SP2型盘形制动单元的作用原理

合集下载

盘式制动器结构和原理

盘式制动器结构和原理

盘式制动器结构和原理盘式制动器是一种常见的制动器件,主要用于汽车、摩托车和自行车等车辆的制动系统中。

它通过夹紧刹车盘,利用摩擦力将运动中的车辆减速或停止。

盘式制动器具有结构简单、制动效果好、散热性能好等优点,在各种车辆中得到了广泛应用。

一、盘式制动器的结构1.刹车盘:刹车盘是固定在车轮轴上的金属圆盘,具有一定的厚度和直径。

它可以通过与刹车盘夹紧形成的摩擦力,将动能转化为热能,并将车辆减速或停止。

2.刹车卡钳:刹车卡钳是夹紧刹车盘的装置,通常由两个活塞组成。

刹车卡钳一般固定在车辆悬挂系统的一侧,它可以通过制动系统传递的压力来夹紧或释放刹车盘。

3.刹车片:刹车片是直接与刹车盘接触并产生摩擦的部件。

一般由摩擦材料制成,能够承受高温和高速的摩擦,同时具有较好的耐磨性能。

4.制动油管路:制动油管路连接刹车卡钳和刹车泵,用于传递压力信号。

它通常由高强度金属材料制成,能够承受高压力并具有良好的密封性能。

5.刹车泵:刹车泵是生成制动力的装置,通常通过人工或电子信号来产生压力信号,将制动液传递给刹车卡钳。

二、盘式制动器的工作原理1.制动力的生成:当驾驶员踩下制动踏板时,传感器会将信号传递给刹车泵,刹车泵会根据制动力的需求生成相应的压力信号。

然后,这个压力信号通过制动油管路传递到刹车卡钳。

2.刹车盘的夹紧:刹车卡钳接收到来自刹车泵的压力信号后,活塞会向刹车盘移动并夹紧住刹车盘。

夹紧刹车盘的力可以通过踏板上施加压力的大小来调节。

3.摩擦产生制动力:刹车盘和刹车片之间的夹紧形成了一定的摩擦力,这个摩擦力可以将车辆的动能转化为热能,并产生制动力。

制动力的大小取决于夹紧刹车盘的力以及刹车片的摩擦系数和表面积。

4.散热:在制动过程中,刹车盘和刹车片产生的摩擦会产生大量的热能,如果不能及时散热,会导致制动失效。

为了保证制动效果,盘式制动器通常会采用散热鳍片或通风孔等散热装置,以增加散热表面积,降低刹车温度。

总结起来,盘式制动器通过夹紧刹车盘与刹车片的摩擦产生制动力,将车辆减速或停止。

制动单元的工作原理及作用

制动单元的工作原理及作用

制动单元的工作原理及作用一、制动单元的工作原理制动单元由大功率晶体管GTR及其驱动电路构成。

其功能是为放电电流环节电容器在规定的电压范围内储存不了或者内接的制动电阻来不及消耗掉而使直流部分"过压"时,需要加外接制动组件,以加快消耗再生电能的速度。

在某些应用场合,需要快速降速,根据异步电动机原理可知,若滑差越大转矩也越大,同理制动转矩将随着降速速率的加大而增大,使系统降速时间大大缩短,能量回馈大大加快,直流母线电压快速上升,因此必须将该回馈能量迅速消耗掉,保持直流母线电压在某一安全范围以下。

制动单元系统的主要功能就是能快速将该能量消耗掉(能量由制动电阻转换成热能散发)。

它有效的弥补了普通变频器的制动速度慢、制动转矩小(≤20%额定转矩)的缺点,对于一些需快速制动但频度较低的场合非常适用。

由于制动单元的工况属于短时工作,即每次的通电时间很短,在通电时间内,其温升远远达不到稳定温升;而每次通电后的间歇时间则较长,在间歇时间内,其温度足以降到与环境温度相同,因此制动电阻的额定功率将大大降低,价格也随之下降;另外由于IGBT只有一个,制动时间为ms级,对功率管开通与关断的暂态性能指标要求低,甚至要求关断时间尽量短,以减少关断脉冲电压,保护功率管;控制机理也相对简单,实现较为容易。

