窗抗风压
断桥铝门窗抗风压标准

断桥铝门窗抗风压标准摘要:1.断桥铝门窗简介2.抗风压标准的重要性3.断桥铝门窗的抗风压性能4.抗风压标准的检测5.选择合适的断桥铝门窗正文:断桥铝门窗是一种具有优良抗风压性能的门窗类型。
它采用特殊的断桥铝结构,在门窗的内外两侧铝合金之间加入一层隔热材料,有效提高了门窗的保温、隔热、隔音和防盗性能。
因此,断桥铝门窗在市场上受到了广泛关注和应用。
抗风压标准是衡量门窗性能的重要指标之一。
在强风、台风等自然灾害面前,门窗的抗风压性能直接关系到建筑物的安全和居民的生命财产安全。
因此,了解断桥铝门窗的抗风压标准对于选购合适的门窗具有重要意义。
断桥铝门窗的抗风压性能主要表现在以下几个方面:1.高强度:断桥铝门窗采用铝合金型材作为框架,具有较高的强度和硬度,能承受较大的载荷。
2.良好的结构设计:断桥铝门窗的隔热材料和铝合金框架之间采用了特殊的结构设计,提高了门窗的抗风压性能。
3.良好的密封性能:断桥铝门窗采用了优质的密封胶条和密封结构,具有良好的气密性和水密性,有效防止风雨渗透。
抗风压标准的检测是确保断桥铝门窗性能的重要手段。
一般来说,门窗的抗风压性能检测包括抗风压变形检测、反复加压检测、定级检测或工程检测等。
通过这些检测,可以确保门窗在实际使用中具备良好的抗风压性能。
在选择合适的断桥铝门窗时,需要考虑以下几个方面:1.门窗的品牌和质量:选择知名品牌和质量可靠的断桥铝门窗,确保性能和售后服务。
2.门窗的尺寸和样式:根据建筑物的实际情况,选择合适的门窗尺寸和样式,以满足抗风压性能要求。
3.门窗的安装和维护:选择专业的安装队伍,确保门窗的安装质量和使用寿命。
同时,定期检查和维护门窗,确保其性能稳定。
总之,断桥铝门窗具有优良的抗风压性能,是建筑物的理想选择。
门窗-抗风压计算报告

抗风压计算书一、风荷载计算1)工程所在省市:江苏省2)工程所在城市:扬州市3)门窗安装最大高度z(m):401 风荷载标准值计算:Wk = βgz*μS*μZ*w0(按《建筑结构荷载规范》GB 50009-2001 7.1.1-2)1.1 基本风压W0=400N/m^2(按《建筑结构荷载规范》GB 50009-2001规定,采用50年一遇的风压,但不得小于0.3KN/m^2)1.2 阵风系数计算:1)A类地区:βgz=0.92*(1+2μf)其中:μf=0.5*35^(1.8*(-0.04))*(z/10)^(-0.12),z为安装高度;2)B类地区:βgz=0.89*(1+2μf)其中:μf=0.5*35^(1.8*(0))*(z/10)^(-0.16),z为安装高度;3)C类地区:βgz=0.85*(1+2μf)其中:μf=0.5*35^(1.8*(0.06))*(z/10)^(-0.22),z为安装高度;4)D类地区:βgz=0.80*(1+2μf)其中:μf=0.5*35^(1.8*(0.14))*(z/10)^(-0.30),z为安装高度;本工程按:C类有密集建筑群的城市市区取值。
βgz=0.85*(1+(0.734*(50/10)^(-0.22))*2)=1.72573(按《建筑结构荷载规范》GB 50009-2001 7.5.1规定)1.3 风压高度变化系数μz:1)A类地区:μZ=1.379 * (z / 10) ^ 0.24,z为安装高度;2)B类地区:μZ=(z / 10) ^ 0.32,z为安装高度;3)C类地区:μZ=0.616 * (z / 10) ^ 0.44,z为安装高度;4)D类地区:μZ=0.318 * (z / 10) ^ 0.6,z为安装高度;本工程按:C类有密集建筑群的城市市区取值。
μZ=0.616*(50/10)^0.44=1.25063(按《建筑结构荷载规范》GB 50009-2001 7.2.1规定)1.4 风荷载体型系数:μs=1(按《建筑结构荷载规范》GB 50009-2001 表7.3.1规定) 1.5 风荷载标准值计算:Wk(N/m^2)=βgz*μS*μZ*w0=1.72573*1.25063*1*400=863.32 风荷载设计值计算:W(N/m2)=1.4*Wk=1.4*863.3=1208.62二、门窗主要受力杆件的挠度、弯曲应力、剪切应力校核:1 校验依据:1.1 挠度校验依据:1)单层玻璃,柔性镶嵌:fmax/L<=1/1302)双层玻璃,柔性镶嵌:fmax/L<=1/1803)单层玻璃,刚性镶嵌:fmax/L<=1/160其中:fmax:为受力杆件最在变形量(mm)L:为受力杆件长度(mm)根据《建筑外窗抗风性能分级及其检测方法》及其附录GB7106-86 1.2 弯曲应力校验依据:σmax=M/W<=[σ][σ]:材料的抗弯曲应力(N/mm^2)σmax:计算截面上的最大弯曲应力(N/mm^2)M:受力杆件承受的最大弯矩(N.mm)W:净截面抵抗矩(mm^3)1.3 剪切应力校验依据:τmax=(Q*S)/(I*δ)<=[τ][τ]:材料的抗剪允许应力(N/mm^2)τmax:计算截面上的最大剪切应力(N/mm^2)Q:受力杆件计算截面上所承受的最大剪切力(N)S:材料面积矩(mm^3)I:材料惯性矩(mm^4)δ:腹板的厚度(mm)2 主要受力杆件的挠度、弯曲应力、剪切应力计算:2.1 中梃的挠度、弯曲应力、剪切应力计算:2.1.1 中梃的刚度计算1.ZW50-03C的弯曲刚度计算D(N.mm^2)=E*I=70000*742717.7=51990239000ZW50-03C的剪切刚度计算D(N.mm^2)=G*F=26000*565.09=146923402.中梃的组合受力杆件的总弯曲刚度计算D(N.mm^2)=51990239000=51990239000中梃的组合受力杆件的总剪切刚度计算D(N.mm^2)=14692340=146923402.1.2 中梃的受荷面积计算1.