异方性导电胶ACF介绍

合集下载

异方性导电胶膜的基本原理和主要问题解析

异方性导电胶膜的基本原理和主要问题解析

异方性导电胶膜(ACF)的基本原理和主要问题解析:随着电子产品朝轻,薄,短,小化快速发展,各种携带式电子产品几乎都已液晶显示器作为显示面板,液晶显示器已是重要的组成组件。

液晶显示器除了液晶面板外,在其外围必须连动驱动芯片作为显示讯号之控制用途。

本文主要介绍连接液晶面板与IC连接一种主流方式晶粒-玻璃接合技术(Chip on Glass;COG)使用的导电材料异方性导电胶膜(Anisotropic Conductive Film;ACF),以下简称为ACF。

一、ACF基本原理1.1材料介绍1.1.1何谓异方性导电膜:其特点在于Z轴电气导通方向与XY绝缘平面的电阻特性具有明显的差异性。

当Z轴导通电阻值与XY平面绝缘电阻值的差异超过一定比值后,既可称为良好的导电异方性。

1.1.2ACF主要组成:主要包括树脂黏着剂、导电粒子两大部分。

树脂黏着剂功能除了防湿气,接着,耐热及绝缘功能外主要为固定IC芯片与基板间电极相对位置,并提供一压迫力量已维持电极与导电粒子间的接触面积。

1.2基本原理1.2.1导通原理:利用导电粒子连接IC芯片与LCD基板两者之间的电极使之成为导通,同时又能避免相邻两电极间导通短路,而达成只在Z轴方向导通之目的。

注:LCD面板(包括面偏光片和底偏光片);IC(集成电路):驱动和控制LCD显示;ACF(异方性导电膜):将IC与LCD或FPC与LCD连接;FPC(柔性线路板):连接和导电作用1.2.2ACF主要参数对bonding的影响:异方导电特性主要取决于导电粒子的充填率。

虽然异方性导电胶其导电率会随着导电粒子充填率的增加而提高,但同时也会提升导电粒子互相接触造成短路的机率。

此外,导电粒子的粒径分布和分布均匀性亦会对异方导电特性有所影响。

通常,导电粒子必须具有良好的粒径均一性和真圆度,以确保电极与导电粒子间的接触面积一致,维持相同的导通电阻,并同时避免部分电极未接触到导电粒子,导致开路的情形发生。

ACF 简介_Lin Yang_20120616

ACF 简介_Lin Yang_20120616

ACF 工艺介绍
I
Innovation
使用时先将上膜 (Cover Film) 撕去,将ACF胶 膜贴附至 Substrate的电极 上,再把另一层 PET底膜 (Base Film) 也撕掉。在精准 对位後将上方物 件与下方板材压 合,经加热及加 压一段时间後使 绝缘胶材固化
Bonding过程
ACF 工艺介绍
I
Innovation
ACF的重要辅助材料
ACF工艺的辅助材料很多,但其中最重要的是silicon rubber,俗称硅胶 带,另一种是teflon(聚四氟乙烯)。
ACF 发展趋势
I
Innovation
ACF的技术朝着一个方向发展,那就是导电粒子越做越小, 稳定性越来越好,同时应该将维修难度降低的方向发展。
ACF 工艺介绍
ACF的验证项目及验证标准
I
Innovation
ACF制程中,最为重要的几个参数:温度、压力、下压时间、热 压头下落速度、热压头及治具的平整度,热压头的受热均匀度。
验证项目:
1、粘接性:使用拉拔力测试 2、粒子接触性:使用cross section 3、胶材固话率:使用差热分析法计算化学反应率 4、导电阻抗: 测量电阻 5、冷热循环冲击实验
I
Innovation
ACF 簡介
FAE 2012/6/13
Outline
ACF 功能 ACF 构成 ACF 工艺介绍 ACF 生产条件 ACF 的设备选型条件 ACF 的发展趋势
I
Innovation

ACF 功能
I
Innovation
异方性导电胶膜 —— ACF(Anisotropic Conductive Film) 是在聚合物基体中掺入一定量的导电粒子而形成的薄膜。

