高三数学一轮复习圆锥曲线方程及性质教案
高三数学第一轮复习单元讲座 第35讲 曲线方程及圆锥曲线的综合问题教案 新人教版

普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座35)—曲线方程及圆锥曲线的一.课标要求:1.由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练;2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想;3.了解圆锥曲线的简单应用。
二.命题走向近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。
但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下三类题型为主。
1.求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2.与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。
预测07年高考:1.出现1道复合其它知识的圆锥曲线综合题;2.可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问。
三.要点精讲1.曲线方程(2)求曲线方程的常见方法:直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。
这是求曲线方程的基本方法。
转移代入法:这个方法又叫相关点法或坐标代换法。
即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。
几何法:就是根据图形的几何性质而得到轨迹方程的方法。
参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y联系起来,得到用参数表示的方程。
如果消去参数,就可以得到轨迹的普通方程。
2.圆锥曲线综合问题(1)圆锥曲线中的最值问题、范围问题通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。
高三数学人教版A版数学(理)高考一轮复习教案2 圆锥曲线的综合应用

第二课时 圆锥曲线的综合应用考点一 最值范围问题|(2015·高考浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2,代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.(1)最值问题的求解方法:①建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值. ②建立不等式模型,利用基本不等式求最值. ③数形结合,利用相切、相交的几何性质求最值. (2)求参数范围的常用方法:①函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. ②不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. ③判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围. ④数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.1.(2016·宁波模拟)如图,抛物线C 的顶点为O (0,0),焦点在y 轴上,抛物线上的点(x 0,1)到焦点的距离为2.(1)求抛物线C 的标准方程;(2)过直线l :y =x -2上的动点P (除(2,0))作抛物线C 的两条切线,切抛物线于A ,B 两点.①求证:直线AB 过定点Q ,并求出点Q 的坐标;②若直线OA ,OB 分别交直线l 于M ,N 两点,求△QMN 的面积S 的取值范围. 解:(1)由已知条件得1-⎝⎛⎭⎫-p 2=1+p2=2, ∴p =2,∴抛物线的标准方程为x 2=4y . (2)①证明:设A (x 1,y 1),B (x 2,y 2),y ′=x2,A 处切线方程为y -y 1=x 12(x -x 1),又∵4y 1=x 21,∴y =x 12x -x 214,a同理B 处切线方程为y =x 22x -x 224,bab 联立可得⎩⎪⎨⎪⎧x =x 1+x22,y =x 1x 24,即P ⎝⎛⎭⎪⎫x 1+x 22,x 1x 24.直线AB 的斜率显然存在,设直线AB :y =kx +m ,⎩⎪⎨⎪⎧ y =kx +m ,x 2=4y ,可得x 2-4kx -4m =0, ⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=-4m ,即P (2k ,-m ), ∵P 在直线l :y =x -2上, ∴m =-2k +2,即AB 直线为y =k (x -2)+2, ∴直线AB 过定点Q (2,2). ②∵O 不会与A ,B 重合.定点Q (2,2)到直线l :y =x -2的距离h = 2. 由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,⇒x M =2x 1x 1-y 1=84-x 1,同理得x N =2x 2x 2-y 2=84-x 2.∴|MN |=2|x M -x N |=82⎪⎪⎪⎪⎪⎪14-x 1-14-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2(4-x 1)(4-x 2)=82⎪⎪⎪⎪⎪⎪x 1-x 216-4(x 1+x 2)+x 1x 2=82⎪⎪⎪⎪⎪⎪⎪⎪16k 2+16m -4m -16k +16. ∵m =-2k +2,∴|MN |=42·(k -1)2+1|k -1|=4 21+1(k -1)2.∴S △QMN =12|MN |·h =41+1(k -1)2∈(4,+∞). 