左上的受荷面积计算(三角形)A(mm^2)=(875*875/2)/2=191406.252.左中的受荷面积计算(三角形)A(mm^2)=(875*875/2)/2=191406.253.左下的受荷面积计算(三角形)A(mm^2)=(950*950/2)/2=2256254.右上的受荷面积计算(三角形)A(mm^2)=(875*875/2)/2=191406.255.右中的受荷面积计算(三角形)A(mm^2)=(875*875/2)/2=191406.256.右下的受荷面积计算(三角形)A(mm^2)=(950*950/2)/2=2256257.中梃的总受荷面积计算A(mm^2)=191406.25+191406.25+225625+191406.25+191406.25+225625=1216875 2.1.3 中梃所受均布荷载计算Q(N)=Wk*A=863.3*1216875/1000000=1050.5282.1.4 中梃在均布荷载作用下的挠度、弯矩、剪力计算2.1.4.1 在均布荷载作用下的挠度计算1.ZW50-03C在均布荷载作用下的挠度计算按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=1050.528*(51990239000/51990239000)=1050.528本窗型在风荷载作用下,可简化为承受矩形均布荷载Fmax(mm)=Q*L^3/(76.8*D)=1050.528*2700^3/(76.8*51990239000)=5.182.1.4.2 在均布荷载作用下的弯矩计算1.ZW50-03C在均布荷载作用下的弯矩计算按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=1050.528(51990239000/51990239000)=1050.528所受荷载的设计值计算:Q=1.4*Q=1.4*1050.528=1470.7392本窗型在风荷载作用下,可简化为承受矩形均布荷载Mmax(N.mm)=Q*L/8=1470.7392*2700/8=496374.482.1.4.3 在均布荷载作用下的剪力计算1.ZW50-03C在均布荷载作用下的剪力计算按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=1050.528*(14692340/14692340)=1050.528所受荷载的设计值计算:Q=1.4*Q=1.4*1050.528=1470.7392本窗型在风荷载作用下,可简化为承受矩形均布荷载Qmax(N)=±Q/2=1470.7392/2=735.372.1.5 中梃在集中荷载作用下的挠度、弯矩、剪力计算2.1.5.1左上产生的集中荷载对中梃作用产生的挠度、弯矩、剪力计算1.受荷面积计算A(mm^2)=(966*2 - 875)*875/4=231218.752.该分格传递到主受力杆件上的全部集中荷载通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.8063.该分格产生的集中荷载对受力杆件跨中产生的总挠度(1)ZW50-03C在集中荷载作用下产生的跨中挠度按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806该分格下部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=99.806*1825*875*(1825*875)*sqrt(3*1825*(2700+875))/(27*51990239000*2700) =0.54.该分格产生的集中荷载对受力杆件跨中产生的总弯矩(1)ZW50-03C在集中荷载作用下产生的弯矩按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格下部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=139.7284*1825*875/2700=82640.295.该分格产生的集中荷载对受力杆件跨中产生的总剪力(1)ZW50-03C在集中荷载作用下产生的总剪力按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(14692340/14692340)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格下部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=139.7284*1825/2700=94.452.1.5.2左中产生的集中荷载对中梃作用产生的挠度、弯矩、剪力计算1.受荷面积计算A(mm^2)=(966*2 - 875)*875/4=231218.752.该分格传递到主受力杆件上的全部集中荷载通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.806通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.8063.