ACF的原理和使用

ACF的原理和使用

ACF的原理和使用杨旭2008.06.20主要内容�ACF的用途和简介�ACF的结构及原理�ACF的使用�ACF的发展趋势一. ACF的用途和介绍1.ACF (Anisotropic Conductive Film)介绍异方性导电胶ACF is connection material atshort time between electricterminals with less than 100um.Sony Chemicals succeeded indeveloping and selling ACF first1973.in the world in 1973in the world in(COG、COB、FOG、FOB、FOF等)二、ACF 的结构及原理1、ACF的结构示意图FOG ACF无此层FOG ACF无此层2、ACF的结构介绍1)COG使用的ACF主要是三层结构:Cover film,Base film,ACF2)FOG使用的ACF主要是两层结构: Base film,ACF3)其中ACF尺寸及卷轴主要规格如下:a. ACF长度:一般使用为50m。

其他规格包括:25m,100m,200m。

b. ACF宽度:ACF可以提供的宽度1.0~20mm。

现在COG使用最多的规格主要为:1.5mm,2.0mm,2.5mm,3.0mm,3.5mm。

c. 卷轴规格:标准外径为:Φ 125mm (其他可能有Φ 95,135,145,155,230mm)标准内径为:Φ 25.4mm(除此外可能有Φ 18.5mm)注:关于产品宽度,长度,卷轴尺寸等若有特殊要求,可以与供应商协商制作。

d. 导电粒子规格:导电粒子的直径大小主要有: 2.8um3um、3.5um、4um、5um等3、ACF的主要原材料介绍1)ACF主要的两种原材料是:金球和树脂A、树脂作用:树脂黏着剂除了防湿气、接着、耐热及绝缘等功能外主要作为固定IC晶片与基板间电极相对位置,并提供一定压迫力量以维持电极与导电粒子间的接触面积特性:ACF所使用的树脂是属于热固性树脂类的环氧树脂,具有高温稳定性、热膨胀性低和吸湿性低等优点,但由于高温固化的特性不易重工B、金球:作用:主要是起导通作用,有效连接两者的相对应的电路种类:主要是以金属粉末和高分子塑胶球(具有弹性)表面涂布金属为主,常见的金属粉末为镍、金、镍上镀金、银和锡等,目前COG所使用的ACF,其导电粒子多为在高分子塑胶球表面镀镍镀金导电金球的表面处理:导电金球表面绝缘处理和导电金球表面不加绝缘处理而导电粒子根据表面的处理,可以大概分为两类,一为表面经过绝缘处理措施或者增加绝缘层,此种粒子在防止横向短路有着非常的优势。

