命题与充要条件试题

合集下载

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)当q是p的必要条件时,p是q的充分条件.( )(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )2. 设a,b∈R且ab≠0,则ab>1是a>1b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠14. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.5. 已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.6. 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.考点一命题及其关系【例1】 (1)下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0成立D.“若sin α≠12,则α≠π6”是真命题(2) 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.【训练1】 (1) 下列说法中正确的是( )A.若函数f(x)为奇函数,则f(0)=0B.若数列{a n}为常数列,则{a n}既是等差数列也是等比数列C.在△ABC中,A>B是sin A>sin B的充要条件D.命题“若an+a n+12<a n,n∈N*,则{a n}为递减数列”的逆命题为假命题(2) 命题“在空间中,若四点不共面,则这四点中任何三点都不共线”的逆否命题是________.考点二充分条件与必要条件的判定【例2】 (1) 若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【训练2】 (1) 设x∈R,则“0<x<5”是“|x-1|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的________条件.考点三充分、必要条件的应用【例3】已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P 是x∈S的必要条件,求实数m的取值范围.【迁移1】本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?并说明理由.【迁移2】设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且綈p是綈q的必要不充分条件,求实数m的取值范围.【训练3】若关于x的不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是( )A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)一、选择题1.命题“若a,b,c成等比数列,则b2=ac”的逆否命题是( )A.“若a,b,c成等比数列,则b2≠ac”B.“若a,b,c不成等比数列,则b2≠ac”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定3. 设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设a>b,a,b,c∈R,则下列命题为真命题的是( )A.ac2>bc2B.ab>1 C.a-c>b-c D.a2>b25.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]7. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”二、填空题9. 设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的________条件.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题. 其中真命题的序号是________.11.若不等式m-1<x<m+1成立的充分不必要条件是13<x<12,则实数m的取值范围是________.12.“a=1”是“函数f(x)=e xa-ae x是奇函数”的__________条件.13.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件14. 已知a,b∈R,那么“2a>2b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件15.已知p:实数m满足3a<m<4a(a>0),q:方程x2m-1+y22-m=1表示焦点在y轴上的椭圆,若p是q的充分条件,则a的取值范围是________________.16. 设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要而不充分条件,则实数a的取值范围是________.17. 能说明“若a>b,则1a<1b”为假命题的一组a,b的值依次为________.答案命题及其关系、充分条件与必要条件1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)当q是p的必要条件时,p是q的充分条件.( )(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )解析(1)错误.该语句不能判断真假,故该说法是错误的.答案(1)×(2)√(3)√(4)√2.(新教材必修第一册P34复习参考题T5改编)设a,b∈R且ab≠0,则ab>1是a>1b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若“ab>1”,当a=-2,b=-1时,不能得到“a>1b ”,若“a>1b”,例如当a=1,b=-1时,不能得到“ab>1”,故“ab>1”是“a>1b”的既不充分也不必要条件.答案 D3. 命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C4. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.解析a>b>c,取a=-2,b=-4,c=-5,则a+b=-6<c.答案-2,-4,-5(答案不唯一)5. 已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.答案 (-∞,2]6. 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.解析直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|2<2,解得-1<k<3.答案-1<k<3考点一命题及其关系【例1】 (1)下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0成立D.“若sin α≠12,则α≠π6”是真命题(2) 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.解析 (1)对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,A错;对于B 项,若“am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时am 2=bm 2,所以其逆命题为假命题,B 错;对于C 项,由指数函数的图象知,∀x ∈(0,+∞),都有4x >3x ,C 错; 对于D 项,原命题的逆否命题为“若α=π6,则sin α=12”是真命题,故原命题是真命题.(2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).答案 (1)D (2)f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎨⎧0,x =0,1x,0<x ≤2) 规律方法 1.写一个命题的其他三种命题时,需注意: (1)对于不是“若p ,则q ”形式的命题,需先改写; (2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断. 【训练1】 (1) 下列说法中正确的是( ) A.若函数f (x )为奇函数,则f (0)=0B.若数列{a n }为常数列,则{a n }既是等差数列也是等比数列C.在△ABC 中,A >B 是sin A >sin B 的充要条件D.命题“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”的逆命题为假命题(2) 命题“在空间中,若四点不共面,则这四点中任何三点都不共线”的逆否命题是________.解析 (1)A 错,f (x )=1x为奇函数,但f (0)无意义;B 错,a n =0为常数列,但{a n }不是等比数列;C正确,由于A>B⇔a>b⇔sin A>sin B.D错,若{a n}递减,则a n+1<a n⇒an+a n+12<a n,n∈N*,所以逆命题为真命题,D不正确.(2)逆否命题的条件和结论分别是原命题结论的否定和条件的否定.故逆否命题在空间中,若四点中存在三点共线,则这四点共面.答案(1)C (2)在空间中,若四点中存在三点共线,则这四点共面考点二充分条件与必要条件的判定【例2】 (1) 若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析(1)当a>0,b>0时,得4≥a+b≥2ab,即ab≤4,充分性成立;当a=4,b=1时,满足ab≤4,但a+b=5>4,不满足a+b≤4,必要性不成立,故“a +b≤4”是“ab≤4”的充分不必要条件.