由于有以上优点,因此它广泛应用于起重机等势能负载及需快速制动但为短时工作制的场合。

二、制动单元的作用1、当电动机在外力的作用下减速时,电机以发电状态运行,产生再生能量。

其产生的三相交流电动势被变频器逆变部分的六个变频器专用型能量回馈单元续流二极管组成的三相全控桥整流,使变频器内直流母线电压持续升高。

2、当直流电压达到某一电压(制动单元的开启电压)时,制动单元功率开关管开通,电流流过制动电阻。

3、制动电阻释放热量,吸收再生能量,电机转速下降,变频器直流母线电压降低。

4、当直流母线电压降到某一电压(制动单元停止电压)时,制动单元的功率管关断。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理一、盘式制动器的结构1.盘状制动盘:制动盘是整个制动器的核心部分,它通常由铁、钢或铸铁制成。

制动盘外侧有一些齿槽或凹槽来增加散热效果。

2.制动钳:制动钳是制动器的活动部分,它由一对活塞组成,通过制动液或者拉线传递来实现制动盘的夹紧。

制动钳通常由铝合金或钢制成。

3.制动片(制动垫):制动片是与制动盘接触的部分,由高温耐磨材料制成,如有机材料、金属材料或复合材料。

制动片的摩擦面与制动盘的摩擦面接触时会产生摩擦力,从而实现制动器的工作。

4.制动油管或拉线:制动油管用于传递制动压力,使制动片与制动盘紧密接触;拉线用于通过机械连接来实现制动片的压紧。

二、盘式制动器的工作原理1.制动信号输入:当驾驶员踩下车辆制动踏板时,就会向制动系统输入制动信号。

对于液压传动的盘式制动器,制动踏板的力通过主缸将制动油压传递给制动钳;对于机械传动的盘式制动器,制动踏板的力通过拉线(手刹)将压力传递给制动钳。

2.制动力传递:通过制动油管或拉线,制动钳的活塞会受到压力,由此产生制动力。

当活塞接触制动盘时,制动力通过摩擦力将其固定在制动盘上。

3.摩擦力转化:制动片与制动盘接触时,会产生摩擦力。

摩擦力会将制动盘的转动动能转化为热能,并将制动盘的速度降低。

4.减速和停止:随着摩擦力的增加,制动片与制动盘之间的压力会增大。

这导致了两个相对运动物体(制动盘和车轮)之间的减速。

当制动片施加的摩擦力大于车轮产生的旋转力矩时,车轮将会停止旋转。

5.散热和冷却:由于摩擦会产生大量热能,在制动器工作的过程中,会不断产生热量。

为了防止过热损坏,制动盘通常会具有一些散热齿槽或凹槽,以增加散热效果并保持制动器的正常工作温度。

三、盘式制动器的优点1.高效制动:盘式制动器通过制动片与制动盘之间的摩擦力来实现制动,相对于其他制动器而言制动效果更好。

2.热量散发快:盘式制动器由于制动盘的散热齿槽或凹槽设计,热能更容易散发,不容易产生过热现象。

3.便于安装和维修:盘式制动器结构相对简单,易于安装和维修。

盘形制动器的工作原理

盘形制动器的工作原理

盘形制动器的工作原理盘形制动器蝶形弹簧产生制动力,靠油压松闸。

制动状态时,闸瓦压向制动盘的正压力的大小决定于液压缸内工作油压力。

如图所示,活塞同时受弹簧的作用力F2,压力油产生的力F1,综合阻力F3(包括空行)程压缩弹簧的力)作用,制动状态时F3的作用方向与F2相反。

故压向制动盘的正压力为:N=F2-F1-F3当改变油压力时,正压力N相应变化,盘形工作原理示意图油压值P=0时,即F1=0,正压力达最大值N max,N max=F2-F3,此时为全制动状态。