低温acf导电胶

低温acf导电胶

低温acf导电胶
低温ACF导电胶是一种高科技材料,它是一种导电性极强的胶水,可以在低温下使用。

ACF是Anisotropic Conductive Film的缩写,意为各向异性导电膜。

低温ACF导电胶广泛应用于电子产品的制造中,如手机、平板电脑、电视等。

低温ACF导电胶的特点是导电性好,且可以在低温下使用。

这种胶水可以在-40℃的低温下使用,而且导电性能非常稳定。

这种胶水的导电性能是由导电颗粒控制的,这些导电颗粒可以在胶水中均匀分布,从而保证了导电性能的稳定性。

低温ACF导电胶的应用非常广泛。

在电子产品的制造中,这种胶水可以用于连接电路板和显示屏之间的导电连接。

这种连接方式可以有效地减少电路板和显示屏之间的空气间隙,从而提高了电路的稳定性和可靠性。

此外,低温ACF导电胶还可以用于连接电池和电路板之间的导电连接,从而提高了电池的使用寿命和稳定性。

低温ACF导电胶的制造过程非常复杂。

首先,需要制备导电颗粒,这些颗粒通常是由金属材料制成的。

然后,需要将这些导电颗粒与胶水混合,从而制备出导电胶水。

最后,需要将导电胶水涂覆在电路板或显示屏上,从而实现导电连接。

总的来说,低温ACF导电胶是一种非常重要的材料,它在电子产品的制造中起着至关重要的作用。

这种胶水具有导电性好、稳定性高等优点,可以有效地提高电路的稳定性和可靠性。

未来,随着电子产品的不断发展,低温ACF导电胶的应用前景将会越来越广阔。

ACF(异方性导电胶)介绍

ACF(异方性导电胶)介绍

Insulation layer Au Ni
Resi n
GIANT PLUS
GIANT PLUS
ACF之三大功能
導通 絕緣 黏著
Conductive Particle Adhesive
ACF
Film Cu ITO
Substrate
GIANT PLUS
ACF選擇標準
Panel bump space(大於ACF Spec MIN space) Contact area(大於ACF Spec MIN area)
異方性導電膠(Anisotropic Conductive Film )之外觀
a. 二層型 ACF層+離層 (Ex: Hitachi)
ACF Separator
Adhesive film Conductive particle
b.三層型 ACF層+離層+保護層 (Ex: Sony)
Cover film ACF Separator
異方性導電膠介紹
( Anisotropic Conductive Film )
GIANT PLUS
COG type
ACF 應用之產品型態
Driver IC FPC
ACF
TAB type
Passive components (Resist, capacitor)
TAB
ACF
COF type
ACF
GIANT PLUS
GIANT PLUS
3.對位後假壓著
(Ex: TAB 120 ±100C, 1.5sec, 10kg/mm2)
Heating head
4.本壓著
Film or chip
ACF

ACF材料特性及使用参数介绍

ACF材料特性及使用参数介绍

Hitachi ACF
使用製程: 8: COG 9 ,2 :PCB 7, 4 :OLB
離型紙種類
16
No:FM-000135-Ver.06
ACF參數設定-原理
特性參數: 溫度&時間=> 提供足夠熱熔量讓ACF膠由固体=>液体=>固化 壓力=> 讓導電粒子變形
17
No:FM-000135-Ver.06
ACF 材料特性與使用參數介紹
No:FM-000135-Ver.06
Contents 1.What is ACF? 2.各製程使用之ACF. 3.ACF 參數設定. 4.ACF使用注意事项
2
No:FM-000135-Ver.06
What is ACF ?
ACF (Anisotropic Conductive Film)---異方向性導電膠
4. ACF在拆封情況下,須以膠帶封口,可於232℃/ 605%RH的條件 下,保存2Weeks可用。
(備註:目前為了管控的方便,拆封後不用的ACF還是放回冰箱保存)
22
No:FM-000135-Ver.06
Silicon Teflon
PANEL COF
ACF
ACF thermocouple
thermocouple
注意:thermocouple電極交叉點位置位於ACF寬度中 間位置為最佳
21
No:FM-000135-Ver.06
ACF注意事項
ACF 保存及回溫條件
1. ACF在未拆封真空情況下,可於-10℃~ + 5℃的條件下,保存6個月 可用。
寬度 1.5 ± 0.1㎜
10
No:FM-000135-Ver.06

异方导电胶膜

异方导电胶膜

异方导电胶膜
异方导电胶膜(Anisotropic Conductive Film,ACF)是一种特殊的胶粘剂,其导电性能具有方向性,即在垂直方向上具有导电性,而在水平方向上则具有绝缘性。

这种特殊的导电性能使得异方导电胶膜在电子元器件的连接和封装等领域具有广泛的应用。

异方导电胶膜主要由导电粒子和绝缘胶材组成,其中导电粒子负责提供垂直方向上的导电通道,而绝缘胶材则起到固定和支撑导电粒子的作用。

在使用时,将异方导电胶膜贴合在需要连接的电子元器件之间,通过施加一定的压力和温度,使导电粒子在垂直方向上形成导电通道,从而实现元器件之间的电连接。

异方导电胶膜具有许多优点,如连接可靠、工艺简单、适用于大规模生产等。

同时,它还具有较好的耐热性、耐湿性、耐化学腐蚀等性能,能够满足各种复杂环境下的使用要求。

因此,异方导电胶膜在LED、大功率LED、LCD、TR、IC、COB、PCBA、FPC、FC、EL冷光片、显示屏、压电晶体、晶振、谐振器、太阳能电池、光伏电池、蜂鸣器、半导体分立器件等各种电子元件和组件的封装和连接中得到了广泛的应用。

需要注意的是,异方导电胶膜的使用需要一定的技术和经验,如贴合压力、温度、时间等参数的控制都需要精确掌握。

此外,由于导电粒子的存在,异方导电胶膜在水平方向上的绝缘性能相对较弱,因此在应用时需要注意避免短路等问题的发生。

一文看懂显示关键材料—异方性导电胶膜ACF

一文看懂显示关键材料—异方性导电胶膜ACF

一文看懂显示关键材料—异方性导电胶膜(ACF)不管是当今主流的LCD显示技术还是代表着未来显示技术趋势的OLED技术,要想实现信号的传输与画面的显示,就必须要进行承载驱动IC的COF与屏的压合绑定。