(2)由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p q,所以綈p⇒綈q,綈q綈p,所以綈p是綈q的充分不必要条件,故选A.答案(1)A (2)A规律方法充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练2】 (1) 设x∈R,则“0<x<5”是“|x-1|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的________条件.解析 (1)由|x -1|<1可得0<x <2,由“0<x <5”不能推出“0<x <2”,但由“0<x <2”可以推出“0<x <5”,故“0<x <5”是“|x -1|<1”的必要而不充分条件.(2)显然a =0时,f (x )=sin x -1x为奇函数;当f (x )为奇函数时,f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的充要条件.答案 (1)B (2)充要考点三 充分、必要条件的应用【例3】 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P . ∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].【迁移1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.解 由例题知P ={x |-2≤x ≤10}. 若x ∈P 是x ∈S 的充要条件,则P =S , ∴⎩⎨⎧1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9, 这样的m 不存在.【迁移2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}. ∵綈p 是綈q 的必要不充分条件,p 是q 的充分不必要条件. ∴p ⇒q 且qp ,即P S .∴⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10, ∴m ≥9,又因为S 为非空集合, 所以1-m ≤1+m ,解得m ≥0, 综上,实数m 的取值范围是[9,+∞).规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练3】 若关于x 的不等式|x -1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( )A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分条件是0<x <4,所以(0,4)⊆(1-a ,1+a ),所以⎩⎨⎧1-a ≤0,1+a ≥4,解得a ≥3.答案 D一、选择题1.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( ) A.“若a ,b ,c 成等比数列,则b 2≠ac ” B.“若a ,b ,c 不成等比数列,则b 2≠ac ”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”解析命题“若a,b,c成等比数列,则b2=ac”的逆否命题是“若b2≠ac,则a,b,c不成等比数列”.答案 D2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定解析命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.答案 B3. 设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析∵f(x)=cos x+b sin x为偶函数,∴对任意的x∈R,都有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,∴2b sin x=0.由x的任意性,得b=0.故f(x)为偶函数⇒b=0.必要性成立.反过来,若b=0,则f(x)=cos x是偶函数.充分性成立.∴“b=0”是“f(x)为偶函数”的充分必要条件.故选C.答案 C4.设a>b,a,b,c∈R,则下列命题为真命题的是( )A.ac2>bc2B.ab>1 C.a-c>b-c D.a2>b2解析对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则ab<1,故B错;对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2<b2,故D错.答案 C5.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个解析原命题:若c=0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为:设a,b,c∈R,若“ac2>bc2,则a>b”.由ac2>bc2知c2>0,∴由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.答案 C6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A7. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若m⊄α,n⊂α,m∥n,由线面平行的判定定理知m∥α.若m∥α,m⊄α,n⊂α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.答案 A8.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题.答案 C 二、填空题9. 设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________条件.解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0;反之m ·n =|m ||n |cos 〈m ,n 〉<0⇒cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.答案 充分不必要 10.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确;③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确. 答案 ②③11.若不等式m -1<x <m +1成立的充分不必要条件是13<x <12,则实数m 的取值范围是________.解析 由题意可知⎝ ⎛⎭⎪⎫13,12(m -1,m +1),借助数轴得⎩⎪⎨⎪⎧13≥m -1,12≤m +1,解得-12≤m ≤43,故实数m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案 ⎣⎢⎡⎦⎥⎤-12,4312.“a =1”是“函数f (x )=e xa -aex 是奇函数”的__________条件.解析 当a =1时,f (-x )=-f (x )(x ∈R),则f (x )是奇函数,充分性成立. 若f (x )为奇函数,恒有f (-x )=-f (x ),得(1-a 2)(e 2x +1)=0,则a =±1,必要性不成立.故“a =1”是“函数f (x )=e xa -ae x 是奇函数”的充分不必要条件.答案 充分不必要13.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 解析 由S 4+S 6-2S 5=S 6-S 5-(S 5-S 4)=a 6-a 5=d ,所以S 4+S 6>2S 5⇔d >0,所以“d >0”是“S 4+S 6>2S 5”的充要条件. 答案 C14. 已知a ,b ∈R,那么“2a >2b ”是“a 2>b 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 2a >2b ⇔a >ba 2>b 2; a 2>b 2a >b ,即a 2>b 22a >2b ,∴“2a>2b”是“a 2>b 2”的既不充分也不必要条件. 答案 D15.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________. 解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎨⎧3a ≥1,4a ≤32,解得13≤a ≤38. 答案 ⎣⎢⎡⎦⎥⎤13,3816. 设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是________. 解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a +1)]≤0}={x |a ≤x ≤a +1}.由q 是p 的必要而不充分条件,知A B .所以a ≤12且a +1≥1,因此0≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤0,12 17. 能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________.解析 若a >b ,则1a <1b 为真命题,则1a -1b =b -aab<0,∵a >b ,∴b -a <0,则ab >0.故当a >0,b <0时,均能说明“若a >b ,则1a <1b”为假命题.答案 a =1,b =-1(答案不唯一,只需a >0,b <0)。

