第11讲 立体图形
高思奥数一年级下册含答案第11讲 立体图形计数

第十一讲立体图形计数前续知识点:一年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲墨莫墨莫卡莉娅小高把相应的人物换成红字标明的人物.还记得我们都学习过哪些立体图形吗?正方体、长方体、圆柱体、球体……数不胜数.今天我们来学习一下立体图形的计数.在地球上,一个小正方体可以在没有任何支撑的情况下悬浮在空中吗?答案当然是不可以!聪明的你赶快来看一看,下面题目中的立体图形到底由几个小正方体组成的呢?例题1数一数,它们分别由几个小正方体组成?【提示】有没有看不见的正方体?练习1数一数,它们分别由几个小正方体组成?数正方体有许多方法,其中我们可以一层一层的分层数,试试看.例题2左边方框中的立体图形和右边哪个立体图形中的小正方体个数相同呢?【提示】数一数,分别有几个小正方体!练习2左边方框中的立体图形和右边哪个立体图形中的小正方体个数相同呢?分层数的方法不仅简单快捷,而且清晰明了,不容易数重数漏.结合找规律的方法,我们更能轻松数出立体图形的个数.例题3数一数,下面这个“宝塔”由多少个小正方体组成?A BC DA B【提示】找一找,每层之间有什么规律?练习3数一数,下面这个“楼梯”由多少个小正方体组成?例题4要想把下面左边的立体图形补全成为一个完整的大正方体,至少需要再加几个小正方体呢?【提示】左边的立体图形由几个小正方体组成的?右边的呢?练习4要想把下面左边的立体图形补全成为一个完整的大正方体,至少需要再加几个小正方体呢?例题5要想把下面的立体图形补全成为一个完整的大正方体,至少需要再加几个小正方体呢?【提示】补全后的大正方体是什么样的呢?例题6如图所示,将大正方体中的“L”形挖穿,你能数出现在这个立体图形有多少个小正方体吗?【提示】挖穿了几层?课外阅读长方体和正方体的故事长方体是一个聪明的小男孩儿,他生活在一个数学图形的古老部落.长老们说他们一直拥有自然女神的庇护,自然女神总是不定期地出现在他们部落,每一次,她都只见一个有缘人,如果这个有缘人能够通过她的考验,她就会满足这个有缘人的一个合理的愿望.有一天,长方体去小河边玩,已经有一些伙伴在河边嬉戏,有三角形,正方形,圆等等……长方体刚走到附近就听到三角形喊救命,原来是平行四边形掉到河里去,长方体奋不顾身地跳进了河里,拼死救人.最后长方体把平行四边形救出来了.大家都很感谢长方体.长方体坐在草原上看风景,自然女神出现了.自然女神说:“你已经通过了我的考验,告诉我,你有什么愿望?”长方体说:“我没有什么愿望.”自然女神说:“既然你不说,那我就自作主张替你做决定了.”自然女神知道长方体一个人玩,没有伙伴,就创造了正方体,正方体和长方体一样聪明,而且,正方体和长方体还十分相似,有许多共同的特点.长方体很喜欢这个新伙伴.长方体对自然女神说;“我很喜欢正方体,他有许多和我相似的地方,像我的影子,但又和我完全不一样,有自己的个性.”自然女神说:“你喜欢就好,其实,正方体是另一个特殊的你.比你自己还要特别的你.以后,你自然会明白的.”作业1. 数一数,它们分别由几个小正方体组成?2. 左边方框中的立体图形和右边哪个立体图形中的小正方体个数相同呢?3. 数一数,下面这个“楼梯”由多少个小正方体组成?C B4. 要想把下面左边的立体图形补全成为一个完整的大正方体,至少需要再加几个小正方体呢?5. 如图所示,将大正方体中的“T”字形挖穿,现在这个图形中有几个小正方体?第十一讲 立体图形计数1. 例题1答案:5;5;9;10详解:先数出能看到的正方体个数,再数出看不见的正方体个数,相加即可.2. 例题2答案:A详解:左边方框中的立体图形的小正方体个数为10个,A 的小正方体个数为10个,B 的小正方体个数为9个,C 的小正方体个数为8个,D 的小正方体的个数为11个.3. 例题3答案:35详解:每层的小正方体个数分别为1、3、6、10、15,加起来的和为35.规律是每层分别在上一层的基础上增加2、3、4、5个小正方体.4. 例题4答案:2;17详解:第一个图中完整的大正方体中的小正方体个数为8个,左边立体图形中的小正方体个数为6个,还需要862-=(个).第二个图中完整的大正方体中的小正方体个数为27个,左边立体图形中的小正方体个数为10个,还需要271017-=(个).5. 例题5答案:48详解:符合要求的完整的大正方体至少需要64个小正方体组成,现在有16个小正方体,还需要再加小正方体641648-=(个). 6. 例题6答案:52详解:完整的大正方体一共有1616161664+++=个)小正方体,“镂空”部分有333312+++= (个)小正方体,所以还剩下641252-= (个)小正方体.7. 练习1答案:5;4;6;8简答:第三个中有1个看不见的正方体,第四个中有3个看不见的正方体.8. 练习2答案:D简答:左边方框中的立体图形的小正方体的个数为7个,D 的小正方体的个数也为7个.9. 练习3答案:60简答:每层小正方体的个数分别为4、8、12、16、20,加起来的和为60.10. 练习4答案:3;13简答:第一个图中完整的大正方体中的小正方体个数为8个,左边立体图形中的小正方体个数为5个,还需要853-=(个).第二个图中完整的大正方体中的小正方体个数为27个,左边立体图形中的小正方体个数为4个,还需要271413-=(个).11. 作业1答案:6;8;9;10简答:观察这两层小正方体,分别数出每一层小正方体的个数,注意“看不见”的小正方体.也可分别数出每列的小正方体个数,加在一起即可.12. 作业2答案:A简答:左边方框中小正方体的个数是10个,而右边各立体图形的小正方体个数分别为:A .10个;B .13个;C .9个;D .9个.13. 作业3答案:20简答:从顶层开始数,最顶层为2个,第二层为4个,第三层为6个,第四层为8个,所以小正方体的个数为246820+++=(个).14. 作业4答案:9简答:左边的立体图形中小正方体的个数为36918++=(个),完整的大正方体中小正方体的个数为99927++=(个).还需要小正方体27189-=(个).15. 作业5答案:44简答:方法一:整个大正方体中小正方体的个数为1616161664+++=(个),“T ”字形中小正方体的个数为555520+++=(个)或4444420++++=(个),所以现在有小正方体642044-=(个). 方法二:每层剩下的小正方体有11个,共有4层,所以现在有小正方体:1111111144+++=(个).。
中班数学公开课教案《认识立体图形》

中班数学公开课教案《认识立体图形》课题:认识立体图形班级:中班教材:数学教材教学目标:1. 认识常见的立体图形,如球体、圆柱体、圆锥体、长方体等;2. 掌握立体图形的名称和特点;3. 能够正确区分不同的立体图形。