图片来源:AUO官网在这个工艺中就必须用到ACF。

那么ACF是什么?它到底有什么作用呢?下面小编带你了解ACFACF简介ACF(AnisotropicConductiveFilm)即异方性导电胶膜,最先由Sony开发出来,现广泛用于IC与LCD、FPC与LCD、IC与Film之间的压合绑定。

图片来源:Hitachi-Chem官网ACF的特点ACF是同时具有粘接、导电、绝缘三大特性的透明高分子连接材料。

其显着特点是垂直方向导通而水平方向绝缘。

ACF压合分布状态图片来源:网络公开资料ACF的结构ACF为层状结构,一般有双层型ACF和三层型ACF,三层的ACF比双层的多了一层保护层。

一般根据应用精度的不同而选择不同结构的ACF。

三层ACF资料来源:Dexerials官网双层ACF资料来源:Dexerials官网不同层次的材料亦不相同,一般来说,保护层的材质为聚乙烯,BaseFilm基材主要为树脂。

而ACF层中包括起导电作用的导电粒子以及起填充作用的填充物,填充物一般有亚克力(热塑性)和环氧树脂(热固性)两种。

热塑性及热固型树脂填充物比较而ACF之所以能导电。

是因为树脂中包裹着导电粒子。

且导电粒子根据使用情况的不同亦有多种结构。

导电粒子为球状,亦为多层结构,一般是最常用的有三层结构和两层结构。

导电粒子的微观形态图片来源:网络公开资料导电粒子的典型结构与各层的作用导电粒子的典型结构各层材料的作用而根据不用的使用条件及使用范围,导电粒子的结构会有些许差异。

如Dexerials开发的不同导电粒子,其适用情况亦不同。

导电粒子结构与适用情况资料来源:Dexerials官网随着技术的发展,导电粒子的直径越来越小,分布亦更加的均匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异方性导电胶膜(ACF:Anisotropic Conductive Film)兼具单向导电及胶合固定的功能,目前使用于COG、TCP/COF、COB及FPC,其中尤以驱动IC相关之构装接合最受瞩目。

根据日本JMS的调查,2006年全球ACF市场规模约488亿日圆,至2007年将成长至586亿日圆,历年成长率约在20%上下。

随着驱动IC在Fine Pitch潮流的推动下,ACF的产品特性已逐渐成为攸关Fine Pitch进程的重要因素。

本文将针对ACF就其产品发展概况、主要规格特性以及产业未来趋势等做一介绍。

■ACF发展概况ACF的组成主要包含导电粒子及绝缘胶材两部分,上下各有一层保护膜来保护主成分。

使用时先将上膜(Cover Film)撕去,将ACF胶膜贴附至Substrate的电极上,再把另一层PET 底膜(Base Film)也撕掉。

在精准对位后将上方物件与下方板材压合,经加热及加压一段时间后使绝缘胶材固化,最后形成垂直导通、横向绝缘的稳定结构。

ACF主要应用在无法透过高温铅锡焊接的制程,如FPC、Plastic Card及LCD等之线路连接,其中尤以驱动IC相关应用为大宗。

举凡TCP/COF封装时连接至LCD之OLB(Outer Lead Bonding)以及驱动IC接着于TCP/COF载板的ILB(Inner Lead Bonding)制程,亦或采COG 封装时驱动IC与玻璃基板接合之制程,目前均以ACF导电胶膜为主流材料。

■驱动IC脚距缩小ACF架构须持续改良以提升横向绝缘之特性ACF中之导电粒子扮演垂直导通的关键角色,胶材中导电粒子数目越多或导电粒子的体积越大,垂直方向的接触电阻越小,导通效果也就越好。

然而,过多或过大的导电粒子可能会在压合的过程中,在横向的电极凸块间彼此接触连结,而造成横向导通的短路,使得电气功能不正常。

随着驱动IC的脚距(Pitch)持续微缩,横向脚位电极之凸块间距(Space)也越来越窄,大大地增加ACF在横向绝缘的难度。

为了解决这个问题,许多ACF结构已陆续被提出,以下针对目前两大领导厂商的主要架构做介绍:1. Hitachi Chemical的架构为了降低横向导通的机率,Hitachi使用了两个方法,其一是导入两层式结构,两层式的ACF产品上层不含导电粒子而仅有绝缘胶材,下层则仍为传统ACF胶膜结构。