在松闸过程中,F3作用方向与F1相反,此时力平衡方程为:N=F2+F3-F1。

在P=P max时,F1>F2,活塞压缩蝶弹簧,是全松闸状态,N=0,即F1=F2+F3。

如图所示为正压力N相对于油压P的实验曲线。

由图中可以看出:1.正压力随油压P的增加而减少,其变化过程可以近似地看成线性关系。

2.松闸过程和制动过程所得曲线不重合,这是因为在松闸和制动过程活塞所需克服的摩擦力方向不同所致,松闸时,液压缸壁及密封圈对活塞的阻力与蝶形弹簧力的方向一致,所以在相同油压情况下(与制动过程相比)制动盘的正压力较低。

3.松闸和制动的不可控区(两条曲线不重合度)较小,说明有较高的控制灵敏性。

制动器在制动盘上产生的制动力矩,取决于正压力N的数值。

M Z=2NµR m n式中M2—制动力矩,单位为N·m;µ—闸瓦对制动盘的摩擦系数,µ=0.35~0.4;n=提升机制动器副数。

同时,制动力矩Mz应满足3倍静力矩Mj的要求,所以,N(单位为N)值可由下式确定:M Z=2NµR m n=3M j=3F C D/2 即:N=3DFc/(4R mµn)式中D—滚筒名义直径,单位为m; F—提升机最大静张力差,单位为N。

C。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理
盘式制动器是一种常见的汽车制动装置,其工作原理是通过摩擦力来实现制动
效果的。