教学准备:1. 教学PPT;2. 球体、圆柱体、圆锥体、长方体的模型。
教学流程:一、导入(5分钟)1. 教师出示一个球体,并询问学生这是什么形状的东西。
2. 学生回答后,教师让学生触摸球体,并引导学生说出球体的特点,如圆滑、没有尖角等。
二、正文(30分钟)1. 展示PPT,依次介绍球体、圆柱体、圆锥体、长方体的形状和特点,并展示相应的模型供学生观看。
2. 教师引导学生观察模型,让他们仔细观察每个立体图形的特点。
3. 教师激发学生的兴趣,让学生试图描述每个立体图形的特征,如球体是圆形的、圆柱体有两个平面、圆锥体有一个平面和一个尖顶等。
4. 教师板书并解释每个立体图形的名称和特点,让学生跟读。
三、练习(10分钟)1. 教师出示多个图形卡片,每个卡片上都有一个立体图形,请学生按照老师说的图形名称来找出相应的图形卡片。
2. 鼓励学生积极参与,正确找出图形卡片,并正确发音。
四、巩固(5分钟)1. 教师出示一个图形,让学生观察并快速回答是哪个立体图形。
2. 学生回答后,教师给予鼓励和肯定。
五、总结(5分钟)1. 教师引导学生总结今天学习的内容,让学生说出每个立体图形的名称和特点。
2. 教师对学生的回答进行适当补充和纠正。
六、拓展(5分钟)1. 教师出示一些日常生活中常见的立体图形,如橘子、红砖、铅笔等,让学生自愿发现其中的立体图形。
2. 学生发现后,教师对他们的观察结果进行点评,并鼓励他们继续发现。
3. 教师鼓励学生积极思考,提问类似的问题,如“你家里有哪些立体图形的东西?”“你常见过哪些立体图形的建筑物?”等。
七、结束(2分钟)1. 教师对本节课的内容进行总结,并表扬学生的积极参与和表现。
2. 教师布置下节课的学习内容和作业。
小学五年级竞赛 第十一讲 三视图专题

第十一讲三视图与展开图一、课前热身:1、邓老师用相同的若干个小正方形摆成一个立体(如图).从上面看这个立体,看到的图形是图①~③中的.(填序号)2、如图所示的四个图形都是由六个相同的小正方形组成,将其折叠后能围成正方体的是 C .(填序号)二、典例精析:3、下图是一块带有圆形空洞和方形空洞的小木板.下列物体中既能堵住圆形空洞,又能堵住方形空洞的是.4、右边是由大小相同的正方体叠成的立体图形.从正面可以看到7个方块,如果从左面看,可以看到个方块.5、一个由正方体堆起来的物体由几个小立方体组成(如图).求这个图形是由个立方体组成.6、把19个棱长为1厘米的正方体重叠在一起,按图中的方式拼成一个立体图形,这个立体图形的表面积是多少?7、如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是.8、小明在桌面上摆了一些大小一样的正方体木块,摆完后从正面看如图1,从侧面看如图2,那么他最多用了块木块,最少用了块木块.9、一个立方体骰子的每个面上标记着从1到6中的一个数字,下面是它的两幅表面展开图,根据(1)提供的信息,填出在(2)中剩下的4个数字.10、如图形1的实线是图形2的棱,图形1的虚线是图2的折痕.如果把图形1沿折痕叠成图形2所示的立体图形,那么图形2中标有“*“的部分对应于图形2里标有A,B,C,D中的标有字母的部分.三、竞赛真题:11、(2012•华罗庚金杯)图中的方格纸中有五个编号为1,2,3,4,5的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是()A.1,2 B.2,3 C.3,4 D.4,512、(2017•希望杯)如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.13、(2012•希望杯)如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)14、(2016•希望杯)一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆正方体货箱共有个.15、(2007•华罗庚金杯)用一些棱长是1的小正方体码堆放成一个立体图,从上向下看这个立体图形,从正面看这个立体图形,所得图形如图所示,则这个立体图形的表面积最多是.四、课后练习:16、用若干个1×1×1的小立方体堆积成一个立体图形(小立方体不能悬空),它的正视图、左视图、俯视图都是如图的样子,那么堆积成满足条件的小立方体最少需要个小立方体.17、若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有个,最多有个.18、如图,这是一个正方体的展开图.将它折成一个正方体后,相交于同一顶点的3个面上的数之和最大是多少?19、一些边长是1的小正方体码放成一个立体,从上向下看这个立体,如图1,从正面看这个立体,如图2,在这个立体的体积最大时,将这些小正方体码放成一个底面积为4的长方体,则这个长方体的高是.20、小聪学玩魔方,向小笨拜师学艺,小笨首先出了一道题考他,从图中的四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么下列4个展开图有几个是正确的?。
生活中的立体图形(3种题型)(学生版)--新七年级数学核心知识点与常见题型(暑假预习)

第01讲生活中的立体图形(3种题型)一.认识立体图形(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.(3)重点和难点突破:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.二.点、线、面、体(1)体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.三.几何体的表面积(1)几何体的表面积=侧面积+底面积(上、下底的面积和)(2)常见的几种几何体的表面积的计算公式①圆柱体表面积:2πR2+2πRh(R为圆柱体上下底圆半径,h为圆柱体高)②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)③长方体表面积:2(ab+ah+bh)(a为长方体的长,b为长方体的宽,h为长方体的高)④正方体表面积:6a2(a为正方体棱长)【考点剖析】一.认识立体图形(共9小题)1(2023•石家庄三模)图中的正方体是由第一、第二两部分无缝隙拼接而成的,这两部分分别由3个(阴影部分)、5个同样大小的小正方体粘成,则第二部分所对应的几何体是()A. B. C. D.2(2023•平谷区一模)下面几何体中,是圆柱的为()A. B. C. D.3(2022秋•二七区期末)如图中柱体的个数是()A.3B.4C.5D.64(2022秋•射洪市期末)下列属于多面体的是()A.