透过双层结构的使用,可以降低导电粒子横向触碰的机率。

然而,双层结构除了加工难度提高之外,由于下层ACF膜的厚度须减半,导电粒子的均匀化难度也提高。

目前,双层结构的ACF胶膜为Hitachi Chemical的专利。

除了双层结构之外,Hitachi也使用绝缘粒子,将绝缘粒子散布在导电粒子周围。

当脚位金凸块下压时,由于绝缘粒子的直径远小于导电粒子,因此绝缘粒子在垂直压合方向不会影响导通;但在横向空间却有降低导电粒子碰触的机会。

2.Sony Chemical的架构Sony Chemical的方法是在导电粒子的表层吸附一些细微颗粒之树脂,目的在使导电粒子的表面产生一层具绝缘功能的薄膜结构。

此结构的特性是,粒子外围的绝缘薄膜在凸块接点热压合时将被破坏,使得垂直方向导通;至于横向空间的导电粒子绝缘膜则将持续存在,如此即可避免横向粒子直接碰触而造成短路的现象。

Sony架构的缺点是,当导电粒子的绝缘薄膜在热压合时若破坏不完全,将使得垂直方向的接触电阻变大,就会影响ACF的垂直导通特性。

目前该结构的专利属于Sony Chemical。

除了上述以结构改良的方式来避免横向绝缘失效以外,透过导电粒子的直径缩小也可达成部分效果。

导电粒子的直径已从过去12um一路缩小至目前的3um,主要就在配合Fine Pitch 的要求。

随着粒径的缩小,粒径及金凸块厚度的误差值也必须同步降低,目前粒径误差值已由过去的±1um降低至±0.2um。

随着驱动IC细脚距的要求,金凸块的最小间距也持续压低,目前凸块厂商已经可以做到20um左右的凸块脚距。

20um的脚距已使ACF横向绝缘的特性备受挑战,Fine Pitch的技术瓶颈压力似乎已经落在ACF胶材的身上了。

■驱动IC外型窄长化ACF胶材之固化温度须持续降低以减少Warpage效应当驱动IC以COG形式贴附在LCD玻璃基板上时,为避免占用太多LCD面板的额缘面积,并同时减少IC数目以降低成本,使得驱动IC持续朝多脚数及窄长型的趋势来发展。

然而,LCD无碱玻璃的膨胀系数约4ppm/℃远高于IC的3ppm/℃,当ACF胶材加热至固化温度反应后再降回室温时,IC与玻璃基板将因收缩比例不一致而使产生翘曲的情况,此即Warpage效应。

Warpage效应将使ACF垂直导通的效果变差,严重时更将产生Mura。

Mura 即画面显示因亮度不均而出现各种亮暗区块的现象。

为降低Warpage效应,目前解决方案主要仍朝降低ACF的固化温度来着手。

以膨胀系数的单位ppm/℃来看,假使ACF固化温度与室温的差距降低,作业过程中IC及玻璃基板产生热胀冷缩的差距比就会越小,Warpage效应也将降低。

ACF固化温度之特性主要受到绝缘胶材的成分所影响。

绝缘胶材成分目前以B-Stage(胶态)之环氧树脂加上硬化剂为主流,惟各家配方仍多有差异。

在胶材成分方面虽然较无专利侵权的问题,但种类及成分对产品之特性影响重大,故各家厂商均视配方为机密。

ACF的许多规格如硬化速度、黏度流变性、接着强度乃至于ACF固化温度等,莫不受到绝缘胶材的成分所决定。

目前在诸多特性之中,降低ACF固化温度已成为各家厂商最重要的努力方向,此特性也是关乎厂商技术高低的重要指标。

■ACF主要规格投入ACF产品的日商计有Hitachi Chemical、Sony Chemical、Asahi Kasei(旭化成化学株式会社)及Sumitomo等;韩商则有LG Cable、SK Chemical及MLT等;国内厂商目前较积极的有玮锋,公司技术来自于工研院。