盘式制动器主要由制动盘、制动钳和制动片等部件组成,下面我们来详细了解一下盘式制动器的工作原理。

首先,当司机踩下制动踏板时,制动液会被推送到制动钳内部的活塞上。

活塞
会根据压力的大小,将制动片挤压到制动盘上,从而产生摩擦力。

制动盘是安装在车轮上的,当制动片挤压到制动盘上时,制动盘会因为摩擦力的作用而减速甚至停止转动,从而使车辆减速甚至停止。

其次,制动片是盘式制动器中的关键部件,它是由摩擦材料制成的。

在制动过
程中,制动片会受到制动盘的摩擦,产生摩擦力来减速车辆。

制动片的材料通常是耐磨耐高温的材料,以确保在制动过程中能够持续发挥作用。

此外,制动盘也是盘式制动器中至关重要的部件。

制动盘一般由铸铁或者钢铁
制成,具有良好的散热性能和耐磨性能。

在制动过程中,制动盘会受到制动片的摩擦,产生热量,如果散热不好,就会导致制动盘变形甚至开裂,影响制动效果。

最后,制动钳是用来控制制动片挤压制动盘的部件。

制动钳通常由活塞、活塞
密封圈和钳体等部件组成。

活塞受到制动液的作用,会向外推动,从而挤压制动片。

制动钳的设计和制造对于制动系统的性能和安全性有着至关重要的影响。

综上所述,盘式制动器的工作原理主要是通过制动盘、制动片、制动钳等部件
的协同作用,利用摩擦力来实现车辆的减速和停止。

在日常驾驶中,我们要注意定期检查制动系统的工作状态,确保制动器的正常使用,以确保行车安全。

《城市轨道交通车辆》课件——盘型制动原理

《城市轨道交通车辆》课件——盘型制动原理
动相比,盘形制动有下列主要优点:
1. 可以大大减轻车轮踏面的热负荷和对车轮的机械磨耗。 2. 可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方
的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以 设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为 采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。 3. 制动平稳,制动作用力大,几乎没有噪声。
盘型制动的优缺点
但是,盘形制动也有它不足之处
1. 车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫 器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否 则,即使有防滑器,制动距离也比闸瓦制动要长。
2. 制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘型制动原理
目录
01 什么是盘型制动 02 盘型制动分类 03 盘型制动工作原理 04 盘型制动的优缺点
什么是盘型制动
盘型制动属于一种摩擦制动方式。制动时,制动缸通过制动夹钳使闸片夹紧 制动盘,使闸片与制动盘产生摩擦,把列车的动能转变为热能,热能通过制 动盘与闸片逸散于大气。
什么是盘型制动
盘型制动方式可以选择高性能的摩擦副材料和良好的散热结构,可以获得比 闸瓦制动大得多的制动功率。
盘型制动工作原理
盘形制动装置的构造由单元制动缸、 夹钳装置,闸片和制动盘组成。
制动时,制动缸活塞杆推出,制动 缸缸体和活塞杆带动两根杠杆,通 过杠杆和支点拉板组成的夹钳,使 装在闸片托上的闸片同时夹紧制动 盘的两个摩擦面,产生制动作用。
缓解时,制动缸排气,活塞杆回缩, 使闸片释放制动盘,形成缓解作用。
盘型制动工作原理
盘形制动是随着高速列车而产生并 发展起来的。要想列车从很高的速 度下降到低速或停止,必然要求有 一个高效的基础制动装置,而盘形 制动采用制动盘和制动闸片相互摩 擦作用,将动能转化成热能消耗掉, 制动高效,而且不会损伤轮对的踏 面。这种制动方式在高速列车和动 车组中得到广泛的应用。

盘式制动器的原理

盘式制动器的原理

盘式制动器的原理一、引言盘式制动器是一种常见的汽车制动系统,在现代车辆中广泛应用。

它具有制动力强、耐久性好、散热性能优异等优点,成为了汽车制动系统的主流。

本文将介绍盘式制动器的工作原理,从而让读者更好地理解其工作过程。

二、盘式制动器的构成盘式制动器由刹车盘、刹车片、刹车卡钳和刹车主缸等部件组成。

刹车盘固定在车轮上,刹车片则被刹车卡钳夹紧,通过刹车主缸来施加刹车力。

当驾驶员踩下刹车踏板时,刹车主缸会产生液压力,将刹车片推向刹车盘,从而实现制动效果。

三、工作原理盘式制动器的工作原理可以分为三个步骤:制动施加、制动力传递和制动释放。

1. 制动施加当驾驶员踩下刹车踏板时,刹车主缸内的液压力会增加,使得刹车卡钳内的活塞向外推动。

活塞的运动会夹紧刹车片,使其与刹车盘紧密接触。

由于刹车盘与车轮相连,当刹车盘受到刹车片的摩擦力时,车轮也会受到制动力矩的作用,从而减速或停止车辆。

2. 制动力传递制动力需要通过刹车片和刹车盘之间的摩擦力传递到车轮上。

刹车片与刹车盘之间的摩擦力取决于刹车片的材料和设计,以及刹车盘的摩擦系数。

通常,刹车片采用摩擦系数较高的材料,如金属陶瓷复合材料,以提供较大的制动力。

3. 制动释放当驾驶员松开刹车踏板时,刹车卡钳内的液压力会减小,刹车片与刹车盘之间的接触力也会减小。

此时,刹车片会自动与刹车盘分离,车轮恢复正常运动。

为了防止刹车片长时间与刹车盘接触而产生损坏或过热,盘式制动器通常还配备了刹车片自动松开机构,以保护刹车系统的正常工作。

四、盘式制动器的优缺点盘式制动器相比于其他制动器具有以下优点:1. 制动力强:盘式制动器可以提供更大的制动力矩,使车辆更快减速或停止。

2. 散热性能优异:盘式制动器的刹车盘暴露在空气中,散热更快,不易产生制动衰减现象。

3. 耐久性好:盘式制动器的刹车片与刹车盘之间的接触面积较大,摩擦力分布均匀,使用寿命较长。

然而,盘式制动器也存在一些缺点:1. 重量较大:盘式制动器的刹车盘和刹车卡钳相对较重,会增加车辆的整体质量。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理
盘式制动器是一种常见的汽车制动装置,用于减速或停止汽车运动。