圆柱B.圆锥C.球体D.棱柱5(2022秋•忠县期末)由大小相同的小正方体拼成的几何体如图所示,则该几何体小正方体个数为()A.7B.6C.5D.46(2023春•栾城区期中)有一种长度单位叫纳米(nm),1nm=10-9m,现用边长为1纳米的小正方体堆垒成边长为1cm的正方体要用多少个边长为1纳米的小正方体?7(2022秋•定南县期末)如(1)、(2)、(3)图需再添上一个面,折叠后才能围成一个正方体,请在原图上画出所添的面.8(2022秋•兰溪市期末)放置在水平地面上两个无盖(朝上的面)的长方体纸盒,大小、形状如图.小长方体的长、宽、高分别为:a(cm)、b(cm)、c(cm);大长方体的长、宽、高分别为:1.5a(cm)、2b(cm)、2c(cm).(1)做这两个纸盒共需要材料多少平方厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平方厘米材料?9(2022秋•碑林区校级期末)一个长方体合金底面长为80、宽为60、高为100,现要锻压成新的长方体,其底面边长是40的正方形,则新长方体的高为多少?二.点、线、面、体(共8小题)10(2022秋•海陵区校级期末)观察图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()A. B. C. D.11(2022秋•高邮市期末)已知一个长方形的长、宽分别是4cm、3cm,若以这个长方形的一条边为轴旋转一周,则形成的立体图形的体积是()A.36πcm3B.24πcm3C.24πcm3或48πcm3D.36πcm3或48πcm312(2022秋•荔湾区期末)如图平面图形绕轴旋转一周,得到的立体图形是()A. B. C. D.13(2022秋•香洲区期末)下列平面图形绕虚线旋转一周,能形成如图这种花瓶形状的几何体的是()A. B. C. D.14(2022秋•常州期末)如图,长方形的相邻两边的长分别为x 、y ,将它分别绕相邻两边旋转一周.(1)两次旋转所形成的几何体都是;(2)若x +y =a (a 是常数),分别记绕长度为x 、y 的边旋转一周的几何体的体积为V x 、V y ,其中x 、V x 、V y的部分取值如表所示:x 123456789V x mV y96πn ①通过表格中的数据计算:a =,m =,n =;②当x 逐渐增大时,V y 的变化情况:;③当x 变化时,请直接写出V x 与V y 的大小关系.15(2022秋•鄄城县期末)如图,阴影图形是由直角三角形和长方形拼成的,绕虚线旋转一周可以得到一个立体图形,求得到立体图形的体积.(V 圆柱=πr 2h ,V 圆锥=13πr 2h ,r 2=r ×r ,结果保留π).16(2022秋•滕州市校级期末)把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为4cm,宽为3cm的长方形绕它的一条边所在的直线旋转一周后,得到的圆柱体的体积是多少?(结果保留π)17王老师在给五年级同学介绍“立体图形”时,将下图中的连线题设置为课堂竞赛活动,组织A、B两班各45人参加,规则如图.在活动中,所有同学均按要求一对一连线,无多连少连.图中各个花瓶的表面可以看做是由哪个平面图形绕虚线旋转一周而得到?请一对一连线.(1)分数5,10,15,20中,每个人的得分都不可能是分;(2)A班有3人全错,其余参赛同学中,满分人数是未满分人数的2倍;B班所有参赛同学都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问A班有多少人得满分?②若A班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?三.几何体的表面积(共5小题)18(2022秋•兴化市校级期末)如图,由27个相同的小正方体拼成一个大正方体,从中取出一块小正方体,剩下的图形表面积最大的取法为()A.取走①号B.取走②号C.取走③号D.取走④号19(2022秋•崂山区校级期末)由7个相同的棱长为1的小立方块搭成的几何体如图所示,它的表面积为()A.23B.24C.26D.2820(2022秋•黄埔区校级期末)棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm221(2022秋•宜阳县期末)如图是由四个棱长为1的正方体堆成的物体,它的表面积为.22(2022秋•高新区期末)三个棱长为2厘米的正方体,拼成一个长方体,表面积减少了平方厘米.【过关检测】23如图所示的几何体的面数为()A.3个B.4个C.5个D.6个24如图所示的立体图形是由 个面组成的,其中有 个平面,有 个曲面;图中共有 条线,其中直线有 条,曲线有 条.25三棱柱有 个面,条棱.26与九棱锥的棱数相等的是 棱柱.27求出如图图形的体积.28将如图几何体分类,并说明理由.29如图,图①所示的几何体叫三棱柱,它有6个顶点,9条棱,5个面,图②和图③所示的几何体分别是四棱柱和五棱柱.(1)四棱柱有个顶点,条棱,个面;(2)五棱柱有个顶点,条棱,个面;(3)那么n棱柱有个顶点,条棱,个面.30计算下面圆锥的体积.31如图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.32把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为4cm,宽为3cm的长方形绕它的一条边所在的直线旋转一周后,得到的圆柱体的体积是多少?(结果保留π)33如图所示.(1)如果将图①~⑤的平面图形绕虚线旋转一周,可以得到图Ⅰ~Ⅴ的几何体,请你把有对应关系的平面图形与几何体用线连接起来;(2)在图Ⅰ~Ⅴ的几何体中,有顶点的几何体是,没有顶点的几何体是;(3)图Ⅴ中的几何体由几个面围成?面与面相交成几条线?它们是直的还是曲的?34如图,小婉在手工课上做了如图所示的长方体纸盒(尺寸见图,单位:厘米).(1)做小纸盒比做大纸盒少用料多少平方厘米?(2)当a=2cm,b=4cm,c=1.5cm时,两个纸盒共用料多少?35“数学活动”(课本第17页):做一个底面积为100cm2,长、宽、高的比分别为5:4:3的长方体.求:(1)这个长方体的长、宽、高分别是多少?(2)长方体的体积是多少?36计算如图圆柱的表面积和体积.(单位:厘米)37棱长为2的正方体摆成如图所示的形状.(1)这个几何体共有几个正方体?(2)这个几何体的表面积是多少?。
《立体图形》教学与反思