考点二 定点最值问题|已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时, 设A ⎝⎛⎭⎫t 24,t ,B ⎝⎛⎭⎫t24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立得⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y Bx B=-12, 即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32. 所以y A y B =4bk =-32,即b =-8k ,所以y =kx -8k ,y =k (x -8).综上所述,直线AB 过定点(8,0).(1)解决定点问题的关键就是建立直线系或者曲线系方程,要注意选用合适的参数表达直线系或者曲线系方程,如果是双参数,要注意这两个参数之间的相互关系.(2)解决圆锥曲线中的定值问题的基本思路很明确,即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,其不受变化的量所影响的一个值就是要求的定值.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解:(1)由已知得⎩⎪⎨⎪⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时, 可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0. 由于Δ>0,设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8k 23+4k 22-4×4k 2-123+4k 2 =12(1+k 2)3+4k 2.同理|CD |=12(1+k 2)3k 2+4.所以1|AB |+1|CD |=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 垂直于坐标轴时, 此时|AB |=3,|CD |=4; 或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712. 考点三 探索存在性与证明问题|(2015·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.[解] (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m1-n,即M ⎝⎛⎭⎫m 1-n ,0.(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ .且点Q 的坐标为(0,2)或(0,-2).解决存在性问题注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.3.(2015·高考安徽卷)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 解:(1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b ,又k OM =510,从而b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是线段AC 的中点知, 点N 的坐标为⎝⎛⎭⎫a 2,-b2, 可得NM →=⎝⎛⎭⎫a 6,5b 6.又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)可知a 2=5b 2,所以AB →·NM →=0,故MN ⊥AB .A 组 考点能力演练1.如图,已知抛物线C :y 2=2px (p >0),焦点为F ,过点G (p,0)作直线l 交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2py 1+y 3, 直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2. 2.设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,直线l 为其左准线,直线l 与x 轴交于点P ,线段MN 为椭圆的长轴,已知|MN |=8,且|PM |=2|MF |.(1)求椭圆C 的标准方程;(2)若过点P 的直线与椭圆相交于不同两点A ,B ,求证:∠AFM =∠BFN ; (3)求三角形ABF 面积的最大值. 解:(1)∵|MN |=8,∴a =4,又∵|PM |=2|MF |得a 2c -a =2(a -c ),即2e 2-3e +1=0⇒e =12或e =1(舍去).∴c =2,b 2=a 2-c 2=12, ∴椭圆的标准方程为x 216+y 212=1.(2)当AB 的斜率为0时,显然∠AFM =∠BFN =0.满足题意. 当AB 的斜率不为0时,设A (x 1,y 1),B (x 2,y 2), AB 方程为x =my -8,代入椭圆方程整理得: (3m 2+4)y 2-48my +144=0,则Δ=(48m )2-4×144(3m 2+4),y 1+y 2=48m 3m 2+4,y 1·y 2=1443m 2+4. ∴k AF +k BF =y 1x 1+2+y 2x 2+2=y 1my 1-6+y 2my 2-6=2my 1y 2-6(y 1+y 2)(my 1-6)(my 2-6)=0,∴k AF +k BF =0,从而∠AFM =∠BFN . 综上可知:恒有∠AFM =∠BFN .(3)S△ABF =S△PBF -S△P AF=12|PF |·|y 2-y 1|=72m 2-43m 2+4=72m 2-43(m 2-4)+16=723m 2-4+16m 2-4≤7223·16=3 3. 当且仅当3m 2-4=16m 2-4即m 2=283(此时适合Δ>0的条件)取得等号.三角形ABF 面积的最大值是3 3.3.