该分格产生的集中荷载对受力杆件跨中产生的总挠度(1)ZW50-03C在集中荷载作用下产生的跨中挠度按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806该分格上部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=99.806*1825*875*(1825*875)*sqrt(3*1825*(2700+875))/(27*51990239000*2700) =0.5该分格下部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=99.806*1750*950*(1750*950)*sqrt(3*1750*(2700+950))/(27*51990239000*2700) =0.524.该分格产生的集中荷载对受力杆件跨中产生的总弯矩(1)ZW50-03C在集中荷载作用下产生的弯矩按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格上部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=139.7284*1825*875/2700=82640.29该分格下部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=139.7284*1750*950/2700=86036.475.该分格产生的集中荷载对受力杆件跨中产生的总剪力(1)ZW50-03C在集中荷载作用下产生的总剪力按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(14692340/14692340)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格上部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=139.7284*1825/2700=94.45该分格下部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=139.7284*1750/2700=90.562.1.5.3左下产生的集中荷载对中梃作用产生的挠度、弯矩、剪力计算1.受荷面积计算A(mm^2)=(966*2 - 950)*950/4=2332252.该分格传递到主受力杆件上的全部集中荷载通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*233225)/2/1000000=100.672通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*233225)/2/1000000=100.6723.该分格产生的集中荷载对受力杆件跨中产生的总挠度(1)ZW50-03C在集中荷载作用下产生的跨中挠度按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=100.672*(51990239000/51990239000)=100.672该分格上部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=100.672*1750*950*(1750*950)*sqrt(3*1750*(2700+950))/(27*51990239000*2700) =0.524.该分格产生的集中荷载对受力杆件跨中产生的总弯矩(1)ZW50-03C在集中荷载作用下产生的弯矩按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=100.672*(51990239000/51990239000)=100.672所受荷载的设计值计算:Q=1.4*Q=1.4*100.672=140.9408该分格上部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=140.9408*1750*950/2700=86782.995.该分格产生的集中荷载对受力杆件跨中产生的总剪力(1)ZW50-03C在集中荷载作用下产生的总剪力按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=100.672*(14692340/14692340)=100.672所受荷载的设计值计算:Q=1.4*Q=1.4*100.672=140.9408该分格上部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=140.9408*1750/2700=91.352.1.5.4右上产生的集中荷载对中梃作用生产的挠度、弯矩、剪力计算1.受荷面积计算A(mm^2)=(966*2 - 875)*875/4=231218.752.该分格传递到主受力杆件上的全部集中荷载通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.806通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.8063.该分格产生的集中荷载对受力杆件跨中产生的总挠度(1)ZW50-03C在集中荷载作用下产生的跨中挠度按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806该分格下部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=99.806*1825*875*(1825*875)*sqrt(3*1825*(2700+875))/(27*51990239000*2700) =0.54.该分格产生的集中荷载对受力杆件跨中产生的总弯矩(1)ZW50-03C在集中荷载作用下产生的弯矩按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格下部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=139.7284*1825*875/2700=82640.295.