02命题及其关系充分必要条件(经典题型+答案)

02命题及其关系充分必要条件(经典题型+答案)

命题及其关系、充分条件与必要条件一、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.二、四种命题及其关系1.四种命题间的相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系。

三、充分条件与必要条件1.如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.2.如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.抓住关键词:大必小充。

即大范围推小范围时,大范围是必要条件,小范围是充分条件。

例1:|x|>1是x>1的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 解: |x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1 x>1,∴|x|>1是x>1的必要不充分条件.另解:根据大必小充原理,容易判断|x|>1是大范围,x>1是小范围,故|x|>1是x>1的必要不充分条件. 例2:下列命题是真命题的为 ( )A .若1x =1y,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2 解:由1x =1y得x =y ,A 正确,易知B 、C 、D 错误. 3.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是 ( )A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0 解:写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.答案D 。

高中数学命题与充要条件练习题附答案精选全文完整版

高中数学命题与充要条件练习题附答案精选全文完整版

可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。

充要条件的测试题及答案

充要条件的测试题及答案

充要条件的测试题及答案1. 判断下列命题是否为充要条件,并说明理由。

(1) 若a > 0,则a² > 0。

(2) 若a² > 0,则a > 0。

2. 已知命题p:"若x > 2,则x² > 4",命题q:"若x² > 4,则x > 2",判断p和q是否互为充要条件。

3. 判断以下命题是否为充要条件。

(1) 若x² - 4x + 4 = 0,则x = 2。

(2) 若x = 2,则x² - 4x + 4 = 0。

4. 判断以下命题是否为充要条件。

(1) 若x² + y² = 0,则x = 0且y = 0。

(2) 若x = 0且y = 0,则x² + y² = 0。

5. 已知命题p:"若x > 0,则x² > 0",命题q:"若x² > 0,则x > 0",判断p和q是否互为充要条件。

6. 判断以下命题是否为充要条件。

(1) 若x² - 2x + 1 = 0,则x = 1。

(2) 若x = 1,则x² - 2x + 1 = 0。

7. 已知命题p:"若x > 1,则x² > 1",命题q:"若x² > 1,则x > 1",判断p和q是否互为充要条件。

8. 判断以下命题是否为充要条件。

(1) 若x³ = 8,则x = 2。

(2) 若x = 2,则x³ = 8。

9. 判断以下命题是否为充要条件。

(1) 若x² - 6x + 9 = 0,则x = 3。

(2) 若x = 3,则x² - 6x + 9 = 0。

命题及充要条件

命题及充要条件

第I 卷(选择题)一、选择题(题型注释)1.已知命题P “,x y x y ≠≠则”,以下关于命题P 的说法正确的个数是( ) ①命题P 是真命题 ②命题P 的逆命题是真命题 ③命题P 的否命题是真命题 ④命题P 的逆否命题是真命题 A .0B .1C .2D .4答案及解析:1.C2.已知原命题:“若0>m ,则关于x 的方程02=-+m x x 有实根,”下列结论中正确的是( )A .原命题和逆否命题都是假命题B .原命题和逆否命题都是真命题C .原命题是真命题,逆否命题是假命题D .原命题是假命题,逆否命题是真命题答案及解析:2.B3.给定两个命题p 、q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案及解析:3.A 略4.命题“若00,022===+b a b a 且则”的逆否命题是( )A .若00,022≠≠≠+b a b a 且则B .若00,022≠≠≠+b a b a 或则C .若则0,0022≠+==b a b a 则且D .若0,0022≠+≠≠b a b a 则或答案及解析:4.D 略5.下列命题为真命题的是( )A .若ac bc >,则a b >B .若22a b >,则a b >C .若11a b>,则a b < D <a b < 答案及解析:5.D6.设y x ,是两个实数,命题:“y x ,中至少有一个数大于1”成立的充分不必要条件是( )A.2x y +=B.2x y +>C.222x y +>D.1xy >答案及解析:6.B 略7.命题“若a >b ,则2a >2b -1”的否命题为( )A. 若a >b ,则有2a ≤2b -1.B. 若a ≤b ,则有2a ≤2b -1.C. 若a ≤b ,则有2a >2b -1.D. 若2a ≤2b -1,则有a ≤b .答案及解析:7.B 略8.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B.若tan α≠1,则α≠4π C.若α=4π,则tan α≠1 D.若tan α≠1,则α=4π 答案及解析:8.B 略9.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )条件A 必要不充分B 充分不必要C 充要D 既不充分也不必要答案及解析:9.B 略10.