已知点A ,B ,C 是抛物线L :y 2=2px (p >0)上的不同的三点,O 为坐标原点,直线OA ∥BC ,且抛物线L 的准线方程为x =-1.(1)求抛物线L 的方程;(2)若三角形ABC 的重心在直线x =2上,求三角形ABC 的面积的取值范围.解:(1)抛物线L 的方程为y 2=4x .(2)设直线OA ,BC 的方程分别为y =kx 和y =kx +b (k ≠0).由⎩⎪⎨⎪⎧y =kx ,y 2=4x联立消去y 得k 2x 2=4x , 解得点A 的坐标为A ⎝⎛⎭⎫4k 2,4k . 设B (x 1,y 1),C (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,消去y 得k 2x 2+(2kb -4)x +b 2=0.Δ=(2kb -4)2-4k 2b 2=16-16kb >0,即kb <1. 又由韦达定理可得x 1+x 2=4-2kb k 2,∴三角形ABC 的重心的横坐标为4k 2+4-2kb k 23=8-2kb 3k 2=2,化简得b =4-3k 2k ,代入kb <1可得k 2>1.又三角形ABC 的面积为 S =12×k 2+1×16-16kbk 2×|b |1+k 2=|2b |1-kb k 2=2|4-3k 2|k 2|k |×3k 2-3=2⎪⎪⎪⎪4k 2-3 3-3k2. 令t =1k2,则S =23×(4t -3)2(1-t ),t ∈(0,1).考虑函数f (t )=(4t -3)2(1-t ),t ∈(0,1), 则易得函数f (t )在⎝⎛⎭⎫0,34和⎝⎛⎭⎫1112,1上单调递减, 在⎝⎛⎭⎫34,1112上单调递增,且f (0)=9,f ⎝⎛⎭⎫34=0,f ⎝⎛⎭⎫1112=127, ∴△ABC 的面积的取值范围是(0,63).B 组 高考题型专练1.(2015·高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解:(1)由题意有a 2-b 2a =22,4a 2+2b2=1, 解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1. (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k, 即k OM ·k =-12. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.2.(2015·高考山东卷)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .a .求|OQ ||OP |的值;b .求△ABQ 面积的最大值.解:(1)由题意知3a 2+14b 2=1, 又a 2-b 2a =32,解得a 2=4,b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知,椭圆E 的方程为x 216+y 24=1. a .设P (x 0,y 0),|OQ ||OP |=λ, 由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2. b .设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2(4-t)t=2-t2+4t,故S≤23,当且仅当t=1,即m2=1+4k2时,S取得最大值23,由a知,△ABQ的面积为3S,所以△ABQ面积的最大值为6 3.。
高中数学备课教案圆锥曲线的方程与性质

高中数学备课教案圆锥曲线的方程与性质高中数学备课教案圆锥曲线的方程与性质一、概述圆锥曲线是数学中重要的曲线形式,常见于几何和物理学的问题中。
本教案将介绍圆锥曲线的方程与性质,并提供相关的示例和练习。
二、椭圆的方程与性质1. 椭圆的定义椭圆是由平面上一点F(焦点)和一条确定长度的线段2a(主轴)组成的图形,满足到焦点的距离之和等于定长2a。
2. 椭圆的方程椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别表示椭圆的长半轴和短半轴。
3. 椭圆的性质- 椭圆是一个闭合曲线,位于椭圆的内部的点满足到焦点的距离之和小于2a,位于椭圆的外部的点满足到焦点的距离之和大于2a。
- 长半轴的长度表示椭圆的伸长程度,短半轴的长度表示椭圆的扁平程度。
- 椭圆的中心点位于坐标原点。
三、双曲线的方程与性质1. 双曲线的定义双曲线是由平面上一点F(焦点)和一条确定长度的线段2a(主轴)组成的图形,满足到焦点的距离之差等于定长2a。
2. 双曲线的方程双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别表示双曲线的长半轴和短半轴。
3. 双曲线的性质- 双曲线是一个开放曲线,位于双曲线的内部的点满足到焦点的距离之差小于2a,位于双曲线的外部的点满足到焦点的距离之差大于2a。
- 长半轴的长度表示双曲线的伸长程度,短半轴的长度表示双曲线的扁平程度。
- 双曲线的两个分支在坐标原点处相交。
四、抛物线的方程与性质1. 抛物线的定义抛物线是由平面上一点F(焦点)和一条确定长度的线段2a(准线)组成的图形,满足到焦点的距离等于到准线的垂直距离。
2. 抛物线的方程抛物线的标准方程为y^2 = 4ax,其中a表示焦点到准线的距离。
3. 抛物线的性质- 抛物线是一个开口朝上或朝下的曲线,开口的方向取决于焦点和准线的位置关系。
- 抛物线的焦点位于坐标原点。
- 抛物线关于y轴对称,准线与抛物线垂直。
五、练习1. 将以下方程转化为标准方程,并画出对应的曲线:a) 9x^2 + 16y^2 = 144b) x^2/9 - y^2/4 = 1c) y^2 = 2x2. 判断以下方程对应的曲线是椭圆、双曲线还是抛物线,并指出焦点、准线等属性:a) x^2/25 + y^2/9 = 1b) x^2/16 - y^2/9 = 1c) y^2 = 4x六、总结通过本教案,我们学习了圆锥曲线中椭圆、双曲线和抛物线的方程与性质。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
