有限元分析作业
ansys有限元分析报告作业

有限元作业报告班级:学号:姓名:指导教师:日期:2014.8目录题目描述 (3)题目分析 (3)操作步骤 (4)1.定义工作文件名和工作标题..` (4)2. 定义单元类型和材料属性 (4)3.导入几何模型 (7)4.生成有限元网格 (8)5.施加约束和载荷 (9)结果显示 (10)结果分析 (13)题目描述:日常所用的凳子的简易建模与分析上板凳腿下牙条上牙条材料参数:弹性模量E=11GPa,泊松比v=0.33,密度ρ=450kg/m3题目分析:凳子由四根凳腿支撑,凳腿之间有牙条连接,凳子的上表面受到向下的应力。
对于板凳,其主要承受的力来自于板面所受到的压力。
日常生活中,其所受到的力不是很大,而且受力接近均匀,故在ansys分析过程中可以通过给予板面一定的压力来模拟人坐在上面时它所承受的力,以此来分析其所产生的应力应变,从而可以通过分析局部应力应变,来优化其结构,达到延长其使用寿命的目的,这也是本次利用ANSYS分析的缘由。
对于面上的模拟力,我们以成年人50kg的重量均匀分布在凳面上,根据事先测量好的板凳参数(单位mm):上板尺寸为350×250×15,凳腿尺寸为40×30×400。
由以上参数确定板面所受压强为:()Pa50=10⨯g⨯/=取F=5500Pa÷mNKgmKF571425.035.0操作步骤:1.定义工作文件名和工作标题1)定义工作文件名。
菜单方式:执行Utility Menu-File→Change Jobname-youxianyuan,单击OK按钮。
命令行方式:/FILENAME2)定义工作标题。
菜单方式:执行Utility Menu-File→Change Tile-dengzi,单击OK 按钮。
命令行方式:/TITLE2.定义单元类型和材料属性1)定义单元类型(1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。
有限元分析大作业 展示

二 不同单元对计算结果的影响
实例:一简支梁,各项数据如表所示:
q / kN l / m b / m h / m E / GPa
0.25
Hale Waihona Puke 100161
3
200
分析其变形和 受力情况。 (分析均取梁 结构的一半进 行计算)
对本例分别采用3节点三角形、4节点矩形、8节点六 面体、20节点六面体进行计算分析,且用平面单元分析时, 还考虑网格的划分不同对结果的影响,分别对梁高划分15 和30等份进行计算, 比较结果。 用平面plane 42 单元建立模型,建模图如下:
谱分析整体结果列表
之后读取结果,在File>Read Input from 里面选择 “.MCOM” 文件,查看各个结果。
谱分析6个节点的反作用力表
读取第一组结果的变形和应力图,如下图 所示:
第一组结果的变形图
第一组结果的应力图
3. 时程分析 实例:上题的三层框架结构,施加了两个x方向大小随时 间变化的力(如下图所示),进行时程分析,最后选择节 点,绘制时程图。
梁高划分30等份三角形3节点建模图
梁高划分15等份三角形3节点建模图
梁高划分30等份4节点矩形建模 图
梁高划分15等份4节点矩形建模图
用六面体8节点单元solid 45和六面体20节点单元solid 95进行分析,建模图如下:
六面体8节点建模图
六面体20节点建模图
各个分析数据均是结构的x方向的应力图,最后进过 汇总,所得的结果如下:
计算分以下几歩完成: 1. 设置为模态分析,进行模态分析求解; 2. 设置为谱分析,输入单点响应谱的频率和 谱值之后(阻尼为0),获得谱解; 3. 再设置为模态分析,扩展模态,扩展5阶模 态,进行扩展模态求解; 4. 最后设置成谱分析,进行模态叠加,选择 SRSS方法,输出类型为Displacement , 最后求解,得出结果,整体结果如下图:
有限元分析大作业

超静定梁的有限元分析本文分别通过材料力学解法和有限元解法,求出了超静定梁的支反力、最大位移及最大位移出现位置,并对两者进行了比较和误差分析。
一、超静定梁的材料力学解法梁的约束反力数目超过了有效平衡方程数,单纯使用静力平衡不能确定全部未知力的梁称为超静定梁。
超静定梁比静定梁有许多优点,如可用较少材料获得较大的刚度和强度,个别约束破坏后仍可工作等。
因而超静定梁在工程中得到较多的应用。
超静定梁的解法有很多种,本文采用力法的一种——变形比较法求解未知量。
图1图2选取C 点的支座为多余约束,Rc 为多余支座反力,则相应的基本静定梁为一外伸梁,如图2所示,其上受集中载荷P 、均布载荷q 和多余支座反力Rc 的作用。
相应的变形条件为:c cP cq cRc f f f f =++=其中316cP B Pl f l EI θ=⨯= 4724cq ql f EI =-323c cRc R l f EI =则316Pl EI 4724ql EI -+323c R l EI=0 将已知数据带入可求得 6.25c R =- 负号表示c R 的方向与假设的方向相反。