命题……若a ,b ,c 成等比数列,则2b ac =”的逆否命题是 (A)若a ,b ,c 成等比数列,则2b ac ≠ (B)若a ,b ,c 不成等比数列,则2b ac ≠(C)若2b ac =,则a ,b ,c 成等比数列 (D)若2b ac ≠,则a ,b ,c 不成等比数列答案及解析:10.D 略11.设b a ,是向量,命题“若b a -=,则b a =”的逆命题是( ) .A 若b a =,则b a -= .B 若b a -≠,则b a ≠ .C 若b a ≠,则b a -≠ .D 若b a -=,则b a ≠答案及解析:11.A12.下列命题中正确的是 ( )①“若220x y +≠,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题 ④“矩形的对角线相等”的逆命题A.①②③B.②③④C.①③④D.①④ 答案及解析:12.C 略13.下列说法正确的是…………………………………………………( )A .命题“若12=x ,则1=x ”的否命题是“若12=x ,则1≠x ” B .“1-=x ”是“022=--x x ”的必要不充分条件C .命题“若y x =,则y x sin sin =”的逆否命题是真命题D .“1tan =x ”是“4π=x ”的充分不必要条件答案及解析:13.C14.命题“若12<x ,则11<<-x ”的逆否命题是( ) A.若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<xC.211,1x x x ><->若或则D.211,1x x x ≥≤-≥若或则答案及解析:14.D 略15.设原命题:若a+b ≥2,则a,b 中至少有一个不小于1。

高考理科数学真题练习题命题及其关系充分条件与必要条件理含解析

高考理科数学真题练习题命题及其关系充分条件与必要条件理含解析

高考数学复习 课时作业2 命题及其关系、充分条件与必要条件一、选择题1.命题“若xy =0,则x =0”的逆否命题是( D ) A .若xy =0,则x ≠0 B.若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D.若x ≠0,则xy ≠0解析:“若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( D )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.已知p :-1<x <2,q :log 2x <1,则p 是q 成立的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:由log 2x <1,解得0<x <2,所以-1<x <2是log 2x <1的必要不充分条件,故选B. 5.(2019·郑州质量预测)下列说法正确的是( D ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4 x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.6.一次函数y =-m nx +1n的图象同时经过第一、三、四象限的必要不充分条件是( B )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:因为y =-m nx +1n的图象经过第一、三、四象限,故-m n>0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.7.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( C ) A .m >14B .0<m <1C .m >0D .m >1解析:不等式x 2-x +m >0在R 上恒成立⇔Δ<0,即1-4m <0,∴m >14,同时要满足“必要不充分”,在选项中只有“m >0”符合.故选C.8.(2019·洛阳市高三统考)已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r ≤3,所以p 是q 的必要不充分条件,故选B.二、填空题9.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.10.(2019·山西太原联考)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是(0,3).解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.12.下列命题中为真命题的序号是②④. ①若x ≠0,则x +1x≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.13.已知m ,n 为两个非零向量,则“m 与n 共线”是“m ·n =|m ·n |”的( D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m ·n <0,而|m ·n |>0,故充分性不成立.若m ·n =|m ·n |,则m ·n =|m |·|n |cos 〈m ,n 〉=|m |·|n |·|cos〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m ·n =|m ·n |”的既不充分也不必要条件,故选D.14.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12,且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.尖子生小题库——供重点班学生使用,普通班学生慎用15.定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.16.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是⎣⎢⎡⎦⎥⎤13,38. 解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,38.。

