扫描电子显微镜与能谱分析

合集下载

扫描电子显微镜及能谱仪SEM

扫描电子显微镜及能谱仪SEM

扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM是一种强大的实验仪器,它能够帮助我们开启微观世界的大门,从而深入了解物质在最基本层面的性质和结构。

本文将在以下几个方面对SEM及其应用进行介绍。

一、扫描电子显微镜SEM的原理扫描电子显微镜SEM是一种采用电子束的显微镜,通过高能电子束与样品相互作用,透过扫描线圈产生扫描信号,实现对样品表面形貌的观察和获取高清晰度的图像。

SEM和光学显微镜有很大的不同,光学显微镜是使用光来观察物质的显微镜,而SEM则是使用电子来观察物质。

扫描电子显微镜SEM的工作原理主要分为以下三个步骤:1、获得高能电子束:扫描电子显微镜SEM内部有个电子枪,电子枪发射出的电子经过加速器的加速器和聚焦极的聚焦,成为高能电子束。

2、扫描样品表面:高能电子束射向样品表面,样品表面反弹回来的电子信号被SEM仪器捕获。

3、产生扫描信号:把从样品表面反弹回来的电子信号进行放大,形成显微图像。

二、能谱仪的原理能谱仪是SEM中的重要组成部分,它可以检测电子在样品中的反应和监测样品中所含的化学元素,以及相应元素的含量。

能谱仪的工作原理是通过检测样品产生的X射线来分析样品组成,电子束与样品相互作用,产生一系列的X射线能量峰值。

每个元素都有不同能级的电子,其X射线产生的能量也分别对应不同的峰值。

因此,通过表征能谱仪所发现的不同X射线能量峰的位置和强度,可以确定样品中所含元素。

三、SEM的应用1、矿物学SEM被广泛应用于矿物学研究中,因为它能够提供很高的图像分辨率。

将样品与高能电子束相互作用可使样品表面反射的电子被收集,从而形成高分辨率的矿物学图像。

2、材料科学在材料科学中,SEM被用于表面形貌研究以及微观结构解析。

通过SEM可以获取材料的内部结构和力学特性,为材料研发和工业应用提供了有力支持。

3、医学SEM在医学领域也有极为重要的应用,例如用于人体组织医学研究。

SEM可以提供高质量且精细的人体组织图像,进一步促进了医学领域的研究和治疗。

材料表面改性测试与分析方法介绍

材料表面改性测试与分析方法介绍

材料表面改性测试与分析方法介绍材料表面改性是一种常见的工艺技术,它可以改善材料的性能和功能。

为了确保改性效果的准确评估和分析,需要使用一系列适用的测试和分析方法。

本文将介绍几种常见的材料表面改性测试与分析方法。

一、扫描电子显微镜(SEM)分析扫描电子显微镜(SEM)是一种常用的表面形貌分析方法,它可以通过高分辨率的图像展示材料表面的细微结构和形貌。

SEM分析可以帮助评估材料表面改性的效果,比较改性前后的表面形貌差异。

通过SEM分析,可以观察到材料的表面粗糙度、颗粒分布、裂纹情况等,从而判断改性效果的好坏。

二、接触角测试接触角测试是一种用来评估材料表面亲水性或疏水性的方法。

通过测量液滴在材料表面的接触角大小,可以得出材料表面的润湿性质。

一般来说,当液滴在材料表面接触角较小时,表明材料表面具有较好的润湿性;而当接触角较大时,表明材料表面具有较好的疏水性。

通过接触角测试,可以评估改性对材料表面润湿性的影响,进而判断改性效果。

三、拉伸试验拉伸试验是一种常用的机械性能测试方法,用于评估材料的拉伸强度、断裂伸长率等性能指标。

