不等式训练题
初中不等式专题训练(含详解)

不等式专题训练一.选择题(共9小题)1.当1≤x≤2时,ax+2>0,则a的取值范围是( )A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠0 2.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3.如果不等式组恰有3个整数解,则a的取值范围是( )A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣1 4.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )A.a>1B.a≤2C.1<a≤2D.1≤a≤25.已知关于x的不等式组恰有3个整数解,则a的取值范围是( )A.B.C.D.6.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2 7.若x>y,则下列式子中错误的是( )A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>8.关于x的不等式组的解集为x>1,则a的取值范围是( )A.a>1B.a<1C.a≥1D.a≤19.不等式组的解集是x>1,则m的取值范围是( )A.m≥1B.m≤1C.m≥0D.m≤0二.填空题(共4小题)10.若不等式组恰有两个整数解.则实数a的取值范围是 .11.若不等式组有解,则a的取值范围是 .12.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是 .13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 .三.解答题(共5小题)14.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.15.已知x=3是关于x的不等式的解,求a的取值范围.16.解不等式:≤﹣1,并把解集表示在数轴上.17.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.18.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.不等式专题练习参考答案与试题解析一.选择题(共9小题)1.当1≤x≤2时,ax+2>0,则a的取值范围是( )A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠0【考点】C2:不等式的性质.【分析】当x=1时,a+2>0;当x=2,2a+2>0,解两个不等式,得到a的范围,最后综合得到a的取值范围.【解答】解:当x=1时,a+2>0解得:a>﹣2;当x=2,2a+2>0,解得:a>﹣1,∴a的取值范围为:a>﹣1.2.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】C2:不等式的性质.【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.3.如果不等式组恰有3个整数解,则a的取值范围是( )A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣1【考点】CC:一元一次不等式组的整数解.【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【解答】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选:C.4.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )A.a>1B.a≤2C.1<a≤2D.1≤a≤2【考点】C3:不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故选:C.5.已知关于x的不等式组恰有3个整数解,则a的取值范围是( )A.B.C.D.【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选:B.6.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2【考点】C7:一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选:D.7.若x>y,则下列式子中错误的是( )A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>【考点】C2:不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.8.关于x的不等式组的解集为x>1,则a的取值范围是( )A.a>1B.a<1C.a≥1D.a≤1【考点】C3:不等式的解集.【分析】解两个不等式后,根据其解集得出关于a的不等式,解答即可.【解答】解:因为不等式组的解集为x>1,所以可得a≤1,故选:D.9.