1、变形:将两个方程都变形成为y=kx+b; 2、作图:把方程对应的两条直线画出来; 3、找交点:确定其x、y的对应值; 4、得解:
x+y=5 ……① 2x-y=1 ……②
解:1) 由①变形得:y=5-x 由②变形得:y=2x-1
2) 在同一个坐标系中画出y=5-x和y=2x-1的图象。
3) 找到交点
4) 所以原方程组的解为:
x=2 y=3
(2, 3)
在同一直角坐标系内, 一次函数y = x + 1 和y = x - 2 的象有怎样的位置关系?
方程组 解的情况如何?你发现了什么?
x-y=-1 x-y=2
人生犹如一本书,愚蠢者草草翻过,聪明人细细阅读。为何如此. 因为他们只能读它一次。
教学目标
1、体会二元一次方程与一次函数的关系。 2、能从“形”的角度理解二元一次方程和二元一次方程组,发展几何直观。
1、方程x+ y = 5的解有多少个?下列是这个方程的解吗?
x=2 y=3
x=-1 y= 6
x=1 y=4
一次函数与二元一次方程的关系PPT课件
3.以方程2x+3y=5的解为坐标的点是否都在函数y 2 x 5 的 33
图像上?为什么?
[知识拓展] (1)以二元一次方程的解为坐标的点组成的集合 是它对应的一次函数所在的直线;一次函数图像 上任意一点的坐标是它对应的方程的一组解. (2)二元一次方程组的解是由它对应的两个一次 函数图像的交点坐标;两个一次函数图像的交点 坐标是其对应的二元一次方程组的解.
1.以二元一次方程ax+by=c的解为坐标所构成的直线,是不是一次 函数 y a x c 的图像?请说明理由.
bb 2.你认为二元一次方程和一次函数有什么联系与区别?
总结:以二元一次方程的解为坐标的点都在与它相应的一 次函数的图像上;反过来,一次函数图像上的点的坐标都是 与它相应的二元一次方程的解.
不等式的关系即可求解.
解:(1)两直线相交时交点的坐标是
y x 1,
y
2
x
2,
的解,即
x y
1, 0,
所以交点的坐标是(1,0),图像用两点法画 即可. y1=-x+1的图像与坐标轴的交点为 (0,1),(1,0),y2=2x-2的图像与坐标轴的交 点为(0,-2),(1,0),直接连线即可.如图所示.
1则.若直二线元y=一-3次x+方a和程y组=2x-43bxx的2y交y点ab,坐, 的标解为为
(
x m, y n. C)
2
A.(n,m) B.(m,m) C.(m,n) D.(n,n)
检测反馈
解析:二元一次方程组的解就是两个方程对应直线的交点坐标.故选C.
2.如图所示的是函数y=kx+b与y=mx+n的图像,求方程组 的点关于原点对称的点的坐标是 ( D )
图像上?为什么?
[知识拓展] (1)以二元一次方程的解为坐标的点组成的集合 是它对应的一次函数所在的直线;一次函数图像 上任意一点的坐标是它对应的方程的一组解. (2)二元一次方程组的解是由它对应的两个一次 函数图像的交点坐标;两个一次函数图像的交点 坐标是其对应的二元一次方程组的解.
1.以二元一次方程ax+by=c的解为坐标所构成的直线,是不是一次 函数 y a x c 的图像?请说明理由.
bb 2.你认为二元一次方程和一次函数有什么联系与区别?
总结:以二元一次方程的解为坐标的点都在与它相应的一 次函数的图像上;反过来,一次函数图像上的点的坐标都是 与它相应的二元一次方程的解.
不等式的关系即可求解.
解:(1)两直线相交时交点的坐标是
y x 1,
y
2
x
2,
的解,即
x y
1, 0,
所以交点的坐标是(1,0),图像用两点法画 即可. y1=-x+1的图像与坐标轴的交点为 (0,1),(1,0),y2=2x-2的图像与坐标轴的交 点为(0,-2),(1,0),直接连线即可.如图所示.
1则.若直二线元y=一-3次x+方a和程y组=2x-43bxx的2y交y点ab,坐, 的标解为为
(
x m, y n. C)
2
A.(n,m) B.(m,m) C.(m,n) D.(n,n)
检测反馈
解析:二元一次方程组的解就是两个方程对应直线的交点坐标.故选C.
2.如图所示的是函数y=kx+b与y=mx+n的图像,求方程组 的点关于原点对称的点的坐标是 ( D )
《一次函数与二元一次方程的关系》PPT
方式 1 :按上网时间以每分钟 0.1 元计费;
方式 2 :月租费 20 元,再按上网时间 以每分钟 0.05 元计费。
请同学们帮老师选择:以何种方式上网更合算?