在材料表面改性过程中,拉伸试验可以用来分析改性对材料的强度和韧性的影响。

比较改性前后的拉伸性能指标,可以评估改性效果的优劣。

此外,拉伸试验还可以帮助分析改性对材料的断裂模式和失效机制的影响,为改性工艺的优化提供依据。

四、傅里叶变换红外光谱(FTIR)分析傅里叶变换红外光谱(FTIR)是一种用来分析材料化学组成和化学键信息的技术。

通过FTIR分析,可以观察到材料表面的功能基团情况,从而评估改性效果。

比较改性前后材料表面的红外光谱图谱,可以检测到新的峰位或峰强的出现,进而判断表面功能基团的变化。

FTIR分析还可以揭示表面化学变化对材料性能的影响,为改性工艺的优化提供依据和指导。

五、电子能谱(XPS)分析电子能谱(XPS)是一种用来分析材料表面化学元素、化学键状态和成分比例的方法。

通过XPS分析,可以获得材料表面的元素组成、化学键能级和化学状态信息。

扫描电镜和能谱仪

扫描电镜和能谱仪

生物样品分析
用于研究生物组织、细胞中的元素分布和含量, 有助于了解生物体的生理功能和代谢机制。
能谱仪的优缺点
优点
能谱仪具有快速、无损、高精度和高灵敏度的特点,可同时测定多种元素,且 对样品制备要求较低。
缺点
能谱仪的分辨率和探测器性能对测定结果有影响,对于轻元素和低含量的元素 测定可能存在误差。此外,能谱仪的造价和维护成本较高,需要专业人员操作 和维护。
04
扫描电镜与能谱仪的比较
工作原理的比较
扫描电镜(SEM)
扫描电镜是一种利用电子束扫描样品表面并产生图像的显微镜。电子束轰击样品 表面,激发出各种信号,如二次电子、背散射电子等,这些信号被探测器接收并 转换为电信号,进一步处理后形成图像。
工作原理的比较
能谱仪(EDS)
能谱仪是一种用于分析样品表面元素组成的仪器。当电子束轰击样品时,各元素会发出特征X射线,能谱仪通过检测这些特征 X射线的能量和强度,确定样品表面的元素种类和含量。
3
数据分析
收集到的信号经过计算机处理,转换成元素种类 和含量的信息,以谱图或表格形式展示。
能谱仪的应用范围
地质样品分析
用于分析岩石、矿物、土壤等地质样品中的元素 成分。
考古样品分析
用于鉴定文物、古迹中的元素成分,为考古研究 提供依据。
ABCD
环境样品分析
用于检测土壤、水体、大气等环境样品中的重金 属、有机污染物等。
04
能谱仪
优点:可分析样品表面的元素组成和含量 ,具有较高品表面的形貌和结构, 需要配合其他显微镜使用。
05
实际应用案例分析
扫描电镜在材料科学中的应用
01
02
03
金属材料
观察金属材料的微观结构, 如晶粒大小、相分布等, 分析材料的力学性能和热 性能。

扫描电镜 能谱

扫描电镜 能谱

扫描电镜能谱
扫描电子显微镜(Scanning Electron Microscope,SEM)是一种分析仪器,
通过对物质表面的电子扫描获取其结构和形态的物理方法。

该仪器可以用于测量、表征和分析物质以及进行物质表征与表面分析技术。

扫描电子显微镜可以在以微米尺度分布的表征数据上有效把握和描述物质表面形貌特征,例如,它能够提供定性、定量的表征数据,对于对细胞等微小物体的形貌结构的分析具有非常重要的意义和作用。

扫描电子显微镜的应用范围广泛,可应用于科学研究和工程应用。

在科学研究
领域中,它可用于研究微观细胞的形貌与结构,检测致病基因的表达情况,研究新材料的性能特征,研究细菌等对外界环境适应性,以及分析样本中复杂有机混合物中有机聚合物分子结构等。