不等式组的解集是x>1,则m的取值范围是( )A.m≥1B.m≤1C.m≥0D.m≤0【考点】C3:不等式的解集.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.二.填空题(共4小题)10.若不等式组恰有两个整数解.则实数a的取值范围是 <a≤1.【考点】CC:一元一次不等式组的整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有两个整数解得出不等式组1<2a≤2,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣,解不等式②得:x<2a,∴不等式组的解集为﹣<x<2a,∵不等式组有两个整数解,∴1<2a≤2,∴<a≤1,故答案为:<a≤1.11.若不等式组有解,则a的取值范围是 a>﹣1.【考点】C3:不等式的解集.【分析】先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.12.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是 m<2.【考点】C3:不等式的解集.【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】解:不等式(m﹣2)x>2﹣m的解集为x<﹣1,∴m﹣2<0,m<2,故答案为:m<2.13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 131或26或5或.【考点】CE:一元一次不等式组的应用.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:我们用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是,∴满足条件所有x的值是131或26或5或.故答案为:131或26或5或.三.解答题(共5小题)14.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【考点】97:二元一次方程组的解;CC:一元一次不等式组的整数解.【分析】首先根据方程组可得,再解不等式组,确定出整数解即可.【解答】解:①+②得:3x+y=3m+4,②﹣①得:x+5y=m+4,∵不等式组,∴,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.15.已知x=3是关于x的不等式的解,求a的取值范围.【考点】C3:不等式的解集.【分析】方法1:先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.方法2:把x=3带入原不等式得到关于a的不等式,解不等式即可求出a的取值范围.【解答】解:方法1:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a<4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去).综上得a的取值范围是a<4.方法2:把x=3带入原不等式得:3×3﹣>,解得:a<4.故a的取值范围是a<4.16.解不等式:≤﹣1,并把解集表示在数轴上.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.17.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.18.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.。
基本不等式专题训练试卷

基本不等式专题训练试卷一、选择题(每题5分,共30分)1. 若a,b∈ R,且ab > 0,则下列不等式中,恒成立的是()A. a + b≥slant2√(ab)B. (1)/(a)+(1)/(b)>(2)/(√(ab))C. (b)/(a)+(a)/(b)≥slant2D. a^2+b^2>2ab解析:- 选项A:当a <0,b <0时,a + b≥slant2√(ab)不成立,因为a + b<0,2√(ab)>0。
- 选项B:当a <0,b <0时,(1)/(a)+(1)/(b)<0,(2)/(√(ab))>0,所以(1)/(a)+(1)/(b)>(2)/(√(ab))不成立。
- 选项C:因为ab>0,则(b)/(a)>0,(a)/(b)>0,根据基本不等式(b)/(a)+(a)/(b)≥slant2√(frac{b){a}×(a)/(b)} = 2,当且仅当a = b时取等号,该式恒成立。
- 选项D:当a=b时,a^2+b^2=2ab,所以a^2+b^2>2ab不恒成立。
所以答案是C。
2. 已知x>0,y>0,且x + y=1,则(1)/(x)+(1)/(y)的最小值为()A. 2B. 2√(2)C. 4D. 2 + 2√(2)解析:因为x + y = 1,x>0,y>0,则(1)/(x)+(1)/(y)=(x + y)/(x)+(x +y)/(y)=2+(y)/(x)+(x)/(y)。