再列出平衡方程:0X =∑AX R =0A M =∑ 232022B C ql Pl R l R l ---=0C M =∑ 232022AY B ql PllR R l +--=带入已知条件求得:AX R = 393.75AY R = 812.5B R =用叠加法求最大位移:最大的向下位移在A 与B 两点中间:334410.7910481632C R l Pl ql f EI EI EI -=-++=-⨯最大的向上位移在B 与C 两点中间:3344213490.22525103248512C R l Pl ql f EI EI -=--=⨯二、超静定梁的有限元解法在ANSYS 平台上,求解超静定梁。
建模、单元划分、加载后结果如图3所示。
图3求解后可以通过图形和列表两种方式查看结果。
有限元分析作业1

有限元分析作业1《有限元分析》课程作业任课教师:徐亚兰学生姓名:林声佳学号:[1**********] 班级:1304012 时间:2019-01-10一、问题描述及分析如图1所示为一矩形薄平板,在右端部受分布力P=10KN作用,材料常数为:弹性模量E =1×107Pa 、泊松比μ=1/3,板的厚度为t = 0.1m,试按平面应力问题计算各个节点位移及支座反力P(a)问题描述 (b)有限元分析模型图1 右端部分受均布力作用的平面问题二、有限元建模及分析1、基于3节点三角形单元的有限元建模及分析(1)结构的离散化与编号对该结构进行离散,单位编号及节点编号如图(1-b )所示,即有两个3节点三角形单元。
载荷F 按静力等效原则向节点1,节点2移置等效。
节点位移列阵 q =[u 1v 1u 2v 2u 3v 3u 4v 4]T11节点外载荷列阵F=[Plt 0 Plt 0 0 0 0 0]T22约束的支反力列阵 R =F=[0 0 0 0 R x3 R y3 R x4 R y4]T 总的节点载荷列阵 P =F +R =F=[11Plt 0 Plt 0 R x3 R y3 R x4 R y4]T 22其中的R x3、R y3、R x4、 R y4分别为节点3和节点4的两个方向的支反力(2)各单元的刚度矩阵及刚度方程 a. 单元的几何和节点描述图2如图2所示,一个单元体有6个节点位移自由度(DOF ),将所有节点上的位移组成列阵q ;同样,将所有节点上个力也组成列阵P ,那么q =[u 1v 1u 2v 2u 3v 3]TP=[ Px1 P y1 P x2 P y2 P x3 P y3]T当两个单元取图a 示中的局部编码(i,j,m) 时,其各单元的位移场,应力场,应变场,势能,刚度矩阵完全相同。
b. 单元的位移场描述就如图 2所示的平面 3 节点三角形单元,由于有 3 个节点,每一个节点有两个位移,因此共有 6 个节点位移,考虑到简单性、完备性、连续性及待定数的唯一确定性原则,分别选取单元中各个方向的位移模式为N(x,y)=⎢N i =(a+bi x+ci y),i=1,2,3⎡N 1⎣00N 1N 200N 2N 300⎤⎥N 3⎦其中a=x2y 3-x 3y 2,b=y2-y 3,c=-x2+x3上式中的符号(1,2,3)表示下标轮换,如1→2,2→3,3→1 同时更换。
《有限元分析》课程作业

《有限元分析》课程作业任课教师:徐亚兰学生姓名:陈新杰学号:班级:1304012时间:2016-01-05一、问题描述及分析问题:如图1所示,有一矩形平板,在右侧受到P=10KN/m 的分布力,材料常数为:弹性模量Pa E 7101⨯=;泊松比3/1=μ;板的厚度为t=;试按平面应力问题利用三角形与矩形单元分别计算各个节点位移及支座反力。
图1 平面矩形结构的有限元分析分析:使用两种方案:一、基于3节点三角形单元的有限元建模,将矩形划分为两个3节点三角形单元;二、基于4节点矩形单元的有限元建模,使用一个4节点矩形单元。
利用MATLAB 软件计算出各要求量,再将两种方案的计算结果进行比较、分析、得出结论。
二、有限元建模及分析1、基于3节点三角形单元的有限元建模及分析 (1)结构的离散化与编号如图2所示,将平面矩形结构分为两个3节点三角形单P=10KN/m1m1m元。
单元①三个节点的编号为1,2,4,单元②三个节点的编号为3,4,2,各个节点的位置坐标为(),,1,2,3,4i i x y i =,各个节点的位移(分别沿x 方向和y 方向)为(),,1,2,3,4i i u v i =。
图2 方案一:使用两个3节点三角形单元(2)各单元的刚度矩阵及刚度方程 a.单元的几何和节点描述单元①有6个节点位移自由度(DOF )。