在工程应用领域,扫描电子显微镜可用于分析材料表面失效、机械零部件损伤机理、润滑油添加剂分布、滤料介质损伤、材料表面腐蚀等。

扫描电子显微镜能够探测到的粒度微小,最小能谱量级可达1nm,非常精确。

它还具有高效率,转换效率高达99%,可将细胞、芯片、涂层、聚合物等小物体的
结构特征进行查看、分析和测量。

此外,它还具有高精确度,能够提供0.1nm的分辨率,可以测量特定物质的原子排布情况,同时具有操作简便性,可以自由调整对特定物质的扫描和深度,以实现更精细的分析。

材料检测方法

材料检测方法

材料检测方法材料检测方法材料检测是一个广泛应用于各个领域的重要工作。

通过对材料进行检测,可以确保产品的质量,保障工程的安全,以及满足法规和标准的要求。

本文将深入探讨材料检测方法,包括表面分析、力学测试和非破坏性测试等多个方面。

一、表面分析表面分析是一种常见的材料检测方法,它可以揭示材料外部表面的特性和组成。

常用的表面分析技术包括扫描电子显微镜(SEM)、光学显微镜和能谱分析等。

1. 扫描电子显微镜(SEM)SEM是一种通过扫描材料表面并获取高分辨率图像的技术。

它可以观察材料的形貌、表面形态和结构,还可以检测表面缺陷、氧化层和污染等。

SEM结合能谱分析技术,还可以确定材料的化学成分和元素分布情况。

2. 光学显微镜光学显微镜是利用可见光对材料进行观察和分析的一种方法。

它可以观察材料的表面形态、颗粒大小和晶体结构等。

相比于SEM,光学显微镜具有低成本、易操作和迅速获取结果的优势,适用于一些简单的表面分析。

3. 能谱分析能谱分析是一种通过测量材料中电子或光子的能量来确定其化学成分和结构的方法。

常见的能谱分析技术包括X射线能谱分析(EDX)和电子能量损失谱分析(EELS)。

这些技术可以用于表面元素定量分析和表面化学状态分析。

二、力学测试力学测试是一种通过施加力或加载材料来评估其力学性能和脆性程度的方法。

常见的力学测试包括拉伸测试、硬度测试和冲击测试等。

1. 拉伸测试拉伸测试是一种通过施加力来测量材料的延展性和抗拉强度的方法。

通过这个测试,可以了解材料在拉伸过程中的应力-应变关系,以及其材料的断裂点和延展性。

拉伸测试广泛应用于金属材料、塑料材料和纤维材料等的力学性能评估。

2. 硬度测试硬度测试是一种通过施加固定加载方式来测量材料硬度的方法。

常见的硬度测试方法包括布氏硬度测试、维氏硬度测试和洛氏硬度测试等。

硬度测试可以评估材料的抗压性能和抗刮伤性能,常用于金属材料和陶瓷材料的质量控制。

3. 冲击测试冲击测试是一种通过施加高能量冲击来评估材料的韧性和脆性的方法。

微尺度下古瓷鉴定的物理学和化学基础研究

微尺度下古瓷鉴定的物理学和化学基础研究

微尺度下古瓷鉴定的物理学和化学基础研究
微尺度下古瓷鉴定的物理学和化学基础研究主要包括以下几个方面:
1. 扫描电子显微镜(SEM)分析:SEM可以在微观尺度下观察和分析古瓷的表面形貌和微观结构,通过SEM图像可以获取古瓷的颗粒分布、晶体形态、孔隙结构等信息,帮助判断古瓷的制作工艺和时代特征。

2. 能谱分析:能谱分析包括能量散射X射线光谱(EDX)和X射线荧光光谱(XRF)等技术,通过分析古瓷中的元素组成和分布,对古瓷进行定性和定量分析,从而确定古瓷的来源和制作工艺。