高三数学一轮复习必备圆锥曲线方程及性质

第33讲 圆锥曲线方程及性质备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测2010年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MFa += 椭圆的标准方程为:22221x y ab +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b=±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
[精品]新高三高考数学一轮复习12.4圆锥曲线共同性质及应用优质课教案
![[精品]新高三高考数学一轮复习12.4圆锥曲线共同性质及应用优质课教案](https://img.taocdn.com/s3/m/6a31620b7375a417866f8f2b.png)
12.4圆锥曲线的共同性质及应用【知识网络】1.用联系的观点看圆锥曲线的共同性质. 2.学会圆锥曲线几何性质的简单综合应用.3.进一步体会函数方程思想、化归转化思想、分类讨论思想、数形结合思想. 【典型例题】[例1] (1)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4(2)曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的 ( ) A .焦距相等 B . 离心率相等 C .焦点相同 D .准线相同(3)双曲线12222=-b y a x 的离心率为1e ,双曲线12222=-ax b y 的离心率为2e ,则1e +2e 的最小值为( )A .24B .2C .22D .4(4)已知椭圆m x 2+n y 2=1与双曲线p x 2-qy 2=1(m,n,p,q ∈R +)有共同的焦点F 1、F 2,P 是椭圆和双曲线的一个交点,则|PF 1|²|PF 2|= . (5)若方程(1-k)x 2+(3-k 2)y 2=4表示椭圆,则k 的取值范围是 . [例2] 双曲线C 与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ== ,且3821-=+λλ时,求Q 点的坐标.[例3] 已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点。
(1) 求双曲线C 2的方程;(2) 若直线l :2+=kx y 与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围。
《圆锥曲线与方程》复习课教案

一、课题:《圆锥曲线与方程》的复习二、教学目的:1、通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。
2、通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的思想以及“应用数学”的意识3、结合教学内容对学生进行运动变化、自我总结和对立统一的观点的教育 三、教学方法:讲授法、练习法四、教学重点:自我总结并引导学生对三种曲线的标准方程和图形、性质的总结 五、教学难点:做好思路分析,引导学生找到解题的落足点,使学生能够自己独立对知识进行总结 六、教学过程: (一)知识梳理: 1.曲线与方程⑴曲线C 上的点与二元方程()0,=y x f 的实数解建立如下关系: ①曲线上的点的坐标都是这个方程的解; ②以上这个方程的解为坐标的点都是曲线上的点.⑵求曲线的方程的一般步骤①建系;②设点;③列方程;④化简;⑤检查. 2.圆锥曲线的定义⑴平面内满足()212122F F a a PF PF >=+的点P 的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.⑵平面内满足()212122F F a a PF PF <=-的点P 的轨迹叫做双曲线,()212122F F a a PF PF <=-表示焦点2F 对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化.⑶平面内与一个顶点F 与一条定直线l (不经过点F )距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化. 3.圆锥曲线的标准方程椭圆、双曲线有两种形式的标准方程,抛物线有四种形式的标准方程.根据曲线方程的形式来确定焦点的位置,根据焦点的位置选择恰当的方程形式. 4.圆锥曲线的简单几何性质⑴圆锥曲线的范围往往作为解题的隐含条件. ⑵双曲线焦点位置不同,渐近线方程不同.⑶椭圆有四个顶点,双曲线有两个顶点,抛物线有一个顶点⑷椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. ⑸圆锥曲线中基本量p e c b a ,,,,的几何意义及相互转化. 6.直线与圆锥曲线的位置关系⑴直线与圆锥曲线的公共点个数等于由它们的方程构成的方程组解的个数. ⑵直线与椭圆有一个公共点,直线与椭圆相切,但直线与双曲线、抛物线不一定相切,双曲线与平行于渐近线的直线,抛物线与平行(重合)于轴的直线,都只有一个公共点但不相切.7.直线与圆锥曲线相交的弦长⑴求弦长的方法是将直线与圆锥曲线的方程联立后,求出两点坐标,利用两点间距离公式,常用的方法是结合韦达定理,如直线b kx y +=与圆锥曲线相交于()()2211,,,y x B y x A 两点,弦长()21221241x x x x k AB -++=.⑵过抛物线焦点的弦长问题结合定义来解决能化简计算. 8.元圆锥曲线有关的“中点弦”弦的中点坐标与斜率可由曲线方程得到关系,此法称为“点差法”,灵活运用科简化计算,但要以直线与曲线相交为前提,即消元后的方程判别式大于零. 9.当直线过x 轴上的点()0,m M 时,设直线方程为m ty x +=与抛物线方程()022>=p px y 联立消元后的方程较简。