根据基本不等式(y)/(x)+(x)/(y)≥slant2√(frac{y){x}×(x)/(y)}=2,当且仅当x=y=(1)/(2)时取等号。
所以(1)/(x)+(1)/(y)=2+(y)/(x)+(x)/(y)≥slant2 + 2=4,答案是C。
3. 设a>0,b>0,若√(3)是3^a与3^b的等比中项,则(1)/(a)+(1)/(b)的最小值为()A. 8B. 4C. 1D. (1)/(4)解析:因为√(3)是3^a与3^b的等比中项,则(√(3))^2=3^a×3^b=3^a + b,所以a + b = 1。
(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。
集合不等式练习题

一,选择题1. 设a 为给定的实数,则集合{x|x 2-3x-a 2+2=0,x ∈R}的子集的个数是( )A.1B.2C.4D.不确定2.若A ={1,3,X},B ={X 2,1}.且A U B=A,这样X 的不同值有几个( )A.1个B.2个 C,3个 D.4个3.不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .a >b 2 D .a 2>2b 5.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( )A .-3<a <1B .-2<a <0C .-1<a <0D .0<a <26.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。
A. 10 B. -10 C. 14 D. -147.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ).A .4-≤m 或4≥mB . 45-≤<-mC .45-≤≤-mD . 25-<<-m8.若c a >且0>+c b ,则不等式0))((>-+-ax b x c x 的解集为( ) A .{}c x b x a x ><<-或,| B . {}b x c x a x ><<-或,|C .{}c x a x b x ><<-或,|D . {}a x c x b x ><<-或,|二、填空题1,设A ={(x,y)|y=1-3x},B={(x,y)|y=(1-2k 2)x+5}, 若A W B=Ø,则k 的取值范围是____________2.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________。
基本不等式训练题

基本不等式训练题一、题点全面练x 2-2x +1⎡1⎤1.已知f (x )=,则f (x )在⎢,3⎥上的最小值为()x⎣2⎦14A. B.23C .-1D .0x 2-2x +11解析:选D f (x )==x +-2≥2-2=0,x x1⎡1⎤当且仅当x =,即x =1时取等号.又1∈⎢,3⎥,x⎣2⎦⎡1⎤所以f (x )在⎢,3⎥上的最小值是0.⎣2⎦2.(2018·哈尔滨二模)若2+2=1,则x +y 的取值范围是()A .[0,2]C .[-2,+∞)x y x y x y B .[-2,0]D .(-∞,-2]x +y 解析:选D 由1=2+2≥22·2,变形为2时取等号.则x +y 的取值范围是(-∞,-2].1≤,即x +y ≤-2,当且仅当x =y4123.若实数a ,b 满足+=ab ,则ab 的最小值为()a bA.2C .22B .2D .412解析:选C 因为+=ab ,所以a >0,b >0,a b12由ab =+≥21a ba b 2·=22ab,所以ab ≥22(当且仅当b =2a 时取等号),所以ab 的最小值为2 2.31m 4.已知a >0,b >0,若不等式+≥恒成立,则m 的最大值为()a b a +3bA .9C .1831m 解析:选B 由+≥,a b a +3bB .12D .24⎛31⎫9b a得m ≤(a +3b ) +⎪=++6.⎝a b ⎭a b9b a又++6≥29+6=12,a b⎛当且仅当9b =a ,即a =3b 时等号成立⎫,⎪a b ⎝⎭∴m ≤12,∴m 的最大值为12.1925.正数a ,b 满足+=1,若不等式a +b ≥-x +4x +18-m 对任意实数x 恒成立,a b则实数m 的取值范围是()A .[3,+∞)C .(-∞,6]B .(-∞,3]D .[6,+∞)19解析:选D 因为a >0,b >0,+=1,a ba b 9a b 9a ⎛19⎫所以a +b =(a +b ) +⎪=10++≥10+29=16,当且仅当=,即a =4,b =⎝a b ⎭b a b12时,等号成立.由题意,得16≥-x +4x +18-m ,即x -4x -2≥-m 对任意实数x 恒成立,令f (x )=x -4x -2=(x -2)-6,所以f (x )的最小值为-6,所以-6≥-m ,即m ≥6.116.