3. 拉曼光谱分析:拉曼光谱可以获得古瓷的分子振动信息,从而确定其中的化学组成和晶体结构,判别真伪性和年代。

拉曼光谱还能用于检测古瓷中的有机物质、染料和颜料等辅助鉴定信息。

4. X射线衍射分析:X射线衍射可以确定古瓷的晶体结构和晶体相组成,从而确定其材质和制作工艺。

通过分析X射线衍射谱图,可以识别不同矿物质的晶体结构和表面形貌,进一步辅助古瓷的鉴定。

5. 热释光测年:热释光测年是一种通过检测古瓷中的放射性核素衰变产生的热释光信号来确定其年代的方法。

通过测量古瓷中的热释光剂的激发和释放,推断古瓷的热释光年龄,从而帮
助确定其制作年代。

综上所述,微尺度下古瓷鉴定的物理学和化学基础研究主要使用到了扫描电子显微镜、能谱分析、拉曼光谱分析、X射线衍射分析和热释光测年等技术和方法,通过这些手段可以对古瓷的结构、成分和年代等进行分析和鉴定。

扫描电镜加能谱

扫描电镜加能谱

扫描电镜加能谱扫描电镜和能谱是一种常用的材料表面分析技术。

它们在材料科学、生物学、化学、地质学等领域具有广泛的应用。

下面将从扫描电镜和能谱的原理、特点、应用等方面进行介绍。

一、扫描电镜原理扫描电镜是一种利用电子束扫描样品表面,通过检测电子与样品相互作用产生的信号,来获取样品表面形貌和信息的显微镜。

扫描电镜主要由电子枪、透镜系统、扫描系统、信号检测系统和成像系统等组成。

1. 电子枪:产生电子束,电子束经过透镜系统聚焦后,照射到样品表面。

2. 透镜系统:对电子束进行聚焦,使电子束在样品表面形成高分辨率的光斑。

3. 扫描系统:控制电子束在样品表面的扫描路径,实现样品表面的逐点扫描。

4. 信号检测系统:检测电子束与样品相互作用产生的信号,如二次电子、背散射电子等。

5. 成像系统:将检测到的信号转换为图像,显示在显示器上。

二、能谱原理能谱是一种通过分析样品在电子束照射下产生的特征X射线,来确定样品元素组成和含量的分析方法。

能谱仪主要由样品室、X射线探测器、信号放大器和数据处理系统等组成。

1. 样品室:放置样品,样品在电子束照射下产生特征X射线。

2. X射线探测器:检测样品产生的特征X射线,将X射线能量转换为电信号。

3. 信号放大器:放大电信号,提高信噪比。

4. 数据处理系统:处理放大后的电信号,绘制能谱图,分析样品的元素组成和含量。

三、扫描电镜加能谱的特点1. 高分辨率:扫描电镜可以实现高分辨率的表面形貌观察,能谱可以精确地分析样品的元素组成和含量。

2. 空间分辨率:扫描电镜具有较好的空间分辨率,可以观察到样品表面的微小区域。

3. 灵敏度高:能谱对微量元素的检测灵敏度高,可以检测到样品中的微量元素。

4. 无损检测:扫描电镜和能谱都是无损检测技术,对样品没有损伤。

5. 适用范围广:扫描电镜和能谱可以应用于各种材料,包括金属、非金属、生物样品等。

四、扫描电镜加能谱的应用1. 材料科学:研究材料的微观形貌、晶体结构、相组成等。

扫描电子显微镜和能谱分析技术

扫描电子显微镜和能谱分析技术

扫描电子显微镜和能谱分析技术扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种基于电子束和样品间相互作用的高分辨率显微镜,具有较大的放大倍数和较高的解析能力。

能谱分析技术则是一种通过测量样品与电子束相互作用的产生的能量谱,来分析样品中元素成分的方法。

下面将详细介绍扫描电子显微镜和能谱分析技术。

通过扫描电子显微镜,我们可以观察到样品表面的微观结构,这对于材料科学、生命科学等领域的研究具有重要意义。

相比传统光学显微镜,扫描电子显微镜具有更高的分辨率和更大的放大倍数,可以观察到纳米级别的细节。

此外,扫描电子显微镜还具有较大的深度和聚焦区域,可以观察到样品的三维形态。

因此,扫描电子显微镜广泛应用于材料科学、地质学、生物学、医学等领域。

除了观察样品的形貌结构,扫描电子显微镜还可以进行能谱分析。

在扫描电子显微镜中,样品与电子束相互作用会产生多种信号,其中包括二次电子信号(Secondary Electron,简称SE)和反射电子信号(Backscattered Electron,简称BSE)等。