高中数学新课圆锥曲线方程教案

一、教案基本信息高中数学新课圆锥曲线方程教案课时安排:2课时教学对象:高中数学学生教学目标:1. 理解圆锥曲线的概念及其特点。
2. 掌握圆锥曲线的基本方程。
3. 能够运用圆锥曲线方程解决实际问题。
教学方法:1. 采用问题导入法,激发学生兴趣。
2. 利用多媒体课件,直观展示圆锥曲线的图形。
3. 采用小组讨论法,引导学生探究圆锥曲线方程的推导过程。
4. 运用例题讲解法,帮助学生掌握圆锥曲线方程的应用。
教学内容:1. 圆锥曲线的概念及特点2. 圆锥曲线的基本方程3. 圆锥曲线方程的推导过程4. 圆锥曲线方程的应用二、教学过程第一课时:1. 导入:利用多媒体课件,展示圆锥曲线的图形,引导学生观察其特点。
2. 新课讲解:1. 讲解圆锥曲线的概念及特点。
2. 引导学生探究圆锥曲线的基本方程。
3. 讲解圆锥曲线方程的推导过程。
3. 例题讲解:运用例题,讲解圆锥曲线方程的应用。
4. 课堂练习:布置练习题,让学生巩固所学内容。
第二课时:1. 复习导入:复习上一课时所讲的内容,提问学生圆锥曲线方程的应用。
2. 课堂讲解:讲解圆锥曲线方程在实际问题中的应用。
3. 例题讲解:运用例题,讲解圆锥曲线方程解决实际问题的方法。
4. 小组讨论:布置讨论题,让学生分组讨论圆锥曲线方程的应用。
5. 课堂总结:总结本节课所讲内容,强调圆锥曲线方程的重要性。
6. 课后作业:布置作业,让学生巩固所学知识。
三、教学评价1. 课后问卷调查,了解学生对圆锥曲线方程的掌握程度。
2. 课堂练习及作业批改,评估学生运用圆锥曲线方程解决实际问题的能力。
3. 课堂表现,观察学生在讨论、回答问题等方面的参与度。
四、教学反思1. 针对学生的掌握情况,调整教学方法,提高教学效果。
2. 结合学生反馈,优化教学内容,使课堂更贴近学生需求。
3. 注重培养学生的动手操作能力和实际应用能力,提高学生的综合素质。
五、教学资源1. 多媒体课件:展示圆锥曲线的图形,生动直观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线方程及性质
程
图形
焦
点坐标
(,0)
2
p
(,0)
2
p
-(0,)
2
p
(0,)
2
p
-
准
线
方程
2
p
x=-
2
p
x=
2
p
y=-
2
p
y=范
围
x≥0
x≤0
y≥0
y≤对
称
性
x轴x轴y轴y轴
顶
点
(0,0)(0,0)(0,0)(0,0)离
心率
1
e=1
e=1
e=1
e=
说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线o F x
y
l
o x
y
F
l
x
y
o
F
l
x
y2
=,那么它的两条准线间的距离是()
A.3
6 B.4 C.2 D.1
解析:(1)设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故选B。
(2)双曲线221
mx y
+=的虚轴长是实轴长的2倍,∴ m<0,且双曲线方程为
2
21
4
x
y
-+=,∴ m=1
4
-,选A。
(3)如果双曲线的两个焦点分别为)0,3
(
1
-
F、)0,3(
2
F,一条渐近线方程为x
y2
=,
∴
229
2
a b
b
a
⎧+=
⎪
⎨
=
⎪⎩
,解得
2
2
3
6
a
b
⎧=
⎨
=
⎩
,所以它的两条准线间的距离是
2
22
a
c
⋅=,选C。
点评:关于双曲线渐近线、准线及许多距离问题也是考察的重点。
题型5:抛物线方程
例9.(1))焦点到准线的距离是2;
(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程。
解析:(1)y2=4x,y2=-4x,x2=4y,x2=-4y;
方程是x2=-8y。
点评:由于抛物线的标准方程有四种形式,且每一种形式中都只含一个系数p,因此只要给出确定p的一个条件,就可以求出抛物线的标准方程。
当抛物线的焦点坐标或准线方程给定以后,它的标准方程就唯一确定了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解。
题型6:抛物线的性质
例10.(1)若抛物线22
y px
=的焦点与椭圆
22
1
62
x y
+=的右焦点重合,则p的值
为( )
A .2-
B .2
C .4-
D .4 (2)抛物线2
8y x =的准线方程是( )
(A) 2x =- (B) 4x =- (C) 2y =- (D) 4y =- (3)抛物线x y 42=的焦点坐标为( )
(A ))1,0(. (B ))0,1(. (C ))2,0(. (D ))0,2(
解析:(1)椭圆22162
x y +=的右焦点为(2,0),所以抛物线2
2y px =的焦点为(2,0),则4p =,故选D ;
(2)2p =8,p =4,故准线方程为x =-2,选A ;
(3)(直接计算法)因为p=2 ,所以抛物线y 2
=4x 的焦点坐标为 。
应选B 。
点评:考察抛物线几何要素如焦点坐标、准线方程的题目根据定义直接计算机即可。
例11.(1)抛物线2
y x =-上的点到直线4380x y +-=距离的最小值是( ) A .
43 B .75 C .8
5
D .3 (2)对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;
③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1)。
(3)对于抛物线y 2
=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( )
A.(-∞,0)
B.(-∞,2]
C.[0,2]
D.(0,2)
能使这抛物线方程为y 2=10x 的条件是 .(要求填写合适条件的序号) 解析:(1)设抛物线2
y x =-上一点为(m ,-m 2
),该点到直线4380x y +-=的距。