《立体图形》教学与反思一、导入师:老师今天给大家请来几位朋友,(出示长方体),谁认识它?生:长方体。
师:你对长方体有哪些了解吗?生1 :它相对的边相等。
师:谁来帮帮她,给她纠正。
生2:长方体相对的面相等,上下两个面、左右两个面、前后两个面相等。
师:这个朋友谁认识?(出示正方体),你对它有哪些了解?生:是正方体,它的六个面都相等。
师:这个朋友谁认识呢?(出示圆柱),你对它有哪些了解?生:是圆柱,上下两个面是圆的,它还可以滚动。
师:(出示三棱柱),谁认识它?对它有哪些了解?生:是三角体,它上下两个面是三角形。
师:它叫三棱柱。
老师想做一个和三棱柱上的这个面(手指三棱柱上的三角形)的面一样的面,你们能帮我想想办法吗?生:(小组讨论,很兴奋)。
生1:我把它压在纸上画下来,。
(教师请他上讲台画)。
生2:我把它摁在橡皮泥上,橡皮泥上就有一个和三棱柱上的三角形一样的面了。
(教师请她上讲台操作)。
生3:我用水彩笔给那个面上涂上色,再往纸上一印,就有一个和三棱柱上的三角形一样的面了。
(教师请她上讲台演示)。
生4:我拿三棱柱往沙滩上一压,就会有一个和三棱柱上的三角形一样的面了。
教学反思:我利用学生已有的知识引入,学生感到很亲切,学生在第一学期已经学习过,而长方形、正方形、圆、三角形学生都知道,学生缺少的是从立体图形中抽象出平面图形的能力,所以,开课时表面看似顺利、精彩,而实际上绝大多数学生没有参与进来。
如果开课时能给学生许多立体图形、平面图形模型,让他们分类;再让他们“送平面图形回家”(找一找哪个立体图形中有该平面图形),这样就建立了立体——平面的联系;最后再让学生把立体图形上的平面画下来,就是水到渠成的事了。
相信这样的活动绝大多数学生都能通过动手、动脑而有所收获的。
二、学生活动,体会“面在体上”。
师:同学们想的办法真好,用你喜欢的办法,利用你的学具,试一试你能得到哪些图形?生:(很高兴地活动,大多数学生采用先用水彩笔在立体模型某一平面上涂一涂,再印在纸上。
五年级 第11讲 长、正方体的染色 例题 教师版

北京大学附属小学 2014年5月27日 【知识导航】一个长方体或正方体的的表面染色,然后切成若干个小正方体。
三面图色的立方体都在原来立体图形的顶点处;两个面涂色的都在原来立体图形的棱上,一个面涂色的都在原来立体图形的面上, 中间的心是无色的。
【典型例题】 【例1】将一个7×7×7的正方体表面涂上红色,再将切割成343个1×1×1的小正方体,其中恰有一面涂色的小正方体有多少个?两面、三面和没有被涂色的呢? 【分析】三面涂色在顶点处。
两面涂色的在棱上,一面涂色的在面上,无色在里面。
【答案】(150,60,8,125)【例2】一个 3×3×3的正方体,如果将其表面涂成红色,则在角上的8个小正方体有三面是红色的,最中央的小方块则一点红色也没有,其余18块小方块中,有12个两面是红的,6个一面是红的.这样两面有红色的小方块的数量是一面有红色的小方块的两倍,三面有红色的小方块的数量是一点红色也没有的小方块的八倍。
问:由多少块小正方体构成的正方体,表面涂成红色后会出现相反的情况,即一面有红色的小方块的数量是两面有红色的小方块的两倍,一点红色也没有的小方块是三面有红色的小方块的八倍?【分析】对于由n 3块小正方体构成的n ×n ×n 正方体,三面涂有红色的有8块,两面涂有红色的有12×(n -2)块,一面涂有红色的有6×(n -2)2块,没有涂色的有(n-2)3块.由题设条件,一点红色也没有的小方块是三面涂有红色的小方块的八倍,即(n-2)3=8×8,解得n =6.6×6×6=216。
【例3】如图,将边长为3的正方体的一个面、边长为5的正方体的一个面和边长为7的正方体一个面粘合在一起,使得较小的面恰好位于较大的面的一角。
将新得到的立体图形的表面涂成红色,然后把它沿刚才的粘合面切开得到三个正方体,接着将这三个正方体都切成边长为1的小正方体,那么在全部3×3×3+5×5×5+7×7×7=495个小正方体中,恰好有两个面涂成红色的有多少个?(没有染色、一面染色、三面染色的各多少个呢?)【答案】(183,208,90,14)【例4】有一个n ×n ×n 的大正方体,将它的六个面中的一些面涂上红色,再将它全部切割成1×1×1的小正方体,结果发现至少一面被涂上红色的小正方体有281块,问:这之中恰好只有一面涂色的小正方体共有多少块?【答案】(240)【例5】一个长方体木块表面涂满了红漆,把它切成棱长全为1厘米的小正方体后,各个面都没有漆的只有11块。
小学奥数36个经典(11-12)
第11讲立体图形各种涉及长方体、立方体、圆柱、圆锥等立体图形表面积与体积的计算问题,解题时考虑沿某个方向的投影常能发挥明显的作用.较为复杂的是与剪切、拼接、染色等相关联的立体几何问题.第六届:“华罗庚金杯”少年数学邀请赛初赛第12 题(略有改动)1.用棱长是1厘米的立方块拼成如图11-1所示的立体图形,问该图形的表面积是多少平方厘米?【分析与解】显然,图11-1的图形朝上的面与朝下的面的面积相等,都等于3×3=9个小正方形的面积,朝左的面和朝右的面的面积也相等,等于7个小正方形的面积;朝前的面和朝后的面的面积也相等,都等于7个小正方形的面积,因此,该图形的表面积等于(9+7+7)×2=46个小正方形的面积,而每个小正方形面积为l平方厘米,所以该图形表面积是46平方厘米.2.如图11-2,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【分析与解】原来正方体的表面积为5 ×5×6=150.现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.3.如图11-3,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【分析与解】 我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积. 现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×l=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).4.图11-4中是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?【分析与解】原正方体的表面积是4×4×6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形. 从而,它的表面积是96+4×6=120平方厘米.5.