这些信号包含了样品表面的形貌信息和组成成分。

能谱分析技术则是通过测量样品与电子束相互作用产生的能量谱,来分析样品中元素成分的方法。

在扫描电子显微镜中,我们可以使用能谱分析仪来收集样品中产生的X射线信号。

当电子束与样品相互作用时,样品中的原子会被激发产生X射线。

这些X射线的能量是特定的,与所激发原子的种类相关。

通过能谱分析技术,我们可以确定样品中元素的种类和含量。

当能谱分析仪接收到X射线信号时,会根据信号的能量对其进行解析,从而确定元素的组成。

能谱分析技术在材料科学、地质学、环境科学等领域广泛应用。

例如,在材料研究中,我们可以通过能谱分析来确定材料的化学成分,从而了解其性质和性能。

总结起来,扫描电子显微镜和能谱分析技术是一种用于观察和分析样品的有效工具。

通过应用这两种技术,我们可以观察样品的表面形貌和内部组成,从而深入理解样品的特性和行为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进行成分分析。如果用X射线探测器测到了样品微区中存
在某一特征波长,就可以判定该微区中存在的相应元素。
六、俄歇电子
• 如果原子内层电子能级跃迁过程中释放出来的能 量E不以X射线的形式释放,而是用该能量将核 外另一电子打出,脱离原子变为二次电子,这种 二次电子叫做俄歇电子。
• 因每一种原子都有自己特定的壳层能量,所以它 们的俄歇电子能量也各有特征值,一般在50-1500 eV范围之内。俄歇电子是由试样表面极有限的几 个原于层中发出的,这说明俄歇电子信号适用于 表层化学成分分析。
• 由于镜筒中的电子束和显像管中的电子束 是同步扫描,荧光屏上的亮度是根据样品 上被激发出来的信号强度来调制的,而由 检测器接收的信号强度随样品表面状态不 同而变化,从而,由信号检测系统输出的 反映样品表面状态特征的调制信号在图像 显示和记录系统中就转换成一幅与样品表 面特征一致的放大的扫描像。
3.真空系统和电源系统
特点
• 可做综合分析。 • SEM装上波长色散X射线谱仪(WDX)(简称
波谱仪)或能量色散X射线谱仪(EDX) (简称能谱仪)后,在观察扫描形貌图像 的同时,可对试样微区进行元素分析。
• 装上不同类型的试样台和检测器可以直接 观察处于不同环境(加热、冷却、拉伸等) 中的试样显微结构形态的动态变化过程 (动态观察)。
K
hc EK EL2
• 式中,h为普朗克常数,c为光速。对于每一元素,EK、
EL2都有确定的特征值,所以发射的X射线波长也有特征值,
这种X射线称为特征X射线。
• •
X射线的波长和原子序数之间服从莫塞莱定律: (2)
Z
K
2
• 式中,Z为原子序数,K、为常数。可以看出,原子序数
和特征能量之间是有对应关系的,利用这一对应关系可以
• 具体说来,如在高能入射电子作用下使K层电子逸 出,原于就处于K激发态,具有能量EK。当一个L2 层电子填补K层空位后,原于体系由K激发态变成 L2激发态,能量从EK降为EL2,这时就有E= (EK-EL2)的能量释放出来。
五、特征X射线
• 若这一能量以X射线形式放出,这就是该元素的K辐射,