该分格产生的集中荷载对受力杆件跨中产生的总剪力(1)ZW50-03C在集中荷载作用下产生的总剪力按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(14692340/14692340)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格下部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=139.7284*1825/2700=94.452.1.5.5右中产生的集中荷载对中梃作用生产的挠度、弯矩、剪力计算1.受荷面积计算A(mm^2)=(966*2 - 875)*875/4=231218.752.该分格传递到主受力杆件上的全部集中荷载通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.806通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*231218.75)/2/1000000=99.8063.该分格产生的集中荷载对受力杆件跨中产生的总挠度(1)ZW50-03C在集中荷载作用下产生的跨中挠度按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806该分格上部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=99.806*1825*875*(1825*875)*sqrt(3*1825*(2700+875))/(27*51990239000*2700) =0.5该分格下部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=99.806*1750*950*(1750*950)*sqrt(3*1750*(2700+950))/(27*51990239000*2700) =0.524.该分格产生的集中荷载对受力杆件跨中产生的总弯矩(1)ZW50-03C在集中荷载作用下产生的弯矩按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(51990239000/51990239000)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格上部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=139.7284*1825*875/2700=82640.29该分格下部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=139.7284*1750*950/2700=86036.475.该分格产生的集中荷载对受力杆件跨中产生的总剪力(1)ZW50-03C在集中荷载作用下产生的总剪力按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=99.806*(14692340/14692340)=99.806所受荷载的设计值计算:Q=1.4*Q=1.4*99.806=139.7284该分格上部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=139.7284*1825/2700=94.45该分格下部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=139.7284*1750/2700=90.562.1.5.6右下产生的集中荷载对中梃作用生产的挠度、弯矩、剪力计算1.受荷面积计算A(mm^2)=(966*2 - 950)*950/4=2332252.该分格传递到主受力杆件上的全部集中荷载通过上边杆件传递到主受力杆件上的集中荷载计算P(N)=(wk*A)/2=(863.3*233225)/2/1000000=100.6723.该分格产生的集中荷载对受力杆件跨中产生的总挠度(1)ZW50-03C在集中荷载作用下产生的跨中挠度按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=100.672*(51990239000/51990239000)=100.672该分格上部任意点集中荷载对受力杆件跨中产生的挠度计算Fmax(mm)=P*L1*L2*(L1+L2)*sqrt(3*L1*(L+L2))/(27*D*L)=100.672*1750*950*(1750*950)*sqrt(3*1750*(2700+950))/(27*51990239000*2700) =0.524.该分格产生的集中荷载对受力杆件跨中产生的总弯矩(1)ZW50-03C在集中荷载作用下产生的弯矩按弯曲刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=100.672*(51990239000/51990239000)=100.672所受荷载的设计值计算:Q=1.4*Q=1.4*100.672=140.9408该分格上部任意点集中荷载对受力杆件跨中产生的弯矩计算Mmax(N.mm)=P*L1*L2/L=140.9408*1750*950/2700=86782.995.该分格产生的集中荷载对受力杆件跨中产生的总剪力(1)ZW50-03C在集中荷载作用下产生的总剪力按剪切刚度比例分配荷载分配荷载:QZW50-03C=Q总*(DZW50-03C/D总)=100.672*(14692340/14692340)=100.672所受荷载的设计值计算:Q=1.4*Q=1.4*100.672=140.9408该分格上部任意点集中荷载对受力杆件跨中产生的剪力计算Qmax(N)=P*L1/L=140.9408*1750/2700=91.352.1.6 中梃在均布荷载和集中荷载共同作用下的总挠度校核2.1.6.1 ZW50-03C总挠度校核2.1.6.1.1 ZW50-03C总变形计算F总=F均布+ΣF集中=5.18+0.5+0.5=6.182.1.6.1.2 ZW50-03C挠跨比计算挠跨比=F总/L=6.18/2700=0.00230.0023<=1/180ZW50-03C的挠度符合要求。