图11-5是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一个边长为1厘米的正方体小间;接着在小洞的底面正中再向下挖一个边长为12厘米的小洞;第三个小洞的挖法与前两个相同,边长为14厘米.那么最后得到的立体图形的表面积是多少平方厘米?【分析与解】 因为每挖一次,都在原来的基础上,少了1个面,多出了5个面,即增加了4个面. 所以,最后得到的立体图形的表面积是:2×2×6+1×l×4+×12×12×4+14×14×4=29.25(平方厘米).6.有大、中、小3个正方形水池,它们的内边长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米·【分析与解】 放在中水池里的碎石的体积为3×3×0.06:0.54立方米; 放在小水池里的碎石的体积为2×2×0.04=0.16立方米; 则两堆碎石的体积和为0.54+0.16=0.7立方米,现在放到底面积为6×6=36平方米的大水池中,则使大水池的水面升高0.7÷36=7360米=700360厘米=17118厘米7.如图11-6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?【分析与解】 容器的底面积是(13-4)×(9-4)=45(平方厘米),高为2 厘米,所以容器得体积为:45×2=90(立方厘米).8.今有一个长、宽、高分别为21厘米、15厘米、12厘米的长方体.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体.问剩下的体积是多少立方厘米?【分析与解】 本题首先要确定三次切下的正方体的棱长,因为21:15:12=7:5:4,为了叙述方便,我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.易知第一次切下的正方体的棱长应为4厘米,第二次切下的正方体棱长为3厘米时符合要求,第三次切下的正方体的棱长为2厘米时符合要求.于是,在长、宽、高分别为21厘米、15厘米、12厘米的长方体中,第一、二、三次切下的正方体的棱长为12厘米、9厘米、6厘米. 所以剩下的体积应为:21×15×12-(3331296++)=1107(立方厘米).9.如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【分析与解】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=. 所以,圆锥体积与圆柱体积的比是16:1281:243ππ=.10.张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?【分析与解】底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2. 同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯= 因此,今年粮囤容积是去年粮囤容积的4.5倍.11.一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【分析与解】若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=. 所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出 于是6177厘米即为所求的水深.12.如图ll-8,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)【分析与解】 物体的表面积恰好等于一个大圆柱的表面积加上中、小圆柱的侧面积,即 22 1.52 1.5121120.51ππππ⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯4.53210.532.97(πππππ=+++=≈平方米)即这个物体的表面积是32.97平方米.13.某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?【分析与解】 长方体中,高+宽=+(365-5)=180,……………………①高+长=12(405-5)=200,…………………………………………………② 长+宽=12(485-5)=240,…………………………………………………③②-①得 长-宽=20,……………………………………………………④ ④+③得 长=130,则宽=110,代入①得高=70,所以长方体得体积为: 70×110×30=1001000(立方厘米)=1.001(立方米).14.有甲、乙、丙3种大小不同的正方体木块,其中甲的棱长是乙的棱长的12,乙的棱长是丙的棱长的23.如果用甲、乙、丙3种木块拼成一个体积尽可能小的大正体,每种至少用一块,那么最少需要这3种木块一共多少块?【分析与解】设甲的棱长为1,则乙的棱长为2,丙的棱长为3.显然,大正方体棱长不可能是4,否则无法放下乙和丙各一个.于是,大正方体的棱长至少是5.事实上,用甲、乙、丙三种木块可以拼成棱长为5的大正方体,其中丙种木块只能用1块;乙种木块至多用7块(使总的块数尽可能少);甲种木块需用:5×5×5-1×3×3×3-7×2×2×2=42(块).因此,用甲、乙、丙三种木块拼成体积最小的大正方体,至少需要这三种木块一共1+7+42=50(块).15.有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某划面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长;方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体;最多有多少个?【分析与解】一面染红的长方体,显然应将4×5的长方体染红,这时产生20个一面染成红色的小正方体,个数最多.二面染红的长方体,显然应将两个4×5的长方体染红,这时产生40个一面染成红色的小正方体,个数最多.三面染红的长方体,显然应将4×5,4×5,4×3的面染红,于是产生4×(5+5+3-4)=36个一面染成红色的小正方体,其他方法得出的一面染成红色的正方体均少于36个.四面染红的长方体,显然应将4×5,4×5,4×3,4×3的面染红,产生4×(5+5+3+3-2×4)=32个一面染成红色的正方体,其他方法得到的一面染成红色的小正方体均少于32个.五面染红的长方体,应只留一个3×5的面不染,这时就产生(3-2)×(5-2)+(4-1)×(5+5+3+3-2×4)=27个一面染成红色的小正方体,其他染法得到的一面染成红色的小正方体均少于27.