用函数方法解答如何选择计费方式更省钱 解:方式一费用: y1 = 0.3x + 30
方式二费用: y2 = 0.4x
当 x = 400分时,y1 =y2 , 方式一方式二一样 当 x >400 分时,y1>y2 ,方式二省钱 当 0≤x<400分时,y1<y2 ,方式一省钱
2 b=----.
探究学习二:探究一次函数与二元一次方程组的关系
x+y=1
1、解方程组
-x+y=1
2、在同一直角坐标系中画出一次函数y=x+1和 y=-x+1的图像。
y=-x+1
y
7 y=x+1
6 5 4 3
2
1 (0,1)
-5 -4 -3 -2 -1 0 1 2 3 4 5x
-1
x+y=1 -x+y=1
21.5 一次函数与二元一次方程的关系
学习目标:
1、理解一次函数与二元一次方程的关系 2、理解一次函数与二元一次方程组的关系
探究学习一: 探究一次函数与二元一次方程的关系
1、二元一次方程y-x=1有多少个解?你能
写出方程的几组解吗? PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
方式 2 :月租费 20 元,再按上网时间 以每分钟 0.05 元计费。
请同学们帮老师选择:以何种方式上网更合算?
用函数方法解答如何选择计费方式更省钱 解:方式一费用: y1 = 0.3x + 30
方式二费用: y2 = 0.4x
当 x = 400分时,y1 =y2 , 方式一方式二一样 当 x >400 分时,y1>y2 ,方式二省钱 当 0≤x<400分时,y1<y2 ,方式一省钱
2 b=----.
探究学习二:探究一次函数与二元一次方程组的关系
x+y=1
1、解方程组
-x+y=1
2、在同一直角坐标系中画出一次函数y=x+1和 y=-x+1的图像。
y=-x+1
y
7 y=x+1
6 5 4 3
2
1 (0,1)
-5 -4 -3 -2 -1 0 1 2 3 4 5x
-1
x+y=1 -x+y=1
21.5 一次函数与二元一次方程的关系
学习目标:
1、理解一次函数与二元一次方程的关系 2、理解一次函数与二元一次方程组的关系
探究学习一: 探究一次函数与二元一次方程的关系
1、二元一次方程y-x=1有多少个解?你能
写出方程的几组解吗? PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
《一次函数与二元一次方程的关系》课件
。
07
习题及答案
习题一:基础题
01
总结词:了解
02
详细描述:本题要求学生了解一次函数与二元一次方程之间的关系, 掌握基本的定义和概念。
03
题目:什么是二元一次方程?举例说明。
04
答案:二元一次方程是指含有两个未知数,且未知数的最高次数为1 的方程。例如,x+y=10。
习题二:提高题
总结词:理解
需要求解的未知数值,如 :x或y。
一般形式
ax+by+c=0 (a,b,c为已知数,a≠0,b≠0)。
解释:方程的一般形式,其中ax和by是未知数的系数,c是常数。
解法
代入法
将一个未知数的值代入方 程,求出另一个未知数的 值。
消元法
通过变换方程,将两个未 知数转化为一个未知数, 然后求解。
求解步骤
08
参考文献及推荐阅读
参考文献
《中学数学教学参考》 《数学教育学报》
《数学通报》
推荐阅读
《如何理解一次函数与二元一 次方程的关系?》
《数形结合在解题中的应用》
《二元一次方程的解法及其几 何意义》
THANKS
谢谢您的观看
重要性
主体部分
详细介绍一次函数和二 元一次方程的概念及关
系
练习部分
举例说明利用一次函数 和二元一次方程解决实
际问题的具体方法
总结部分
总结本节课的重点内容 ,加深学生对知识的理
解和记忆
02
一次函数的基本概念
定义
一次函数:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数 。
一次函数的定义域:全体实数。
07
习题及答案
习题一:基础题
01
总结词:了解
02
详细描述:本题要求学生了解一次函数与二元一次方程之间的关系, 掌握基本的定义和概念。
03
题目:什么是二元一次方程?举例说明。
04
答案:二元一次方程是指含有两个未知数,且未知数的最高次数为1 的方程。例如,x+y=10。
习题二:提高题
总结词:理解
需要求解的未知数值,如 :x或y。
一般形式
ax+by+c=0 (a,b,c为已知数,a≠0,b≠0)。
解释:方程的一般形式,其中ax和by是未知数的系数,c是常数。
解法
代入法
将一个未知数的值代入方 程,求出另一个未知数的 值。
消元法
通过变换方程,将两个未 知数转化为一个未知数, 然后求解。
求解步骤
08
参考文献及推荐阅读
参考文献
《中学数学教学参考》 《数学教育学报》
《数学通报》
推荐阅读
《如何理解一次函数与二元一 次方程的关系?》
《数形结合在解题中的应用》
《二元一次方程的解法及其几 何意义》
THANKS
谢谢您的观看
重要性
主体部分
详细介绍一次函数和二 元一次方程的概念及关
系
练习部分
举例说明利用一次函数 和二元一次方程解决实
际问题的具体方法
总结部分
总结本节课的重点内容 ,加深学生对知识的理
解和记忆
02
一次函数的基本概念
定义
一次函数:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数 。
一次函数的定义域:全体实数。
《用二元一次方程组确定一次函数表达式》课件精选全文完整版
么不足之处?