命题及其关系、充分条件与必要条件高考突破2训练

命题及其关系、充分条件与必要条件高考突破2训练(限时45分钟)1.以下命题中:①函数()ln 2f x x x =+-的图像与x 轴有2个交点;②向量,a b 不共线,则关于x 的方程20ax bx +=有唯一实根;③函数y =的图像关于y 轴对称. 真命题是( )A .①③B .②C .③D .②③2.设,a b 是向量,命题“若a b =-,则||||a b =”的逆否命题是( )A .若a b ≠-,则||||a b ≠B .若a b =-,则||||a b ≠C .若||||a b ≠,则a b ≠-D .若||||a b =,则a b =-3.以下四个命题中,真命题的个数是( )①命题“若2320x x -+=,则1x =”的逆否命题为“1x ≠,则2320x x -+≠”; ②若p q ∨为假命题,则,p q 均为假命题;③命题:p 存在x R ∈,使得210x x ++<,则:p ⌝对任意x R ∈,都有210x x ++≥; ④在ABC ∆中,A B <是sin sin A B <的充分不必要条件.A .1B .2C .3D .44.“a c b d +>+”是“a b >且c d >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合{}1|28,|112x A x R B x R x m ⎧⎫=∈<<=∈-<<+⎨⎬⎩⎭,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( )A .[2,)+∞B .(,2]-∞C .(2,)+∞D .(2,2)-6.已知a b <,函数()sin ,()cos f x x g x x ==.命题:()()0p f a f b <,命题:()q g x 在(,)a b 内有最值,则命题p 是命题q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.给定下列命题:①若0k >,则方程220x x k +-=有实数根;②“若a b >,则a c b c +>+”的否命题;③“矩形的对角线相等”的逆命题;④“若0xy =,则,x y 中至少有一个为0"的否命题.其中真命题的序号是 .8.已知对数函数21()log a f x x +=,命题21:()log a p f x x +=是增函数.则p ⌝为真时,a 的取值范围是 .9.已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是 .10.已知集合{}1|0,|||1x A x B x x b a x -⎧⎫=<=-<⎨⎬+⎩⎭,若“1a =”是“A B ⋂≠∅”的充分条件,则实数b 的取值范围是 .11.设命题2:(43)1p x -≤,命题2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围. 12.已知全集U R =,非空集合2|0(31)x A x x a ⎧⎫-=<⎨⎬-+⎩⎭,22|0x a B x x a ⎧⎫--=<⎨⎬-⎩⎭. (1)当12a =时,求()U B A ⋂; (2)集合:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.最有效训练21.D解析对于命题①:错误!未找到引用源。