(2019·青岛模拟)已知x >0,y >0,(lg 2)x +(lg 8)y =lg 2,则+的最小值x 3y 是________.11⎛11⎫解析:因为(lg 2)x +(lg 8)y =lg 2,所以x +3y =1,则+= +⎪(x +3y )=2x 3y ⎝x 3y ⎭3y x 3y x 1111++≥4,当且仅当=,即x =,y =时取等号,故+的最小值为4.x 3y x 3y 26x 3y 答案:47.若正数x ,y 满足4x +9y +3xy =30,则xy 的最大值为________.解析:30=4x +9y +3xy ≥236x y +3xy ,即30≥15xy ,所以xy ≤2,2322当且仅当4x =9y ,即x =3,y =时等号成立.3故xy 的最大值为2.答案:222222222228.规定:“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k的值为________,此时函数f (x )=k ⊗x的最小值为________.x解析:由题意得1⊗k =k +1+k =3,即k +k -2=0,解得k =1或k =-2(舍去),所以k =1,故k 的值为1.1⊗x x +x +11又f (x )===1+x +≥1+2=3,xxx当且仅当x =1x,即x =1时取等号,故函数f (x )的最小值为3.答案:139.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.82解:(1)由2x +8y -xy =0,得+=1.x y又x >0,y >0,82则1=+≥28x y x y28·=,得xy ≥64,xy82当且仅当=,即x =16且y =4时,等号成立.x y所以xy 的最小值为64.82(2)由2x +8y -xy =0,得+=1,x y⎛82⎫则x +y = +⎪(x +y )x y ⎝⎭2x 8y=10++≥10+2y x2x 8y·=18.y x2x 8y当且仅当=,即x =12且y =6时等号成立,y x所以x +y 的最小值为18.3810.(1)当x <时,求函数y =x +的最大值;22x -3(2)设0<x <2,求函数y =x 183解:(1)y =(2x -3)++22x -32-2x 的最大值.=- ⎛3-2x+8⎫+3.⎪3-2x ⎭2⎝23当x <时,有3-2x >0,2∴3-2x 8+≥223-2x3-2x 8·=4,23-2x3-2x 81当且仅当=,即x =-时取等号.23-2x 2355于是y ≤-4+=-,故函数的最大值为-.222(2)∵0<x <2,∴2-x >0,∴y =x-2x =2·x-x ≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x-2x 的最大值为 2.二、专项培优练(一)易错专练——不丢怨枉分1.已知a >b >1,且2log a b +3log b a =7,则a +A .3C .2B.3D.21的最小值为()b -1231解析:选A 令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +=7,得t =,t 21112即log a b =,a =b ,所以a +2=a -1++1≥22b -1a -1当a =2时取等号.故a +1的最小值为3.b -12a -1+1=3,当且仅a -112212.若正数a ,b 满足:+=1,则+的最小值为()a b a -1b -2A .25C.2B.32232D .1+4122a解析:选A 由a ,b 为正数,且+=1,得b =>0,所以a -1>0,a b a -1所以21212a -1+=+=+a -1b -2a -12a a -12-2a -1≥22a -1·=2,a -122a -112=和+=1同时成立,a -12a b 当且仅当即a =b =3时等号成立,所以21+的最小值为2.a -1b -233.函数y =1-2x -(x <0)的值域为________.x3⎛3⎫解析:∵x <0,∴y =1-2x -=1+(-2x )+ -⎪≥1+2x⎝x ⎭-2x3=1+-x26,当且仅当x =-63时取等号,故函数y =1-2x -(x <0)的值域为[1+26,+∞).2x 答案:[1+26,+∞)(二)交汇专练——融会巧迁移4.[与函数交汇]已知函数f (x )=log a (x +4)-1(a >0且a ≠1)的图象恒过定点A ,若直线+=-2(m >0,n >0)也经过点A ,则3m +n 的最小值为()A .16C .12B .8D .14x ym n解析:选B 由题意,函数f (x )=log a (x +4)-1(a >0且a ≠1),令x +4=1,可得x =-3,代入可得y =-1,∴图象恒过定点A (-3,-1).∵直线+=-2(m >0,n >0)也经过点A ,3131∴+=2,即+=1.m n 2m 2nx ym n⎛31⎫913n 3m ∴3m +n =(3m +n ) +⎪=+++≥2⎝2m 2n ⎭222m 2n时,取等号)∴3m +n 的最小值为8.3n 3m·+5=8(当且仅当n =m =22m 2n5.