六面染红的长方体,产生2×[(3-2)×(5-2)+(5-2)×(4-2)+(4-2)×(3-2)]=22个一面染成红色的小正方体.于是最多得到:22+27+32+36+40+20=177个一面染成红色的小正方体.第12讲几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IG H均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯= 而E 为AD 中点,所以13.28DEC ADC S S ∆∆==连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5. 同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S S SSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78.所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A 和B 是两个正方形重叠部分,C ,D ,E 是空出的部分,这些部分都是长方形,它们的面积比是A :B :C :D :E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】 以下用E 横表示E 部分横向的长度,E 坚竖表示E 部分竖向的长度,其他下标意义类似.有E 横:D 横=5:4,A 横:B 横=l :2.而E 横+A 横=D 横+B 横,所以有E 横:D 横:A 横:B 横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?(π取3.14)【分析与解】有AO=OB ,所以△A OB 为等腰三角形,AO=OC ,所以△A OC 为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-。
人教版-数学-七年级上册-《立体图形与平面图形》教案(3个课时)
4.1.1 立体图形与平面图形★教学目标一、知识与能力⒈初步认识立体图形和平面图形的概念。
⒉能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体。
二、过程与方法⒈过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉。
⒉方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体。
三、情感、态度、价值观形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣。
★重点与难点一、重点:认识立体图形,发展几何直觉。
二、难点:从实物中抽象立体图形。
★教学准备粉笔盒、书、钉子(棱锥与圆锥两种形状的钉)、六角螺母、魔方、易拉罐、排球等物体和图片若干。
★预习要求⒈学生收集蕴含大量几何图形的图片及实物。
★教学过程一、创设情景,观察实物及图片师生共同欣赏P110页的图片,并共同总结:我们生活在一个图形的世界中,图形世界是多姿多彩的,其中蕴含着大量的几何图形,本节我们就来研究图形问题。
(在观察活动中教师要关注学生的审美意识和对图片倾注的情感。
并注意激发学生的学习兴趣)说明:为了能更好地激发学生的学习兴趣,还可选择一些结合学生实际情况的图片,如校园里的建筑设施等。
二、精讲点拨,质疑问难⒈立体图形⑴教师出示(或提出)问题①:书上P111思考中的问题,图3.1-2中的一些物体与我们学过的哪些图形类似?把相应的物体和图形连接起来。
说明:教师要关注学生对长方体、正方体、球、圆柱、圆锥的认识程度。
⑵教师提出问题②:书上P111思考中的问题,能在生活中找出与图中立体图形相类似的物体吗?(学生独立思考、合作交流,解答问题,教师也可拿出准备好的一些教具)⑶认识棱柱、棱锥引导学生观察书上P112上的图3.1-3,进行比较,找出与物体相类似的图形,教师给出图形的名称,说明棱柱与棱锥也是立体图形。
提出问题:能从身边的环境中找出与棱柱、棱锥相类似的物体吗?(学生独立思考、合作交流,解答问题,教师也可拿出准备好的一些教具)⒉平面图形日常生活中,我们还会遇到很多平面图形。
初中数学几何培优第十一讲:勾股定理的应用
初中数学几何培优第十一讲:勾股定理的应用知识解读无论是解决实际问题,还是解决一些数学问题,勾股定理都有着广泛的应用。
典列示范一、在数轴上作出表示的点例1如图3-11-1,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是________【提示】这个点到原点的距离等于线段OB的长,OB是Rt△AOB 的斜边,根据勾股定理可得OB的长,就是这个点表示的实数。
【技巧点评】实数与数轴上的点是一一对应的,有理数在数轴上较易找到它对应的点,若要在数轴上直接标出无理数对应的点较难.由此我们借助勾股定理,将在数轴上表示无理数的问题转化为化长为无理数的线段长问题。
第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点。
二、在网格中作长度为无理数的线段例2如图3-11-3,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形。
(1)使三角形的三边长分别为3,(在图①中画一个即可)(2)使三角形为钝角三角形且面积为4.(在图②中画一个即可)【提示】(1)长度为3的线段很好作,主要考虑如何作出长度为,的线段和把三条线段组合成一个三角形。
由于=8=22+22,因此可以构造一个两直角边分别为2和2的直角三角形,这个直角三角形的斜边长就是.同理要构造一个长度为的线段,可构造一个直角边分别为2和1的直角三角形。
(2)确定三角形的底和高分别为1和8或2和4,然后设法使三角形称为钝角三角形。