《命题及其关系、充分条件与必要条件》同步分层能力测试题

《命题及其关系、充分条件与必要条件》同步分层能力测试题A组基础题一.选择题1.下列语句中,是命题的个数为()①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.A.1B.2 C.3 D.42.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数4.设集合,,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. “”是“直线相互垂直”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件6.“a>0”是“>0”的()A.充分而不必要条件 B.充分必要条件C.必要而不充分条件 D.既不充分也不必要条件二.填空题7.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.8 用充分、必要条件填空:是的.三.解答题9.已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4,若命题p是真命题,命题q是假命题,求实数x的取值范围.10.若a,b,c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个相异实根”的逆命题、否命题和逆否命题.11.若,求证:不可能都是奇数12.求证:关于的一元二次不等式对于一切实数都成立的充要条件是.B组能力提高题一.选择题1. 设l、m是两条不同的直线,α是一个平面,则下列结论正确的是()A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m2.已知下列四个命题,其中是真命题的有()①命题“若x+y=0,则x,y互为相反数”的逆命题;②“相似三角形的周长相等”的否命题;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④“若A∪B=B,则A⊇B”的逆否命题.A.①②③B.②③C.①③D.②④3.若命题p的逆命题是q,命题p的逆否命题是r,则q是r的()A.逆命题 B.否命题C.逆否命题D.以上都不正确4.下列语句中假命题的个数是()①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.A.2 B.3 C.4 D.55.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件.那么p是q成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.为非零向量,“函数为偶函数”是“”的)()A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件二.填空题7. 给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.8. 用充分但不必要、必要但不充分条件填空:已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的_______.三.解答题9.已知p:;q:().若p是q的充分而不必要条件,求实数的取值范围.10.求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.《命题及其关系、充分条件与必要条件》同步分层能力测试题答案及解析A组基础题一.选择题1.D.解析:①②③④都是命题,根据命题的概念,它们都是可以判断真假的陈述句.2.D.解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.3.B.解析:根据否命题的概念,不难判断答案为B.4.B.解析:设集合,,,所以若“”推不出“”;若“”,则“”,所以“”是“”的必要而不充分条件,5.B.解析:当时两直线斜率乘积为从而可得两直线垂直,当时两直线一条斜率为0一条斜率不存在,但两直线仍然垂直.因此是题目中给出的两条直线垂直的充分但不必要条件.6.A.解析:,∴a>0”是“>0”的充分不必要条件.二.填空题7.[-3,0] .解析:命题“ax2-2ax-3>0不成立”亦即“ax2-2ax-3≤0恒成立”.当a=0时,-3<0,不等式ax2-2ax-3≤0恒成立.当a 0时,Δ=(-2a)2-4a×(-3) 0,即-3≤a 0.综上,-3≤a≤0.8 既不充分也不必要.解析:若, .三.解答题9.解析:命题p是真命题,则x2-2x-2≥1,∴x≥3或x≤-1,命题q是假命题,则x ≤0或x≥4.∴x≥4或x≤-1.10.解析:逆命题:若ax2+bx+c=0(a,b,c∈R)有两个相异实根,则ac<0;否命题:若ac≥0,则ax2+bx+c=0(a,b,c∈R)至多有一个实根;逆否命题:若ax2+bx+c=0(a,b,c∈R)至多有一个实数,则ac≥0.11.证明:假设都是奇数,则都是奇数得为偶数,而为奇数,即,与矛盾所以假设不成立,原命题成立.12 证明:恒成立.B组能力提高题一.选择题1. B.解析:由线面平行、垂直的判定定理及性质定理知B正确.2.C.解析:①命题:“若x+y=0,则x,y互为相反数”的逆命题是“若x,y互为相反数,则x+y=0”,是真命题;②“相似三角形的周长相等”的否命题是:“若两个三角形不相似,则它们的周长不相等”是假命题;③命题:“若m≤1,则x2-2x+m=0有实根”的逆否命题是:“若x2-2x+m=0无实根,则m>1”,是真命题.④若A∪B=B,则A⊆B,原命题为假命题,所以逆否命题为假命题.故选C.3.B.解析:可以举例说明B正确.4.A.解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.5.A.解析:用双箭头符号表示p、q、r、s的关系:pÞr,s r,q s,即pÞr,rÞs,sÞq,∴pÞrÞsÞq,即pÞq,又r /p,则q /p,故p是q的充分非必要条件.故选A.6.C . 解析:∵,又函数为偶函数∴;反之也成立,∴选C .二.填空题7. ①②③.解析:①否命题:若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根,真命题;②逆命题:若△ABC为等边三角形,则AB=BC=CA,真命题;③因为命题“若a>b>0,则3a>3b>0”是真命题,故其逆否命题为真命题;④逆命题:若mx2-2(m+1)x+(m-3)>0的解集为R,则m>1,假命题.所以应填①②③.8. 充分但不必要条件.解析:∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.∴,但时,满足x1+x2=-5,却推导不出p.三.解答题9.解析:p是q的充分而不必要条件.设p:;q:;所以,,它等价于所以的取值范围是.10.证明:充分性:当a=0时,方程变为2x+1=0,其根为x= ,方程只有一个负根;当a=1时,方程为x2+2x+1=0.其根为x=-1,方程只有一个负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负根.必要性:若方程ax2+2x+1=0有且仅有一个负根.当a=0时,适合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4(1-a)≥0,∴a≤1,当a=1时,方程有一个负根x=-1.若方程有且仅有一负根,则∴a<0.综上方程ax2+2x+1=0有且仅有一负根的充要。