[与数列交汇]已知首项与公比相等的等比数列{a n }中,若m ,n ∈N ,满足a m a n =a 4,21则+的最小值为()*22m nA .13B.2C .29D.2解析:选A 根据题意,设{a n }的公比为q ,则a m =q ,a n =q ,a 4=q .由a m a n =a 4得q 22m n 4m +2n =q ,8=1.8∴m +2n =8,∴m +2n21*又m ,n ∈N ,∴+=m nm +2n m +2n 1n m 11+=+++≥+28m 8n 42m 8n 421=1,16当且仅当=,即m =2n =4时取“=”,2m 8n21∴+的最小值为1.n mm n6.[与解析几何交汇]若直线mx +ny +2=0(m >0,n >0)被圆(x +3)+(y +1)=1所截13得的弦长为2,则+的最小值为()22m nA .4C .12B .6D .16解析:选B 圆心坐标为(-3,-1),半径为1,又直线被圆截得的弦长为2,所以直131⎛13⎫1⎛n 9m ⎫1线过圆心,所以-3m -n +2=0,3m +n =2,所以+=(3m +n ) +⎪= 6++⎪≥m n 2⎝m n ⎭2⎝m n ⎭2⎛6+2⎝n 9m 13n 9m ⎫·⎪=6,当且仅当=时取等号,因此+的最小值为6,故选B.m n m n m n ⎭x +2y -3≤0,⎧⎪7.[与线性规划交汇]已知x ,y 满足⎨x +3y -3≥0,⎪⎩y ≤1,a bz =2x +y 的最大值为m ,若14正数a ,b 满足a +b =m ,则+的最小值为__________.解析:画出不等式组所表示的平面区域如图中阴影部分所示,z =2x +y 的几何意义为直线2x +y -z =0在y 轴上的截距,由图可知,当直线过点M时,直线2x +y -z =0在y 轴上的截距最大,即目标函数z =2x +y 取得最大值,由⎧⎪x +2y -3=0,⎨⎪x +3y -3=0,⎩解得M (3,0),所以z 的最大值为2×3+0=6,即m =6,所以a +b =6,141⎛14⎫1⎛b4a⎫1⎛故+= +⎪·(a+b)= 5++⎪≥ 5+2 a b6⎝a b⎭6⎝a b⎭6⎝b4ab4a⎫3当且仅当=,即b=4,·⎪=,a ba b⎭2a=2时等号成立.3答案:2。
初一不等式难题-经典题训练(附答案)

初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。
基本不等式训练题(含答案)

基本不等式训练题(含答案)1.若xy>0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400B.100C.40D.20答案:A3.已知x≥2,则当x=____时,x+4x有最小值____.答案:244.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0时,求f(x)的最大值.解:(1)∵x>0,∴12x,4x>0.∴12x+4x≥212x•4x=83.当且仅当12x=4x,即x=3时取最小值83,∴当x>0时,f(x)的最小值为83.(2)∵x<0,∴-x>0.则-f(x)=12-x+(-4x)≥212-x• -4x =83,当且仅当12-x=-4x时,即x=-3时取等号.∴当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b∈(0,+∞),∴ba+ab≥2ba•ab=2;②∵x,y∈(0,+∞),∴lgx+lgy≥2lgx•lgy;③∵a∈R,a≠0,∴4a+a≥24a•a=4;④∵x,y∈R,,xy<0,∴xy+yx=-(-xy)+(-yx)]≤-2 -xy -yx =-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b∈(0,+∞),∴ba,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x,y∈(0,+∞),但当x∈(0,1)时,lgx是负数,y∈(0,1)时,lgy 是负数,∴②的推导过程是错误的;③∵a∈R,不符合基本不等式的条件,∴4a+a≥24a•a=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab≥2ab+2ab≥22×2=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,∴xy=8x+2y≥28x•2y=8xy,当且仅当8x=2y时等号成立.∴xy≥64.二、填空题7.函数y=x+1x+1(x≥0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y≥2x•4y=4xy,∴xy≤116.答案:大1169.(2010年高考山东卷)已知x,y∈R+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y4≥2xy12,∴xy≤3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2 x+1 •4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,∴x-1>0.