【解答】【技巧点评】在网格中作出长的线段的步骤,第一步设法将n表示成两个整数的平方和;第二步构造直角三角形,使得两条直角边等于第一步得出的两个整数的值.三、梯子下滑问题例3如图3-11-5,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时,梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足也将向外移0.4米吗?【提示】本题中出现两个直角三角形,考虑应用勾股定理,在Rt△ABC中,由AB和BC可求出AC,则A1C=AC-AA1,而A1B1与AB均为梯子之长,在Rt△A1B1C中,再次运用勾股定理求出B1C,由此便可求出梯子向外移动的距离BB1.【解答】【技巧点评】梯子下滑问题,实际上是两个直角三角形问题,比如在本题中,两个直角三角形之间的联系是,AC=A1C+0.4,分别在两个直角三角形中应用勾股定理求出AC,A1C,即可解决问题.四、长方体的对角线例4有一根长170cm的木棒,放在长、宽、高分别是40cm,30cm,120cm的木箱中,露在木箱外边的长度至少为cm.【提示】如图3-11-7,和△是直角三角形,先在中应用勾股定理求出A′C′的长,然后在△AA′C′中应用勾股定理求出AC′的长.【技巧点评】长宽高分别为a,b,c的长方体的对角线长.五、立体图形表明的最短路径例5如图3-11-8,正四棱柱的底面边长为1.5cm,侧棱长为4cm,求一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处的最短路程的长.【提示】要求最短路程,需要将正四棱柱展开成平面图形,再利用勾股定理求解,由于从A点到点C1的面上有两种情况,故需分类讨论。
【详解】一年级第11讲 立体图形计数
第十一讲立体图形计数1.例题1答案:5;5;9;10详解:先数出能看到的正方体个数,再数出看不见的正方体个数,相加即可.2.例题2答案:A详解:左边方框中的立体图形的小正方体个数为10个,A的小正方体个数为10个,B的小正方体个数为9个,C的小正方体个数为8个,D的小正方体的个数为11个.3.例题3答案:35详解:每层的小正方体个数分别为1、3、6、10、15,加起来的和为35.规律是每层分别在上一层的基础上增加2、3、4、5个小正方体.4.例题4答案:2;17详解:第一个图中完整的大正方体中的小正方体个数为8个,左边立体图形中的小正方体个数为6个,还需要862-=(个).第二个图中完整的大正方体中的小正方体个数为27个,左边立体图形中的小正方体个数为10个,还需要271017-=(个).5.例题5答案:48详解:符合要求的完整的大正方体至少需要64个小正方体组成,现在有16个小正方体,还需要再加小正方体641648-=(个).6.例题6答案:52详解:完整的大正方体一共有1616161664+++=+++=个)小正方体,“镂空”部分有333312(个)小正方体,所以还剩下641252-=(个)小正方体.7.练习1答案:5;4;6;8简答:第三个中有1个看不见的正方体,第四个中有3个看不见的正方体.8.练习2答案:D简答:左边方框中的立体图形的小正方体的个数为7个,D的小正方体的个数也为7个.9.练习3答案:60简答:每层小正方体的个数分别为4、8、12、16、20,加起来的和为60.10.练习4答案:3;13简答:第一个图中完整的大正方体中的小正方体个数为8个,左边立体图形中的小正方体个数-=(个).第二个图中完整的大正方体中的小正方体个数为27个,左边立为5个,还需要853-=(个).体图形中的小正方体个数为4个,还需要27141311.作业1答案:6;8;9;10简答:观察这两层小正方体,分别数出每一层小正方体的个数,注意“看不见”的小正方体.也可分别数出每列的小正方体个数,加在一起即可.12.作业2答案:A简答:左边方框中小正方体的个数是10个,而右边各立体图形的小正方体个数分别为:A.10个;B.13个;C.9个;D.9个.13.作业3答案:20简答:从顶层开始数,最顶层为2个,第二层为4个,第三层为6个,第四层为8个,所以小正方体的个数为246820+++=(个).14.作业4答案:9简答:左边的立体图形中小正方体的个数为36918++=(个),完整的大正方体中小正方体的个数为99927++=(个).还需要小正方体27189-=(个).15.作业5答案:44简答:方法一:整个大正方体中小正方体的个数为1616161664+++=(个),“T”字形中小正方体的个数为555520++++=(个),所以现在有小正方体+++=(个)或4444420-=(个).642044+++=(个).方法二:每层剩下的小正方体有11个,共有4层,所以现在有小正方体:1111111144。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11讲立体图形各种涉及长方体、立方体、圆柱、圆锥等立体图形表面积与体积的计算问题,解题时考虑沿某个方向的投影常能发挥明显的作用.较为复杂的是与剪切、拼接、染色等相关联的立体几何问题.第六届:“华罗庚金杯”少年数学邀请赛初赛第12 题(略有改动)1.用棱长是1厘米的立方块拼成如图11-1所示的立体图形,问该图形的表面积是多少平方厘米?【分析与解】显然,图11-1的图形朝上的面与朝下的面的面积相等,都等于3×3=9个小正方形的面积,朝左的面和朝右的面的面积也相等,等于7个小正方形的面积;朝前的面和朝后的面的面积也相等,都等于7个小正方形的面积,因此,该图形的表面积等于(9+7+7)×2=46个小正方形的面积,而每个小正方形面积为l平方厘米,所以该图形表面积是46平方厘米.2.如图11-2,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【分析与解】原来正方体的表面积为5 ×5×6=150.现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.3.如图11-3,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【分析与解】 我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积. 现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×l=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).4.图11-4中是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?【分析与解】原正方体的表面积是4×4×6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形. 从而,它的表面积是96+4×6=120平方厘米.5.图11-5是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一个边长为1厘米的正方体小间;接着在小洞的底面正中再向下挖一个边长为12厘米的小洞;第三个小洞的挖法与前两个相同,边长为14厘米.