充分条件必要条件与命题的四种形式


若 原 命 题 为 “ 若 p , 则 q” , 则 其 逆 命 题 是 __若__q_,__则__p_____;否命题是 _若__非__p_,__则__非__q__;逆 否命题是__若__非__q_,__则__非__p___.
(2)四种命题间的关系
思考感悟 “否命题”与“命题的否定”有何不同? 提示: “否命题”与“命题的否定”是两个不 同的概念,如果原命题是“若p,则q”,那么这 个原命题的否定是“若p,则非q”,即只否定结 论,而原命题的否命题是“若非p,则非q”,即 既否定命题的条件,又否定命题的结论.
考点探究•挑战高考
考点突破
考点一 四种命题及其关系
在判断四种命题之间的关系时,首先要分清命题的 条件与结论,再比较每个命题的条件与结论之间的 关系,要注意四种命题关系的相对性,一旦一个命 题定为原命题,也就相应地有了它的“逆命题”、“ 否命题”和“逆否命题”.
例1 分别写出下列命题的逆命题、否命题、
.
∴这样的 m 不存在.
(2)由题意“x∈P”是“x∈S”的必要条件,则 S⊆P. ∴11- +mm≥ ≤-102 ,∴m≤3. 综上,可知 m≤3 时,x∈P 是 x∈S 的必要条 件.
【误区警示】 (2)中“x∈P”是“x∈S”的必 要条件,是由S⇒P即S是P的子集,并不一定是 真子集.
互 动 探 究 本 例 中 条 件 不 变 , 若 (2) 小 题 中 “x∈P”是“x∈S”的必要不充分条件,如 何求解? 解:∵“x∈P”是“x∈S”的必要不充分条件,
(3)∵ff-xx=1,
∴f(-x)=f(x),
∴y=f(x)是偶函数.
∴p⇒q.
取 f(x)=x2 为 R 上的偶函数,
但f-x在 fx

第3课充要条件(经典例题练习、附答案)