此时X射线的波长为: (1)
• 扫描电子显微镜的分辨率通常就是二次电子分辨 率。二次电于产额随原于序数的变化不明显,它 主要决定于表面形貌。
三、吸收电子
• 入射电子进入样品后,经多次非弹性散射,能量 损失殆尽(假定样品有足够厚度,没有透射电子 产生),最后被样品吸收。
• 若在样品和地之间接入一个高灵敏度的电流表, 就可以测得样品对地的信号,这个信号是由吸收 电子提供的。
电子束与固体样品相互作用时产生 的物理信号
一、背散射电子
• 背散射电于是指被固体样品中的原子核反弹回来的一部分 入射电子。
• 其中包括弹性背散射电子和非弹性背散射电子。 • 弹性背散射电子是指被样品中原子核反弹回来的散射角大
于90的那些入射电子,其能量基本上没有变化。 • 弹性背散射电子的能量为数千到数万电子伏。 • 非弹性背散射电子是入射电子和核外电子撞击后产生非弹
• 入射电子束与样品发生作用,若逸出表面的背散 射电子或二次电子数量任一项增加,将会引起吸 收电子相应减少,若把吸收电子信号作为调制图 像的信号,则其衬度与二次电子像和背散射电子 像的反差是互补的。
三、吸收电子
• 入射电子束射入一含有多元素的样品时, 由于二次电子产额不受原子序数影响,则 产生背散射电子较多的部位其吸收电子的 数量就较少。
(3)扫描线圈
• 其作用是提供入射电子束在样品表面上以 及阴极射线管内电子束在荧光屏上的同步 扫描信号。
• 扫描线圈是扫描电子显微镜的一个重要组 件,它一般放在最后二透镜之间,也有的 放在末级透镜的空间内,使电子束进入末 级透镜强磁场区前就发生偏转,为保证方 向一致的电子束都能通过末级透镜的中心 射到样品表面;扫描电子显微镜采用双偏 转扫描线圈。
可使样品在样品台上能进行加热、冷却、拉伸等 试验,以便研究材料的动态组织及性能。
(4)样品室
2.信号收集和显示系统
• 信号收集和显示系统包括各种信号检测器,前置放大器和 显示装置,其作用是检测样品在入射电子作用下产生的物 理信号,然后经视频放大,作为显像系统的调制信号,最 后在荧光屏上得到反映样品表面特征的扫描图像。