那么最后得到的立体图形的表面积是多少平方厘米?【分析与解】因为每挖一次,都在原来的基础上,少了1个面,多出了5个面,即增加了4个面.所以,最后得到的立体图形的表面积是:2×2×6+1×l×4+×12×12×4+14×14×4=29.25(平方厘米).6.有大、中、小3个正方形水池,它们的内边长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米·【分析与解】放在中水池里的碎石的体积为3×3×0.06:0.54立方米;放在小水池里的碎石的体积为2×2×0.04=0.16立方米;则两堆碎石的体积和为0.54+0.16=0.7立方米,现在放到底面积为6×6=36平方米的大水池中,则使大水池的水面升高0.7÷36=7360米=700360厘米=17118厘米7.如图11-6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?【分析与解】容器的底面积是(13-4)×(9-4)=45(平方厘米),高为2 厘米,所以容器得体积为:45×2=90(立方厘米).8.今有一个长、宽、高分别为21厘米、15厘米、12厘米的长方体.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体.问剩下的体积是多少立方厘米?【分析与解】本题首先要确定三次切下的正方体的棱长,因为21:15:12=7:5:4,为了叙述方便,我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.易知第一次切下的正方体的棱长应为4厘米,第二次切下的正方体棱长为3厘米时符合要求,第三次切下的正方体的棱长为2厘米时符合要求.于是,在长、宽、高分别为21厘米、15厘米、12厘米的长方体中,第一、二、三次切下的正方体的棱长为12厘米、9厘米、6厘米.所以剩下的体积应为:21×15×12-(3331296++)=1107(立方厘米).9.如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?211624,33ππ⨯⨯⨯=,圆【分析与解】 圆锥的体积是柱的体积是248128ππ⨯⨯=. 所以,圆锥体积与圆柱体积的比是16:1281:243ππ=.10.张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?【分析与解】底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.11.一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【分析与解】若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为: 22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=. 所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深.12.如图ll-8,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)【分析与解】 物体的表面积恰好等于一个大圆柱的表面积加上中、小圆柱的侧面积,即 22 1.52 1.5121120.51ππππ⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯ 4.53210.532.97(πππππ=+++=≈平方米)即这个物体的表面积是32.97平方米.13.某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?【分析与解】 长方体中,高+宽=+(365-5)=180,……………………① 高+长=12(405-5)=200,…………………………………………………② 长+宽=12(485-5)=240,…………………………………………………③②-①得 长-宽=20,……………………………………………………④ ④+③得 长=130,则宽=110,代入①得高=70,所以长方体得体积为: 70×110×30=1001000(立方厘米)=1.001(立方米).14.有甲、乙、丙3种大小不同的正方体木块,其中甲的棱长是乙的棱长的12,乙的棱长是丙的棱长的23.如果用甲、乙、丙3种木块拼成一个体积尽可能小的大正体,每种至少用一块,那么最少需要这3种木块一共多少块?【分析与解】设甲的棱长为1,则乙的棱长为2,丙的棱长为3.显然,大正方体棱长不可能是4,否则无法放下乙和丙各一个.于是,大正方体的棱长至少是5.事实上,用甲、乙、丙三种木块可以拼成棱长为5的大正方体,其中丙种木块只能用1块;乙种木块至多用7块(使总的块数尽可能少);甲种木块需用:5×5×5-1×3×3×3-7×2×2×2=42(块).因此,用甲、乙、丙三种木块拼成体积最小的大正方体,至少需要这三种木块一共1+7+42=50(块).15.有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某划面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长;方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体;最多有多少个?【分析与解】一面染红的长方体,显然应将4×5的长方体染红,这时产生20个一面染成红色的小正方体,个数最多.二面染红的长方体,显然应将两个4×5的长方体染红,这时产生40个一面染成红色的小正方体,个数最多.三面染红的长方体,显然应将4×5,4×5,4×3的面染红,于是产生4×(5+5+3-4)=36个一面染成红色的小正方体,其他方法得出的一面染成红色的正方体均少于36个.四面染红的长方体,显然应将4×5,4×5,4×3,4×3的面染红,产生4×(5+5+3+3-2×4)=32个一面染成红色的正方体,其他方法得到的一面染成红色的小正方体均少于32个.五面染红的长方体,应只留一个3×5的面不染,这时就产生(3-2)×(5-2)+(4-1)×(5+5+3+3-2×4)=27个一面染成红色的小正方体,其他染法得到的一面染成红色的小正方体均少于27.六面染红的长方体,产生2×[(3-2)×(5-2)+(5-2)×(4-2)+(4-2)×(3-2)]=22个一面染成红色的小正方体.于是最多得到:22+27+32+36+40+20=177个一面染成红色的小正方体.。