ACF价格成本仅占LCD模块约1%的比重,价格低但对面板质量却有决定性的影响,故面板厂更换新品的诱因较小。

目前全球ACF市场由Hitachi Chemical及Sony Chemical所垄断,两家合计市占率超过九成以上。

以下仅对两家领导厂商之主要产品规格做介绍。

■ACF适用Pitch之换算由上表中可以发现,应用于金凸块接合的ACF规格中,找不到我们最关心的最小适用脚距数据。

最小适用脚距除了决定于横向绝缘特性,此部份受到间距(Space)所影响外,尚须考虑垂直导通的要求。

垂直导通效果的主要关键则在于金凸块接点可捕捉压合多少颗的导电粒子。

由此可知,导电粒子密度及金凸块的电极面积为主要的影响因素。

因此,要得知ACF的最小适用脚距就必须从规格表中的最小电极面积来着手。

以长宽比(Aspect Ratio)为7:1的金凸块为例,我们可以由最小电极面积(假设为A)推出最小电极宽度为(A/7)的平方根,将最小电极宽度加上最小间距,即可得到ACF的最小适用脚距。

经由换算结果,在金凸块长宽比7:1的驱动IC应用下,Hitachi之AC-8604(COG)适用脚距30um、AC8408(COG)适用脚距30um、AC-217(COF)适用脚距25um;Sony之CP6030ID(COG)脚距限制则为35um。

由上列计算公式可以推知,金凸块的Aspect Ratio越大,ACF的最小适用脚距将越小。

因此,金凸块厂在Fine Pitch的角色除了须将凸块的间距做小之外,也须提高金凸块的长宽比。

■不同的导电粒子各有其适用产品导电粒子的种类可分为碳黑、金属球及外镀金属之树脂球等。

碳黑为早期产品,目前使用已不多。

金属球则以镍球为大宗,优点在于其高硬度、低成本,尖角状突起可插入接点中以增加接触面积;缺点则在其可能破坏脆弱的接点、容易氧化而影响导通等。

为克服镍球之氧化问题,可在镍球表面镀金而成为镀金镍球。

目前镍球之导电粒子多用于与PCB之连接,LCD面板之ITO电极连接则不适用,主要原因在于金属球质硬且多尖角,怕其对ITO线路造成损伤。

用于LCD Glass之ACF胶膜以镀金镍之树脂球为主流,由于树脂球具弹性,不但不会伤害ITO线路,且在加压胶合的过程中,球体将变形呈椭球状以增加接触面积。

另外,外层涂布绝缘树脂之镀金镍树脂球属于Sony的专利,由于生产成本较高,该公司会根据不同应用给于适当参杂以节省成本。

■温度、压力、时间为压合固化之三要素B-Stage(胶态)之ACF在加压加温至固化温度且历经一段时间后,绝缘胶材将反应成C-Stage(固态)。

ACF在反应成固态后,内部导电粒子的相对位置及形变将定型,硬化之胶材也可担任Underfill的脚色,对内部电极接点形成保护的效果。

在将ACF压合固化的三条件当中,温度与时间最为厂商所重视,温度参数如前述将影响Warpage效应;时间参数则直接影响工厂的生产效率。

由Hitachi及Sony Chemical的产品特性数据,压合温度已由过去动辄200℃降低至180℃,Hitachi也已推出160℃的低温产品。

压合时间通常会与压合温度成反比,温度越低则耗时越长。

然而,随着技术进步,低温且同时具备低耗时的产品线也已陆续上市。

■结论面板驱动IC在Fine Pitch的潮流下,不但必须要求金凸块厂的技术提升,对ACF质量的要求也日益严苛。

相对于凸块厂必须面临缩小金凸块Pitch、提高金凸块之长宽比、增加凸块表面平整性等诸多压力,ACF厂面对的挑战也不小,归纳两项重要指标如下:1.缩小ACF之适用Pitch。

2.降低ACF之固化温度。

ACF产品结合了物理结构及化学材料等诸多知识,长期以来掌控在日本厂商手中。

目前日本厂商仍具垄断地位,韩商近来发展已稍有成果,国内厂商则仍进展有限。

ACF为驱动IC封装的主流胶材,未来在高密度IC之覆晶封装的带动下,应用领域可望持续扩大。

以ACF市场规模来看,对厂商切入的诱因或许不大。

但若以技术推升的角度来看,国内厂商若要摆脱技术追随而成为领先者的角色,ACF的投入则不可免,因为ACF已成为IC产品在Fine Pitch演进下必须掌握的关键材料。

(本文由台湾工业银行综合研究所王志方提供)。

相关文档
最新文档