将所有节点上的位移组成一个列阵,记作(1)q ;同样,将所有节点上的各个力也组成一个列阵,记作(1)F ,则有(1)112244,,,,,)q u v u v u v =((1)112244(,,,,,)x y x y x y F F F F F F F =同理,对于单元②,有(2)334422,,,,,)q u v u v u v =(1234X y ①②(2)334422(,,,,,)x y x y x y F F F F F F F =b.单元的位移场描述对于单元①,设位移函数012012(,)(,)u x y a a x a y v x y b b x b y ⎫=++⎪⎬=++⎪⎭(1-1)由节点条件,在,i i x x y y ==处,有(,)(,)i i i i i i u x y u v x y v =⎫⎬=⎭1,2,4i = (1-2) 将式(1-1)代入节点条件式(1-2)中,可求出式(1-1)中待定系数,即011122211223444411()22u x y a u x y a u a u a u AAu x y ==++ (1-3) 11122112234441111()221u y a u y b u b u b u AAu y ==++ (1-4) 21122112234441111()221x u a x u c u c u c u AAx u ==++ (1-5) 01122341()2b a v a v a v A =++(1-6) 11122341()2b b v b v b v A =++(1-7) 21122341()2b c v c v c v A =++(1-8)在式(1-3)~式(1-8)中1122123441111()221x y A x y a a a x y ==++ (1-9)2212442442124421244(1,2,3)1111x y a x y x y x y y b y y y x c x x x ⎫==-⎪⎪⎪⎪=-=-⎬⎪⎪⎪==-+⎪⎭ (1-10) 上式中的符号(1,2,3)表示下标轮换,如12,23,31→→→同时更换。
ansys有限元分析作业经典案例

工程软件应用及设计实习报告实习时间:一.实习目的:1.熟悉工程软件在实际应用中具体的操作流程与方法,同时结合所学知识对理论内容进行实际性的操作.2.培养我们动手实践能力,将理论知识同实际相结合的能力,提高大家的综合能力,便于以后就业及实际应用.3.工程软件的应用是对课本所学知识的拓展与延伸,对我们专业课的学习有很大的提高,也是对我们进一步的拔高与锻炼. 二.实习内容(一)用ANSYS软件进行输气管道的有限元建模与分析计算分析模型如图1所示承受内压:1.0e8 PaR1=0.3R2=0.5管道材料参数:弹性模量E=200Gpa;泊松比v=0.26.图1受均匀内压的输气管道计算分析模型(截面图)题目解释:由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生.然后根据结构的对称性,只要分析其中1/4即可.此外,需注意分析过程中的单位统一.操作步骤1.定义工作文件名和工作标题1.定义工作文件名.执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮.2.定义工作标题.执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK 按钮.3.更改目录.执行Utility Menu-File→change the working directory –D/chen2.定义单元类型和材料属性1.设置计算类型ANSYS Main Menu: Preferences →select Structural →OK2.选择单元类型.执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →applyAdd/Edit/Delete →Add →select Solid Brick 8node 185 →OKOptions…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框.图23.设置材料属性.执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框.图33.创建几何模型1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK2. 生成管道截面.ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical →ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In Active Coord →依次连接1,2,3,4点→OK 如图4图4Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条边→OK →ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 如图5图53.