建筑外窗抗风压性能分级的取值

建筑外窗抗风压性能分级的取值一.基本概述:按照现行国家标准《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7106-2008、《建筑结构荷载规范》GB50009-2001(2006年版)的有关要求,工程设计者应对各类工业与民用建筑的外窗提供其抗风压性能(含相应的检测、鉴定)等级规定,这是满足建筑物环保和节能,同时又是确保使用可靠、安全的必备要求。
为了使设计者选用的方便,现归纳、整理成以下资料供选用参考。
二.建筑物外墙面及窗的抗风压计算:1 按规范GB50009-2001(2006年版)中7.1.1条规定:垂直于建筑物表面上的风荷载标准值,用于围护结构时,应按下述公式计算:W==βgzμslμz w o( 1)式中:βgz ---对应计算高度Z的阵风系数,与建筑物所处的区位(即地面粗糙度类别)和距地高度有关,工业建筑物多位于郊区(B类),民用建筑多在市区(C类)重要建筑则在市中心区(D类),查表可得到;μsl----建筑物局部风压体型系数,按GB50009的7.3.3条规定:墙面正压区取(0.8+0.2);墙面负压区取(-1.0-0.2);墙的边角区取(-1.8-0.2);屋面、檐口负压区取(-2.2);μz----风压高度系数,与建筑物所处的区位及距地高度有关,查表可得到;w o----基本风压值,按规范GB50009附录D中,对应n=50栏查表可得到。
2.为了便于使用对上述公式作如下归并与简化:首先,为解决工程中最常遇到的墙面窗,将μsl分别以 1.0、1.2带入式(1)可得:W==1.0βgzμz w o(2)W==1.2βgzμz w o(3)在工程设计中,由于风荷载的多向性,难以分出正压、负压区;而在施工安装中,同一式样、规格的外窗分类过细实无必要,因此实用中,以式(3)为墙面窗风压计算的通用公式。
同理,屋面、檐口负压区窗风压计算公式归并为W==2.2βgzμz w o(4)其次,阵风系数βgz 、高度系数μz两个系数,都与建筑物所处的区位(即地面粗糙度类别)以及距地高度有关,拟利用规范GB50009已有相关表格并使其合并,同时将式(3)中的常数1.2也融入,可得到:Ω= 1.2βgzμz(5)也即建筑外墙面窗的风压值计算公式可简化为:W==Ωw o(6)式中Ω----风压计算综合系数,与建筑物所处的区位和距地高度有关,通过附表1 查得最后,一旦取得项目建设所在地的基本风压值,即可利用附表1查到风压计算综合系数Ω,以两者相乘之积,即可得该建筑物外墙面窗的风压标准值。
建筑外窗抗风压性能分级及检测方法

建筑外窗抗风压性能分级及检测方法中华人民共和国国家标准建筑外窗抗风压性能分级及检测方法GB/T 7106—2002 1 范围本标准规定了建筑外窗气密性能分级及检验方法。
本标准适用于建筑外窗含落地窗的抗风压性能分级及检测方法。
检测对象只限于窗试件本身不涉及窗与围护结构之间的连接部位。
2 引用标准下列标准所包含的条文通过在本标准中引用而构成为本标准的条文。
本标准出版时所示版本均为有效。
所有标准都会被修订使用本标准的各方应探讨使用权下列标准最新版本的可能性。
GB/ T5823—1986 建筑门窗术语 GBJ 50009—2001 建筑结构荷载规范 3 定义本标准除采用GB/T 5823之外还采用下列定义 31外窗 external window 有一个面朝向室外的窗。
32抗风压性能 wind resistance performance 关闭着的外窗在风压作用下不发生损坏和功能障碍的能力。
33面法线位移 frontal displacement 在窗面上某点所测得的法线方向上的线位移量。
34杆件的面法线挠度 frontal deflection of framemember 杆件在窗面法线方向上最大线位移量和两端线位移量平均值的差值。
35杆件的相对面法线挠度 relative frontal deflection of frame member 窗试件的杆件的面法线挠度和该杆件两端测点间距离的比值。
36压力差 pressure difference 外窗室内外表面所受到的空气压力的差值。
当室外表面空气压力大于室内表面空气压力时压力差为正值反之为负值。
4 分级 41分级指标采用定级检测压力差为分级指标。
分级指标值P3列于表1。
42 P3值与工程的风荷载标准值相对比应大于或等于Wk。
工程的风荷载标准值Wk的确定方法见GBJ 50009。
表1 建筑外窗抗风压性能分级表1 2 3 4 5 6 7 8 ×.×a 分级指标值 P3 1.0?P3 1.5 1.5?P3 2.0 2.0?P32.5 KPa 分级代号2.5?P33.0 3.0?P3 3.5 3.5?P34.0 4.0?P3 4.5 4.5?P35.0 P3?5.0 a表中×.×表示用?5.0KPa的具体值取代分级代号。