显微镜的放大倍数为:
M
AC AS
(3)
• 由于扫描电子显微镜的荧光屏尺寸是固定
不变的,因此,放大倍率的变化是通过改
变电子束在试样表面的扫描幅度AS来实现
的。
2.分辨率
• 分辨率是扫描电子显微镜主要性能指标。对微区 成分分析而言,它是指能分析的最小区域;对成 像而言,它是指能分辨两点之间的最小距离。
3.景深
• 景深是指透镜对高低不平的试样各部位能同时聚焦成像的一 个能力范围,这个范围用一段距离来表示。如下图所示
• 为电子束孔径角。可见,电子束孔径角是控制扫描电子显 微镜景深的主要因素,它取决于末级透镜的光阑直径和工作 距离。角很小(约10-3 rad),所以它的景深很大。它比 一般光学显微镜景深大100-500倍,比透射电子显微镜的景 深大10倍。
• 真空系统的作用是为保证电子光学系统正 常工作,防止样品污染提供高的真空度, 一般情况下要求保持10-4-10-5 mmHg的真 空度。
• 电源系统由稳压、稳流及相应的安全保护 电路所组成,其作用是提供扫描电子显微 镜各部分所需要的电源。
二、工作原理
由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压 作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束 会聚成一个细的电子束聚焦在样品表面。在末级透镜上边装有扫 描线圈,在它的作用下使电子束在样品表面扫描。
• 一个能量很高的入射电子射入样品时,可以产生 许多自由电子、二次电子
• 二次电子来自表面50-500Å的区域,能量为0-50 eV。
• 它对试样表面状态非常敏感,能有效地显示试样 表面的微观形貌。
• 由于它发自试样表面层,入射电子还没有较多次 散射,因此产生二次电子的面积与入射电子的照 射面积没多大区别。所以二次电子的分辨率较高, 一般可达到50-100 Å。
• 显然,一个原子中至少要有三个以上的电子才能 产生俄歇效应,铍是产生俄歇效应的最轻元素。
其它物理信号
• 除了上述六种信号外,固体样品中还会产 生例如阴极荧光、电子束感生效应和电动 势等信号,这些信号经过调制后也可以用 于专门的分析。
§2 扫描电子显微镜的结构和工作原 理
• 扫描电子显微镜由电子光学系统、信号收集及 显示系统、真空系统及电源系统组成。
五、特征X射线
• 特征X射线是原子的内层电子受到激发以后,在能 级跃迁过程中直接释放的具有特征能量和波长的 一种电磁波辐射。
• 入射电子与核外电子作用,产生非弹性散射,外 层电子脱离原子变成二次电子,使原于处于能量 较高的激发状态,它是一种不稳定态。较外层的 电子会迅速填补内层电子空位,使原子降低能量, 趋于较稳定的状态。
扫描电子显微镜与 能谱分析
§1.序
• 扫描电子显微镜(Scanning Electron Microscope,简称SEM)是继透射电镜(TEM) 之后发展起来的一种电子显微镜
• 扫描电子显微镜的成像原理和光学显微镜或 透射电子显微镜不同,它是以电子束作为照 明源,把聚焦得很细的电子束以光栅状扫描 方式照射到试样上,产生各种与试样性质有 关的信息,然后加以收集和处理从而获得微 观形貌放大像。
三、扫描电子显微镜的主要性能
• 1.放大倍数(magnification) • 2.分辨率(resolution) • 3.景深(depth of field / depth of
focus)
1.放大倍数
• 当入射电子束作光栅扫描时,若电子束在
样品表面扫描的幅度为AS,在荧光屏上阴
极射线同步扫描的幅度为AC,则扫描电子
• 出于高能电子束与样品物质的交互作用,结果产生了各种信息: 二次电子、背散射电子、吸收电子、X射线、俄歇电子、阴极发 光和透射电于等。
• 这些信号被相应的接收器接收,经放大后送到显像管的栅极上, 调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应 的亮度一一对应,也就是说,电子束打到样品上一点时,在显像 管荧光屏上就出现一个亮点。扫描电镜就是这样采用逐点成像的 方法,把样品表面不同的特征,按顺序、成比例地转换为视频传 号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各 种特征图像。
1.电子光学系统
• 其作用是用来获得扫描电子束,作为使样 品产生各种物理信号的激发源。
• 电子光学系统由电子枪、电磁透镜、扫描 线圈和样品室等部件组成。
• 为获得较高的信号强度和图像分辨率,扫 描电子束应具有较高的亮度和尽可能小的 束斑直径。
1.电子光学系统

(1)电子枪
• 其作用是利用阴极与阳极灯丝间的高压产 生高能量的电子束。
性散射而造成的,不仅能量变化,方向也发生变化。 • 如果有些电子经多次散射后仍能反弹出样品表面,这就形
成非弹性背散射电子。
一、背散射电子
• 非弹性背散射电子的能量分布范围很宽, 从数十电子伏到数千电子伏。
• 从数量上看,弹性背散射电子远比非弹性 背散射电子所占的份额多。
• 背散射电子的产生范围在1000 Å到1m深, 由于背散射电子的产额随原子序数的增加 而增加,所以,利用背散射电子作为成像 信号不仅能分析形貌特征,也可用来显示 原子序数衬度,定性地进行成分分析。
• 这两者主要取决于入射电子束直径,电子束直径 愈小,分辨率愈高。
• 但分辨率并不直接等于电子束直径,因为入射电 子束与试样相互作用会使入射电子束在试样内的 有效激发范围大大超过入射束的直径。
2.分辨率
• 扫描电子显微镜的分辨率除受电子束直径 和调制信号的类型影响外,还受样品原于 序数、信噪比、杂散磁场、机械振动等因 素影响。
相关文档
最新文档