拉伸成3维实体模型Preprocessor →Modeling→operate→areas→along normal输入2,如图6所示图64.生成有限元网格Preprocessor →Meshing →Mesh Tool→V olumes Mesh→Tet→Free,.采用自由网格划分单元.执行Main Menu-Preprocessor-Meshing-Mesh-V olume-Free,弹出一个拾取框,拾取实体,单击OK按钮.生成的网格如图7所示.图75.施加载荷并求解1.施加约束条件.执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取前平面,单击OK按钮,弹出如图8所示的对话框,选择“U Y”选项,单击OK按钮.图8同理,执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取左平面,单击OK按钮,弹出如图8所示的对话框,选择“U X”选项,单击OK按钮.2.施加载荷.执行Main Menu-Solution-Apply-Structural-Pressure-On Areas,弹出一个拾取框,拾取内表面,单击OK按钮,弹出如图10所示对话框,如图所示输入数据1e8,单击OK按钮.如图9所示.生成结构如图10图9图103.求解.执行Main Menu-Solution-Solve-Current LS,弹出一个提示框.浏览后执行file-close,单击OK按钮开始求解运算.出现一个【Solution is done】对话框是单击close按钮完成求解运算.6.显示结果1.显示变形形状.执行Main Menu-General Posproc-Plot Results-Deformed Shape,弹出如图11所示的对话框.选择“Def+underformed”单选按钮,单击OK按钮.生成结果如图12所示.图11图122.列出节点的结果.执行Main Menu-General Posproc-List Results-Nodal Solution,弹出如图13所示的对话框.设置好后点击OK按钮.生成如图14所示的结果图13图143.浏览节点上的V on Mises应力值.执行Main Menu-General Posproc-Plot Results-Contour Plot-Nodal Solu,弹出如图15所示对话框.设置好后单击OK按钮,生成结果如图16所示.图15图167.以扩展方式显示计算结果1.设置扩展模式.执行Utility Menu-Plotctrls-Style-Symmetry Expansion,弹出如图17所示对话框.选中“1/4 Dihedral Sym”单选按钮,单击OK按钮,生成结果如图18所示.图17图182.以等值线方式显示.执行Utility Menu-Plotctrls-Device Options,弹出如图19所示对话框,生成结果如图20所示.图19图20结果分析通过图18可以看出,在分析过程中的最大变形量为418E-03m,最大的应力为994E+08Pa,最小应力为257E+09Pa.应力在内表面比较大,所以在生产中应加强内表面材料的强度.。
有限元分析大作业报告
有限元分析大作业报告一、引言有限元分析是工程领域中常用的数值模拟方法,通过将连续的物理问题离散为有限个子区域,然后利用数学方法求解,最终得到数值解。
有限元分析的快速发展和广泛应用,为工程领域提供了一种强大的工具。
本报告将介绍在大作业中所进行的有限元分析工作及结果。
二、有限元模型建立本次大作业的研究对象是工程结构的应力分析。
首先,通过对结构进行几何建模,确定了结构的尺寸和形状。
然后,将结构离散为有限个单元,每个单元又可以看作一个小的子区域。
接下来,为了求解结构的应力分布,需要为每个单元确定适当的单元类型和单元属性。
最后,根据结构的边界条件,建立整个有限元模型。
三、材料属性和加载条件在建立有限元模型的过程中,需要为材料和加载条件确定适当的参数。
本次大作业中,通过实验获得了结构材料的弹性模量、泊松比等参数,并将其输入到有限元模型中。
对于加载条件,我们选取了其中一种常见的加载方式,并将其施加到有限元模型中。
四、数值计算和结果分析为了求解结构的应力分布,需要进行数值计算。
在本次大作业中,我们选用了一种常见的有限元求解器进行计算。
通过输入模型的几何形状、材料属性和加载条件,求解器可以根据有限元方法进行计算,并得到结构的应力分布。
最后,我们通过对计算结果进行分析,得出了结论。
五、结果讨论和改进方法根据计算结果,我们可以对结构的应力分布进行分析和讨论。
根据分析结果,我们可以得出结论是否满足设计要求以及结构的强度情况。
同时,根据分析结果,我们还可以提出改进方法,针对结构的特点和问题进行相应的优化设计。
六、结论通过对工程结构进行有限元分析,我们得到了结构的应力分布,并根据分析结果进行了讨论和改进方法的提出。
有限元分析为工程领域提供了一种有效的数值模拟方法,可以帮助工程师进行结构设计和分析工作,提高设计效率和设计质量。