门窗抗风压等级分级表

门窗抗风压等级分级是一个重要的指标,它反映了门窗抵抗风压的能力。
在建筑领域,根据国家标准,门窗抗风压等级分为9个等级,每个等级都有相应的压力要求。
一级抗风压等级的门窗可以承受1.0kPa以上的压力,这大约相当于100公斤的重量。
这种等级的门窗通常用于普通住宅和办公楼等建筑。
二级抗风压等级的门窗可以承受1.5kPa以上的压力,这大约相当于150公斤的重量。
这种等级的门窗通常用于高层住宅和大型办公楼等建筑。
三级抗风压等级的门窗可以承受2.0kPa以上的压力,这大约相当于200公斤的重量。
这种等级的门窗通常用于超高层建筑和大跨度结构等建筑。
需要注意的是,门窗抗风压等级并不是越高越好,而是要根据具体的使用环境和需求来选择合适的等级。
如果门窗的抗风压等级过低,可能会导致门窗损坏、漏风等问题;而如果门窗的抗风压等级过高,可能会导致不必要的浪费和成本增加。
总之,门窗的抗风压性能还与材料、工艺、设计等多种因素有关。
因此,在选择门窗时,除了关注抗风压等级外,还需要综合考虑其他因素,如价格、美观、保温性能等。
门窗抗风压等级分级表

门窗抗风压等级分级表
【原创实用版】
目录
一、门窗抗风压等级的概述
二、门窗抗风压等级的分级标准
三、门窗抗风压等级的测试方法
四、门窗抗风压等级的实际应用
正文
一、门窗抗风压等级的概述
门窗抗风压等级是指门窗在风压作用下,能够保持稳定、不损坏的性能指标。
门窗抗风压等级是衡量门窗质量的重要标准,对于建筑的安全性和稳定性有着重要的影响。
二、门窗抗风压等级的分级标准
门窗抗风压等级按照我国的标准,分为 9 个等级,分别是:1 级、2 级、3 级、4 级、5 级、6 级、7 级、8 级和 9 级。
其中,1 级对应的风压值为 0.35kN/m,9 级对应的风压值为 1.0kN/m。
三、门窗抗风压等级的测试方法
门窗抗风压等级的测试,通常采用静态加压法。
具体操作是,在门窗的表面上施加一定的风压,然后观察门窗的变形情况和是否能够保持稳定性。
四、门窗抗风压等级的实际应用
在实际的建筑中,门窗的抗风压等级需要根据建筑所在地的风压值和建筑的高度来选择。
一般来说,门窗的抗风压等级应不低于建筑所在地的风压值。
这样可以确保在强风天气中,门窗能够保持稳定,不会因为风压
过大而损坏。
(建筑门窗抗风压性能等级计算)

致:华联房地产公司壹号公馆建设单位工作联系涵建筑幕墙抗风压性能等级确定1、工程条件1) 工程所在省市:湖南2) 工程所在城市:长沙3)风压高度变化系数μz:A类地区:μZ=1.379 * (z / 10) ^ 0.24,z为安装高度; B类地区:μZ=(z / 10) ^ 0.32,z为安装高度;C类地区:μZ=0.616 * (z / 10) ^ 0.44,z为安装高度;D类地区:μZ=0.318 * (z / 10) ^ 0.6,z为安装高度;4) 地面粗糙度类别:C类(有密集建筑群的城市市区取值)2、风荷载标准值计算1)基本风压W0=0.35KN/m^2(按《建筑结构荷载规范》GB 50009-2001规定,采用50年一遇的风压,但不得小于0.3KN/m^2)。
2)阵风系数βgz= 1.6,离地面高度按100m记(按《建筑结构荷载规范》GB 50009-2001表7.5.1规定)。
3)局部风压体型系数μs l=0.8,(按《建筑结构荷载规范》GB 50009-2001第7.3.3条及表7.3.1规定)。
4)风荷载标准值Wk = βgz*μsl*μZ*w0=1.6*0.8*1.7*0.35=0.763、抗风压性能等级门窗的综合抗风压能力为:Qmax=11.06N/mm^2(按《建筑门窗气密、水密、抗风压性能分级及检测方法》GB/T7106-2008)建筑门窗抗风压性能分级表根据《建筑门窗》GB/T21086-2008表12,P3=1,次建筑门窗抗风压性能分级为1级即可满足规范要求。
本设计检测门窗抗风压性能等级有原来的4级改为2级,符合规范及标准要求。
建设单位签章:设计单位签章:2011年月日 2011年月日。
建筑外窗抗风压性能分级的取值

建筑外窗抗风压性能分级的取值一.基本概述:按照现行国家标准《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7106-2008、《建筑结构荷载规范》GB50009-2001(2006年版)的有关要求,工程设计者应对各类工业与民用建筑的外窗提供其抗风压性能(含相应的检测、鉴定)等级规定,这是满足建筑物环保和节能,同时又是确保使用可靠、安全的必备要求。
为了使设计者选用的方便,现归纳、整理成以下资料供选用参考。
二.建筑物外墙面及窗的抗风压计算:1 按规范GB50009-2001(2006年版)中7.1.1条规定:垂直于建筑物表面上的风荷载标准值,用于围护结构时,应按下述公式计算:W=βμμw ( 1)oslgzz=式中:β---对应计算高度Z的阵风系数,与建筑物所处的区位(即gz地面粗糙度类别)和距地高度有关,工业建筑物多位于郊区(B 类),民用建筑多在市区(C类)重要建筑则在市中心区(D类),查表可得到;μ----建筑物局部风压体型系数,按GB50009的7.3.3条sl规定:墙面正压区取(0.8+0.2);墙面负压区取(-1.0-0.2);墙的边角区取(-1.8-0.2);屋面、檐口负压区取(-2.2);与建筑物所处的区位及距地高度有关,μ----风压高度系数,z1查表可得到;按规范w----基本风压值,n=50对应中,D附录GB50009o栏查表可得到。
为了便于使用对上述公式作如下归并与简化:2.1.2、首先,为解决工程中最常遇到的墙面窗,将μ分别以1.0sl (2)带入式(1)可得:W=1.0βμw oz=gz)(3 W=1.2βμw o=gzz在工程设计中,由于风荷载的多向性,难以分出正压、负压区;而在施工安装中,同一式样、规格的外窗分类过细实无必要,因此实)为墙面窗风压计算的通用公式。