∴(x-1)+9x-1+2≥2 x-1 •9x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,∴y有最小值8.11.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1a-1)•(1b-1)•(1c -1)≥8.证明:∵a,b,c∈(0,+∞),a+b+c=1,∴1a-1=1-aa=b+ca=ba+ca≥2bca,同理1b-1≥2acb,1c-1≥2abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)≥8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400×(2x+2×200x)+100×200x+60×200=800×(x+225x)+12000≥1600x•225x+12000=36000(元)当且仅当x=225x(x>0),即x=15时等号成立.。
基本不等式专题训练

基本不等式专题训练一、选择题1.已知a,b∈R,且a+b=1,则ab的最大值为()A. 41B. −41C. 1D. 不存在2.对于任意正实数x,y,下列不等式恒成立的是()A. x2+y2≥2xyB. x2+y2≤2xyC. x+y≥2xyD. x+y≤2xy3.已知a,b,c>0,且a+b+c=1,则a+b+c的最大值为()A. 1B. 3C. 3D. 33二、填空题4.已知x>0,则函数y=4x+x1的最小值为____。
5.已知a,b>0,且a+b=5,则a1+b4的最小值为____。
三、解答题6.已知x,y∈R,且x+y=4,求3x+9y的最小值。
7.已知a,b,c>0,且a+b+c=1,证明:a+b+c≤2。
8.已知x>0,y>0,且xy=4,求x+yx2+y2的最小值。
参考答案一、选择题1.A解析由a+b=1,根据基本不等式(a−b)2≥0,展开得a2−2ab+b2≥0,即a2+b2≥2ab。
又因为(a+b)2=a2+2ab+b2=1,所以2ab≤1−(a2+b2)+2ab=1,即ab≤41。
当且仅当a=b=21时,等号成立。
2.A解析对于任意正实数x,y,根据平方和公式,有x2+y2≥2xy(当且仅当x=y时取等号)。
而选项C和D分别对应的是算术平均数与几何平均数的关系,但仅当x,y均为正数时,算术平均数才大于等于几何平均数,且等号成立的条件是x=y。
选项B显然不成立。
3.B解析由柯西不等式(Cauchy-Schwarz Inequality)得(a+b+c)2≤(12+12+12)(a+b+c)=3,即a+b+c≤3。
当且仅当a=b=c=31时,等号成立。
二、填空题4.41解析由算术平均数与几何平均数的关系得y=4x+x1≥24x⋅x1=4(当且仅当4x=x1,即x=21时取等号)。
5.59解析由“乘1法”与基本不等式得a1+b4=51(a+b)(a1+b4)=51(5+ab+b4a )≥51(5+2ab⋅b4a)=59(当且仅当ab=b4a,即a=35,b=310时取等号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式练习题
一、选择题
1、若a,b 是任意实数,且a >b,则 ( )
(A )a 2>b 2 (B )a b <1 (C )lg(a-b)>0 (D )(21)a <(21
)b
2、下列不等式中成立的是 ( )
(A )lgx+log x 10≥2(x >1) (B )a 1
+a ≥2 (a ≠0)
(C )a 1<b 1(a >b) (D )a 21
+t ≥a t (t >0,a >0,a ≠1)
3、已知a >0,b >0且a +b =1, 则()11
)(11
22--b a 的最小值为 ( )
(A )6 (B ) 7 (C ) 8 (D ) 9
4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R );
(3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( )
(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个
5、f (n ) = 12+n -n , ϕ(n )=n 21
, g (n ) = n 12--n , n ∈N ,则 ( )
(A ) f (n )<g (n ) <ϕ(n ) (B ) f (n )<ϕ(n )<g (n ) (C ) g (n )<ϕ(n )<g (n ) (D )g (n )<f (n )<ϕ(n )
6、设x 2+y 2 = 1, 则x +y ( )
(A ) 有最小值1 (B ) 有最小值2 (C )有最小值-1 (D ) 有最小值-2
7、不等式|x +5|>3的解集是 ( )
(A){x|-8<x <8} (B){x|-2<x <2} (C){x|x <-2或x >2= (D){x|x <-8或x >-2=
8、若a ,b ,c 为任意实数,且a >b ,则下列不等式恒成立的是 ( )