【1】XXX,XXXX。
【2】XXX,XXXX。
以上是本次大作业的有限元分析报告,总结了在建立有限元模型、确定材料属性和加载条件、数值计算和结果分析等方面的工作,并对计算结果进行讨论和改进方法的提出。
有限元分析大作业
有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。
一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。
(完整word版)有限元分析大作业报告要点
有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
有限元分析大作业
《有限元分析及应用》大作业——齿根弯曲应力计算报告班级:无可奉告姓名:无可奉告学号:无可奉告指导老师:无可奉告目录目录 (2)1.概述 (3)1.1工程问题描述 (3)1.2问题分析 (3)2.建模过程 (4)2.1几何建模 (4)2.2CAE网格划分与计算 (5)2.3后处理 (8)3.多方案比较与结果分析 (9)3.1多方案比较 (9)3.2结果分析 (11)1.概述1.1工程问题描述我在本次作业中的选题为齿根弯曲应力的计算与校核。
通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。
设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。
综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。
已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。
z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。
齿面为硬齿面,传动方式为闭式传动。
根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。
根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。
1.2问题分析大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。
可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有限元分析及应用》课程
不同板宽的孔边应力集中问题
摘要:通过Abaqus有限元模拟软件对有限板宽的孔边应力集中问题进行分析,研究孔边应力的分布状况以及应力集中处的应力分布。
研究在有限元模拟过程中单元选取、网格划分、网格尺度的大小对分析圆孔应力的影响1问题背景
无限板宽孔边应力集中问题,弹性力学解析解中在空边上有σθ分布:
σθ(θ=90o)=q0(1+R02/2r2+3R04/2r4) ; σθ(θ=90o,r=R0)=3q0;
σθ(θ=90o,r=2R0)=1.22q0; σθ(θ=90o,r=3R0)=1.07q0;
由以上数据可知,当逐渐远离孔边的时候,应力逐渐下降,逐渐接近于q0 2模型建立与分析
2.1 定义描述板宽与孔径的相对尺度的特征参数ξ,ξ=B/R
2.2 定义应力集中系数k,k=σmax/q0
2.3 在Abaqus中建立模型,根据对称选取1/4模型进行有限元的分析,圆
为变量,模型边长为50cm,施加在模型右侧的应力孔的中心位于原点,半径R
为100N/cm2,板的弹性模量E=210000N/cm2。
2.4当圆孔半径取为5cm时,单元选择为CPS8单元(8节点四边形二次平面应力完全积分)
1)当每边单元数设置为8,网格划分及云纹图如下:
应力集中的主要区域:
2)当单元数设置为12,单元网格划分及云纹图:
主要应力集中区域:
3)当单元数设置为15单元网格划分及云纹图如下:
主要应力集中区域:
2.5当圆孔半径取为3cm时,单元选择为CPS8单元(8节点四边形二次平面应力完全积分)
1)当每边单元数设置为8,网格划分及云纹图如下:
主要应力集中区域:
2)当每边单元数设置为12,网格划分及云纹图如下:
主要应力集中区域:
3)当每边单元数设置为15,网格划分及云纹图如下:
主要应力集中区域:
3数据模拟与分析
3.1由Abaqus有限元分析软件分析,得到应力集中系数K与相对尺度ξ的
3.2.1有以上云纹图可以清晰的看到,在圆孔附近应力有了明显的变化,有平均100mpa增长到近300mpa左右,发生了明显的应力集中现象。
3.1.2通过上面R=5与R=3时的两组云纹图可以知道在圆孔变小的时候,应力集中现象更加明显。
4结论
1.平板圆孔应力集中随着圆孔的变小使应力集中更加明显,并且应力集中主要发生在与施加的外力垂直的方向,即本文中的圆孔的上下两侧。
2.在分析时,数值解的精度受网格划分方法、网格尺寸的影响。