用中,以式(3 同理,屋面、檐口负压区窗风压计算公式归并为)μw (4βW=2.2ozgz=两个系数,都与建筑物所处的μ其次,阵风系数β、高度系数zgzGB50009区位(即地面粗糙度类别)以及距地高度有关,拟利用规范也融入,可已有相关表格并使其合并,同时将式(3)中的常数1.2 (5)μΩ= 1.2β得到:zgz也即建筑外墙面窗的风压值计算公式可简化为:)(W =Ωw 6o=与建筑物所处的区位和距Ω----风压计算综合系数,式中查得地高度有关,通过附表11最后,一旦取得项目建设所在地的基本风压值,即可利用附表以两者相乘之积,即可得该建筑物外墙面查到风压计算综合系数Ω,2 窗的风压标准值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑门窗的抗风压计算一、概况1.1计算依据风荷载标准按GB50009-2001《建筑结构荷载规范》的规定计算任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用技术规范》的规定计算玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算建筑外窗抗风强度计算方法1.2说明1.2.1门窗幕墙不是承重结构,是围护结构,应采用围栏结构的计算公式。
什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。
1.2.2GB50009中第7.1.2条也是强制性条文。
“对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。
”提出了几个问题:一、高层建筑,二、高耸结构,三、比较敏感的其他结构,四、有关的结构设计规范。
如何理解和应用的问题。
高层建筑:定义、基准,可从下列资料中找到。
JGJ37-87 《民用建筑设计通则》GB50096-99 《住宅设计规范》GB50045-95 《高层民用建筑设计防火规范》GBJ 16-87 《建筑设计防火规范》JGJ 3-2002 《高层建筑混凝土结构技术规程》有一句基本雷同的说法:在通则与防火等规范中指出为:居住建筑大于10层(约30M)公用建筑大于24M在JGJ3中定义为:10层及10层以上或房屋高度大于28M的建筑物。
高耸结构在GBJ135-90中规定,如电视塔、发射塔、微波塔、拉绳桅杆、石油化工塔、大气污染检测塔、烟囱、排气塔、碾井架等。
有的塔有可能使用门窗、幕墙,例如上海、北京等地电视塔等。
有关结构设计规范JGJ113-2003中第4.1.2条规定,计算的风荷载标准值小于0.75KPa时,应按0.75KPa采用,高层建筑风荷载标准值宜按计算值加大10%采用。
换句话讲,也就是玻璃承载能力要降低10%。
风荷载标准值起点为0.75kPa;但比门窗产品抗风压检测标准GB7106-2002规定为1.0kPa要低,建议按门窗产品检测标准为准,较为妥善。
JGJ102-2003中第5.3.2条规定,当计算结果小于1.0kPa也按1.0kPa取值计算。
二、风荷载计算标准值2.1风荷载标准值垂直于建筑物表面上的风荷载标准值,应按下述公式式计算:当计算围护结构时WK=βgZ*μs*μz* W0式中: WK为风荷载标准值;μz为风压高度变化系数;μs为风荷载体型系数;βgZ为高度Z处的阵风系数;W0为建筑物当地的基本风压。
2.2风压高度变化系数μz(摘自GB 50009-2001 建筑结构荷载规范第7.2.1条)风压随高度的不同而变化,其变化规律与地面粗糙程度有关,对于平坦或稍有起伏的地形,风压高度变化系数应按地面粗糙度类别按下表确定。
离地面或海平面高度Z(米) 地面粗糙度类别A B C D5 1.17 1.00 0.74 0.6210 1.38 1.00 0.74 0.6215 1.52 1.14 0.74 0.6220 1.63 1.25 0.84 0.6230 1.80 1.42 1.00 0.6240 1.92 1.56 1.13 0.7350 2.03 1.67 1.25 0.8460 2.12 1.77 1.35 0.9370 2.20 1.86 1.45 1.0280 2.27 1.95 1.54 1.1190 2.34 2.02 1.62 1.19100 2.40 2.09 1.70 1.27150 2.64 2.38 2.03 1.61地面粗糙度可分为A、B、C、D四类A类:近海海面,海岛,海岸,湖岸及沙漠地区;B类:田野,乡村,从林,丘陵以及房屋比较稀疏的乡镇及大城市郊区;C类:有密集建筑群的城市市区;D类:有密集建筑群且房屋较高的城市中心区。
将A、B、C、D四类数据化:即当拟建房2km为半径的迎风半径影响范围内的房屋高度和密集度区分。
取该地区主导风和最大风向为准。
以建筑物平均高度Ћ来划分地面粗糙度。
当Ћ≥18M为D类;9M<Ћ≤18M为C类;Ћ<9M为B类;2.3风荷载体型系数μs(摘自GB 50009-2001 建筑结构荷载规范)2.3.1外表面正压区:按表7.3.1采用,可风洞试验结果,也可按表7.3.1条取,最不利表面+1.3-0.2=+1. 1负压区:按7.3.3条规定对墙面,取-1.0;对墙角边,取-1.8;对屋面局部部位(周边和屋面坡度>10°的屋脊部位),取-2.2;对檐口、雨棚、遮阳板等突出构件,取-2.0;注:屋面、墙角边的划分:作用宽度0.1,作用高度0.4,起点应大于1.5m。
2.3.2内表面对封闭式建筑物,按外表面风压的正负情况取-0.2或0.2。