(A)ac >bc (B)|a +c|>|b +c| (C)a 2>b 2 (D)a +c >b +c
9、设集合M={x|13-+x x ≤0},N={x|x 2+2x-3≤0},P={x|322)21(-
+x x ≥1},则有 ( )
(A )M ⊂N=P (B )M ⊂N ⊂P (C )M=P ⊂N (D )M=N=P
10、设a,b ∈R,且a+b=3,则2a +2b 的最小值是 ( )
(A )6 (B )42 (C )22 (D )26
11、若关于x 的不等式ax 2+bx -2>0的解集是⎪⎭
⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3121, ,则ab 等于( )
(A)-24 (B)24 (C)14 (D)-14
12、如果关于x 的不等式(a -2)x 2+2(a -2)x -4<0对一切实数x 恒成立,则实数a 的取值范围是(
) (A)]2,(-∞ (B))2,(--∞ (C)]2,2(- (D)(-2,2)
13、设不等式f(x)≥0的解集是[1,2],不等式g(x) ≥0的解集为Φ,则不等式0)()
(>x g x f 的解集是(
) (A) Φ (B)+∞-∞,2()1,( ) (C)[1,2] (D)R
14、22+>+x x
x x 的解集是 ( )
(A ) (-2,0) (B ) (-2,0) (C ) R (D ) (-∞,-2)∪(0,+ ∞)
15、不等式33
31>--x 的解集是 ( ) (A ) (-∞,1) (B ) (
43,1 ) (C ) (43,1) (D ) R 二、填空题
1、若x 与实数列a 1,a 2,…,a n 中各数差的平方和最小,则x=________.
2、不等式x
x x
121log 〈的解集是________. 3、某工厂产量第二年增长率是p 1,第三年增长率是p 2,第四年增长率是p 3且p 1+p 2+p 3=m(定值),那么这三年平均增长率的最大值是________.
4、a ≥0,b ≥0,a 2+22
b =1,则a 21b +的最大值是________. 5、若实数x 、y 满足xy >0且x 2y=2,则xy +x 2的最小值是________.
6、x >1时,f(x)=x +1
1612++x x x 的最小值是________,此时x=________. 7、不等式log 4(8x -2x )≤x 的解集是________.
8、不等式3
21141-〉-x x 的解集是________. 9、命题①:关于x 的不等式(a -2)x 2+2(a -2)x -4<0对x ∈R 恒成立;命题②:f(x)=-(1-3a -a 2)x 是减函
数.若命题①、②至少有一个为真命题,则实数a 的取值范围是________.
10、设A={x|x ≥
x
1,x ∈R},B={x|12+x <3,x ∈R =,则D=A ∩B=________. 三、解答题 1、解不等式:1
211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0.
3、解不等式:
65592+--x x x ≥-2. 4、解不等式:2269x x x -+->3.
5、解不等式:232+-x x >x +5.
6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。
7、若x,y >0,求y x y
x ++的最大值。
8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大,
求参数m 的取值范围。
9、解不等式:log a (x +1-a)>1. 10解不等式38->-x x .
不等式练习答案
一、DADCB DDDAB BCBAB
二、1、n 1(a 1+a 2+…+a n ) 2、0<x <1或x >2 3、3m 4、423 5、3 6、8,2+3 7、(0,2
51log 2+) 8、0<x <log 23 9、-3<x ≤2 10、-21
≤x <0或1≤x <4
三、1、[-21
,1]∪(1,34
) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞)
4、(0,3)
5、(-∞,-1323
) 6、1, 43
7、2 8、-2<m <0
9、解:(I)当a>1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.101a a x a x ,
解得x>2a-1.
(II)当0<a<1时,原不等式等价于不等式组:⎩⎨⎧<->-+.101a a x a x +,
解得:a-1<x<2a-1.
综上,当a>1时,不等式的解集为{x|x>2a-1};
当0<a<1时,不等式的解集为{x|a-1<x<2a-1}.
10、原不等价于不等式组(1)⎪⎩⎪⎨⎧
->-≥-≥-2)3(8030
8x x x x 或(2)⎩⎨⎧
<-≥-030
8x x
由(1)得221
53+<≤x , 由(2)得x <3, 故原不等式的解集为⎭
⎬⎫
⎩⎨⎧+<2215|x x。