它由刹车盘、刹车钳和刹车片等组成。

工作时,当驾驶员踩下刹车踏板时,液压系统中的制动液被压入刹车钳内。

刹车钳里的活塞受到液压力的作用,向外移动。

刹车钳内还装有刹车片,它们与刹车盘相对,减缓或停止盘的转动。

活塞的移动使刹车片紧贴刹车盘,在其表面产生摩擦力。

这个摩擦力通过摩擦转化为热能,将刹车盘的运动能量转化为热量,实现减速或停止汽车。

由于刹车片与刹车盘接触面积大、摩擦力大,因此能够产生较高的制动效果。

为了保证刹车片与刹车盘之间的良好接触,制动器通常会在活塞和刹车片之间增加一个弹簧装置,用于保持刹车片与刹车盘之间的一定间隙。

当驾驶员松开刹车踏板时,刹车片会回到起始位置,以减少与刹车盘之间的摩擦。

为了提高刹车的性能和安全性,一些高级制动器还会加入附加装置,如防抱死系统(ABS)和制动力分配系统(EBD)。

它们帮助驾驶员更好地控制车辆刹车,避免轮胎锁死和制动不均衡等现象,确保行车安全。

总之,盘式制动器通过刹车盘、刹车钳和刹车片的协同作用来减速或停止汽车运动。

它利用液压力和摩擦力将运动能量转化为热能,从而实现安全的制动效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SP2型盘形制动单元的作用原理
SP2型盘形制动单元的工作状态分为:正常间隙制动位,正常间隙缓解位,过大间隙制动位,过大间隙缓解位。

其中过大间隙缓解位又有第一阶段状况和第二阶段状况。

(一)合成闸片与制动盘正常间隙时的作用
制动时压力空气进入制动缸膜板的右侧,推动膜板及活塞向左移,压缩复原弹簧,同时也带动引导挡铁、引导螺母,调整螺母合丝杠一起向左移动,此时,调整挡铁也在调整弹簧的推动下移动了一个距离,[见下图(a)]这时闸片正好与制动盘接触,即完成了制动作用。

在此过程中,闸片间隙调整器不发生调整作用。

当制动机缓解时,压力空气由制动缸膜板的右侧排出[见下图(b)],活塞在复原弹簧的伸张作用下,恢复到缓解位置。

引导挡铁随着活塞退回到原位。

这样,调整挡铁也退回原位,移动的距离正好是标准间隙A值。

(二)合成闸片与制动盘间隙过大时的作用
制动时压力空气进入制动缸膜板的右侧,推动膜板及活塞向左移动的同时,带动引导挡铁,引导螺母,调整螺母和丝杠一起向左移动,所移动的距离超过了标准间隙A值,见下图(c)过大间隙制动位。

设闸片与制动盘磨耗后活塞等增加的移动距离为f,即丝杠向左移动了A+f的距离,而此过程中调整挡铁去被导向螺栓挡住,仅移动了标准距离A值,不断继续移动,调整螺母与调整挡铁啮合部分脱开,在调整弹簧的作用下,推动轴承向右旋转的同时,带动了调整螺母在非自锁螺纹丝杠上放置很快与调整挡铁重新啮合,此时,在调整螺母与护管之间形成了间隙f。

缓解时分为两个阶段,第一阶段,膜板右侧的压力空气排除,活塞在复原弹簧伸长的作用下向右移动,在此过程中引导挡铁和调整挡铁等跟随活塞一起向右移动,所移动的距离为标准间隙A值,见下图(d)过大间隙缓解位的第一阶段。

缓解第二阶段过程中,膜板右侧的压力空气继续排除。

活塞在复原弹簧的伸长作用下继续移动。

引导螺母与引导挡铁脱开,在引导弹簧的作用下,推动轴承向右旋转的同时,带动了引导螺母在非自锁螺纹丝杠上旋转,很快与引导挡铁重新啮合。

在这一阶段丝杠没有移动,消除了闸片和制动盘磨耗后增加的间隙,见下图(e)过大间隙缓解位的第二阶段。

通过这两个阶段的缓解过程,闸片间隙调整器对超出标准间隙值A的f值进行了调整,也就是消除了合成闸片和制动盘的磨耗增大的间隙,使闸片间隙又恢复到了标准值。

图SP2型盘形制动单元的作用原理。

相关文档
最新文档