2.4阵风系数βgZ(摘自GB 50009-2001 建筑结构荷载规范第7.5.1条)离地面高度 (米) 地面粗糙度类别A B C D5 1.69 1.88 2.30 3.2110 1.63 1.78 2.10 2.7615 1.60 1.72 1.99 2.5420 1.58 1.69 1.92 2.3930 1.54 1.64 1.83 2.2140 1.52 1.60 1.77 2.0950 1.51 1.58 1.73 2.0160 1.49 1.56 1.69 1.9470 1.48 1.54 1.66 1.8980 1.47 1.53 1.64 1.8590 1.47 1.52 1.62 1.81100 1.46 1.51 1.60 1.78150 1.43 1.47 1.54 1.672.4基本风压W0(摘自GB 50009-2001 建筑结构荷载规范附表D4)围护结构按50年选取,专业规范另有规定的除外,例JGJ113-2003要加大10%等。
全国主要城市的50年一遇风压(kN/m2)城市名称风压值城市名称风压值城市名称风压值城市名称风压值城市名称风压值北京0.45 锦州0.60 无锡0.45 西安0.35 汕头0.80天津0.50 鞍山0.50 连云港0.55 铜川0.35 深圳0.75上海0.55 营口0.60 南通0.45 兰州0.30 南宁0.35重庆0.40 丹东0.55 常州0.40 银川0.65 桂林0.30石家庄0.35 大连0.65 溧阳0.40 西宁0.35 柳州0.30承德0.40 长春0.65 吴县东山0.45 乌鲁木齐0.60 北海0.75秦皇岛0.45 吉林0.50 杭州0.45 克拉玛依0.90 海口0.75唐山0.40 哈尔滨0.55 慈溪0.45 郑州0.45 三亚0.85保定0.40 齐齐哈尔0.45 舟山0.85 新乡0.40 成都0.30沧州0.40 济南0.45 金华0.35 开封0.45 宜宾0.30太原0.40 德州0.45 宁波0.50 商丘0.35 贵阳0.30大同0.55 烟台0.55 温州0.60 武汉0.35 昆明0.30运城0.40 威海0.65 合肥0.35 宜昌0.30 丽江0.30呼和浩特0.55 青岛0.60 南昌0.45 黄石0.35 拉萨0.30满洲里0.65 南京0.40 赣州0.30 长沙0.35 台北0.70海拉尔0.65 徐州0.35 福州0.70 广州0.50 香港0.90沈阳0.55 镇江0.40 厦门0.80 韶光0.35 澳门0.852.5风荷载标准值计算a 根据GB50009-2001的规定,可以区分为标准型与非标准型二大类:非标准型,即山坡、海岛、群体效应和需调查等状态而言。
公式Wk=βɡzμsμzW0式中,Wk——风荷载标准值 kPa(kN/㎡)μs——体型系数※正压区,按7.3.1条规定,可风洞试验结果,也可按表7.3.1条取,最不利表面+1.3-0.2= +1.1※负压区,按7.3.3条规定有墙面,取-1.0+(-0.2)=-1.2墙角,取-1.8+(—0.2)=-2.0屋脊,取-2.2+(—0.2)=-2.4檐口,雨棚,遮阳板,取-2.0+(-0.2)=-2.2μz——高度系数:可查表7.2.1规定,也可自行计算。
计算时按,W0——基本风压 kPa(kN/㎡)※可从附图D5.3或附表D4中查到。
计算实例例,北京市有一幢100M高建筑物,求风荷载标准值。
注:未交待型体、具体地点、风洞试验、群体干扰等情况。
解:公式Wk=βɡzμsμzW0式中参数选取:βɡz——查表为A—1.46,B—1.52,C—1.62;D—1.81;μs——取正压区为+1.3-0.2=+1.1取负压区为-1.8+(-0.2)=-2.0μz——查表为A—2.40,B—2.09,C—1.70,D—1.27; W0——查表为50年一遇0.45KPa。
代入型式计算:Wk-A类=1.46× ×2.40×0.45= kPa 提高46%Wk-B类=1.52× ×2.09×0.45= kPa 提高30%Wk-C类=1.62× ×1.70×0.45= kPa 提高18%Wk-D类=1.81× ×1.27×0.45= kPa 以此为100%三、玻璃承载能力计算3.1玻璃承载状态门、窗、幕墙在风压作用下有两种状态:一是四边支承,适用于有框门窗、幕墙。
二是二对边支承,适用于玻璃门等。
2.玻璃承受风荷载计算a)从JGJ113中查到三组公式四边支承时,当t≤6mm时,Wk=0.2α占多数当t>6mm时,Wk=α(0.2t1.6+0.8)/Amax 少数二对边支承时, Wk =0.142α t/L 玻璃门式中,Wk——风荷载标准值 kPaAmax——玻璃最大面积㎡L——玻璃许用跨度 mt——玻璃厚度 mmα——调整系数见表4.2.2表4.2.2 玻璃调整系数玻璃种类普通半钢化钢化夹层中空夹丝压花防火调整系数 1.0 1.6 2.0~3.0 0.8 1.5 0.5 0.6 3.0~4.5b)实例计算例一、采用外钢化、内浮法的中空玻璃,4钢+A+5的尺寸为1200×1800,求玻璃承载能力?公式:Wk=0.2α计算与取值:Wk=0.2×1.5×41.8/1.2×1.8=1.68kPa。
分析:①钢化薄片与浮法组合时,按薄片计算有利,否则不利,成本也高;②假定双片相等,外为钢化、内为浮法,未作交待;③JGJ102则规定外侧为钢化,按外侧钢化计算。
例二、采用外层防火玻璃厚5mm,内层钢化玻璃厚4mm的夹层玻璃,其尺寸为1200×1800,求玻璃承载能力?公式:Wk=α(0.2t1.6+0.8)/Amax计算与取值:Wk=0.8(0.2×91.6+0.8)/1.2×1.8=2.78 kPa分析:①此时承载能力很大,但主要作用是防火,成本很高;②钢化玻璃和单片防火玻璃的抗风压调整系数应经试验确定。