第3课 充要条件◇考纲解读掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.◇知识梳理判断充要条件关系的三种方法:①定义法:若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇔,则A 是B 的_______条件.②利用原命题和逆否命题的_______来确定.③利用集合的包含关系:若,B A ⊆则A 是B 的_______条件,B 是A 的_______条件;若A=B ,则A 是B 的_______条件.◇基础训练1.(2006安徽卷)“3x >”是24x >“的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2“x 是2的倍数或是3的倍数”是“x 是6的倍数”的( ) A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分又不必要条件3.(2008中山一模)设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2008佛山)“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 ◇典型例题例1.设集合{2},{3},M x x P x x =>=<""x M x P ∈ ∈那么或""x M P ∈ 是的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件 例2.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q 的必要而不充分条件,求实数m 的取值范围.◇能力提升1.如果y x ,是实数,那么“0>xy ”是“y x y x +=+”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件2.已知命题A,B ,如果⌝A 是⌝B 的充分而不必要条件,那么B 是A 的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 非充分非必要条件3.若p :⎩⎨⎧>>+44αββα ,q :⎩⎨⎧>>22βα ,则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件4.(2008惠州一模) “p 或q 是假命题”是“非p 为真命题”的( )A .充分条件不必要B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知真命题“a b c d ≥⇒>”和“a b e f <⇔≤”,那么“c d ≤”是“e f ≤”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第3课 充要条件◇知识梳理1.①充分,必要, 必要,充分,充要.② 逆否命题.③ 充分,必要,充要.◇基础训练1. B2. C3. B4. A◇典型例题例1.解:"}3{}2{"""R x x x x M P x N x M x =<>=∈∈∈ 即或M P x M P x x x x M P x ∈⇐∈<<∈∈显然即},32{"",所以选B例2.解:由题意知,命题若⌝p 是⌝q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件p :-2≤x ≤10q : x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件,∴不等式-2≤x ≤10的解集是x 2-2x +1-m 2≤0(m >0)解集的子集 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, 实数m 的取值范围是[9,+∞)◇能力提升1.A2. C3. B4.A5. A6.A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2命题及其关系、充分条件与必要条件
一、选择题
1.命题“若-1<x<1,则x2<1”的逆否命题是( )
A.若x≥1或x≤-1,则x2≥1 B.若x2<1,则-1<x<1
C.若x2>1,则x>1或x<-1 D.若x2≥1,则x≥1或x≤-1 4.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ).A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
7.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=a2+b2-a-b,那么φ(a,b)=0是a与b互补的( ).
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要的条件
8.若不等式成立的充分不必要条件是,则实数的
取值范围是______
9.有三个命题:(1)“若x+y=0,则x,y互为相反数”的逆命题;(2)“若a>b,则a2>b2”的逆否命题;(3)“若x≤-3,则x2+x-6>0”的否命题.其中真命题的个数为________(填序号).
10.定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.根据以上定义,“f(x)是D上的零函数或g(x)是D上
的零函数”为“f (x )与g (x )的积函数是D 上的零函数”的________条件.
11.p :“向量a 与向量b 的夹角θ为锐角”是q :“a ·b >0”的___条件.
12.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 p 1:|a +b |>1⇔θ∈⎣
⎡⎭⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,
π3 p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π 其中真命题的个数是____________.
13.[2014·安徽卷] “x<0”是“ln(x +1)<0”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
14.设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
15.[2014·福建卷] 直线l :y =kx +1与圆O :x2+y2=1相交于A ,B
两点,则“k=1”是“△OAB 的面积为12
”的( ) A .充分而不必要条件 B .必要而不充分条件
C .充分必要条件
D .既不充分又不必要条件
16.[2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A∩B=∅”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
17.[2014·天津卷] 设a ,b∈R,则“a>b”是“a|a|>b|b|”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
18.若a ∈R ,则“a=2”是“(a-1)(a-2)=0”的( )
A 充分而不必要条件
B 必要而不充分
C 充要条件
D 既不充分又不必要条件
19.若a∈R,则“a=1”是“|a|=1”的( )
(A)充分而不必要(B)必要而不充分C 充要条件D)既不充分又不必要条件
20.函数y=f (x ),x ∈R ,“y=|f(x)|的图象关于y 轴对称”是“y=f (x )是奇函数”的( )(A )充分而不必要条件(B )必要而不充分条件
(C )充要条件D )既不充分也不必要条件
21.设a ,b 是向量,命题“若a b =-,则||||a b =”的逆命题是 ( )
(A )若a b ≠-,则||||a b ≠ (B )若a b =-,则||||a b ≠
(C )若||||a b ≠,则a b ≠- (D )若||||a b =,则a b =-
22.设,∈x y R ,则“2≥x 且2≥y ”是“
224+≥x y ”的( ) A )充分而不必要条件B )必要而不充分条件(C )充分必要条件D )既不充分也不必要条件
23.设*n N ∈,一元二次方程2
40x x n -+=有整数根的充要条件是n = .
24.已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是
A .x =-12
B .x =-1
C .x =5
D .x =0 25. 已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N ”是“a ∈M ”的( )A .充分而不必要条件 B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
26.下列命题中为真命题的是( )
A .命题“若x>y ,则x>|y|”的逆命题
B .命题“若x>1,则x2>1”的否命题
C .命题“若x =1,则x 2+x -2=0”的否命题
D .命题“若x 2>0,则x>1”的逆否命题
27.已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围为.
28. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充
要条件是n =
29.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.
30. 已知p :1x -2
≥1,q :|x -a|<1,若p 是q 的充分不必要条件,则实数a 的取值范围为 A .(-∞,3] B .[2,3]C .(2,3] D .(2,3)
31. 集合A ={x||x|≤4,x ∈R},B ={x|x<a},则“A ⊆B ”是“a>5”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
32.设有两个命题p 、q.其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f(x)=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是____________.
40.命题若m>0,则方程20x x m +-=有实数根的逆命题是 .
41.命题若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
42.记实数
12x x ,,…n x ,中的最大数为max{12x x ,,…n x ,},最小数为min{1x ,2x ,…n x ,}.已知△ABC 的三边边长为(a b c a ,,≤b c ≤),定义它的倾斜度为=max {}a b c b c a ,,⋅min{a b b c c a ,,},则”1=”是”△ABC 为等边三角形”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
46.方程
23100(x x k k -+=∈R)有相异的两个同号实根的充要条件是 .。

相关文档
最新文档