小明
用图象法解行程问题 小明求出的方法准确吗?
150 s 140 120
100 (B)
80 60 40 20
甲 乙
(A)0 1 2 3 4 t
求出s与t之间的关系式,联立解方程组
对于乙,s是t的一次函数,可
设s=kt+b.
小颖
当t=0时,s=100;当t=1时,s=80。将它们分
别代入s=kt+b中,可以求出k、b的值,也即
解:依题意将A(1,-1)与B(-1,3)代入y=kx+b,
得
k b 1, 解得 k b 3,
k 2, b 1.
∴所求的表达式为y=-2x+1.
学习新知
A、B 两地相距100 km,甲、乙两人骑自行车 分别从A、B 两地相向而行。假设他们都保持
匀速行驶,则他们各自到A地的距离s(km)都 是骑车时间t(h)的一次函数。1 h后乙距A地 80km,2 h后甲距A地 30千米. 问:经过多长 时间两人相遇 ?
你有几种解决上述问题的方法?它们各有什
八年级数学·上 新课标 [北师]
第五章 二元一次方程组
学习新知
检测反馈
温故启新
二元一次方程(组)与一次函数有哪些联系?
1.以一个二元一次方程的解为坐标的点组成 的图象与相应的一次函数的图象相同,是一 条直线.
2.确定两条直线交点的坐标,就相当于求相应 的二元一次方程组的解;另一方面,解一个 二元一次方程组就相当于确定相应两条直线 交点的坐标.
待定系数法求一次函数表达式的一般步骤是: (1)先设出一次函数的一般形式,即 y=kx+b(k≠0); (2)将自变量x的值及与它对应的函数y的值代 入所设的表达式中,得到关于待定系数k和b 的方程组; (3)解方程组,求出待定系数的值,进而写出 函数表达式.
小明
用图象法解行程问题 小明求出的方法准确吗?
150 s 140 120
100 (B)
80 60 40 20
甲 乙
(A)0 1 2 3 4 t
求出s与t之间的关系式,联立解方程组
对于乙,s是t的一次函数,可
设s=kt+b.
小颖
当t=0时,s=100;当t=1时,s=80。将它们分
别代入s=kt+b中,可以求出k、b的值,也即
解:依题意将A(1,-1)与B(-1,3)代入y=kx+b,
得
k b 1, 解得 k b 3,
k 2, b 1.
∴所求的表达式为y=-2x+1.
学习新知
A、B 两地相距100 km,甲、乙两人骑自行车 分别从A、B 两地相向而行。假设他们都保持
匀速行驶,则他们各自到A地的距离s(km)都 是骑车时间t(h)的一次函数。1 h后乙距A地 80km,2 h后甲距A地 30千米. 问:经过多长 时间两人相遇 ?
你有几种解决上述问题的方法?它们各有什
八年级数学·上 新课标 [北师]
第五章 二元一次方程组
学习新知
检测反馈
温故启新
二元一次方程(组)与一次函数有哪些联系?
1.以一个二元一次方程的解为坐标的点组成 的图象与相应的一次函数的图象相同,是一 条直线.
2.确定两条直线交点的坐标,就相当于求相应 的二元一次方程组的解;另一方面,解一个 二元一次方程组就相当于确定相应两条直线 交点的坐标.
待定系数法求一次函数表达式的一般步骤是: (1)先设出一次函数的一般形式,即 y=kx+b(k≠0); (2)将自变量x的值及与它对应的函数y的值代 入所设的表达式中,得到关于待定系数k和b 的方程组; (3)解方程组,求出待定系数的值,进而写出 函数表达式.