第3 章 静力学平衡问题-课件·PPT
合集下载
第三章 静力学平衡问题

Fy 0 M O ( F ) 0 Fx 0
平面一般力系有三个独立的平衡方程,可求解三个未知数。
M A ( F ) 0 限制条件 M ( F ) 0 2.二力矩形式 B Fx 0
M A (F ) 0 3.三力矩形式 M B ( F ) 0 限制条件 M C ( F ) 0
45°
_ 2
FC
2M 2 2M FA FC b) 45 l sin l
a)
例3-3
塔式起重机机架重W1=700kN,作用线通过塔架的
中心。最大起重量W2=200kN,最大悬臂长为12m,轨道AB的 间距为4m。平衡重W3到机身中心线距离为6m。试问:保证起 重机在满载和空载时都不致翻到,平衡重W3应为多少? 解:取起重机为研究对象,起重机受平行 力系作用。 (一)满载 临界情况下,FA=0
第三章
静力学平衡问题
第一节 平面力系的平衡条件和平衡方程
第二节 物体系统的平衡问题 第三节 考虑摩擦的平衡问题 第四节 空间一般力系的平衡问题
本章重点:
平面力系平衡方程及其应用。
求解物体系统的平衡问题。
第一节 平面力系的平衡条件和平衡方程
一、平面一般力系的平衡条件
FR=0,MO=0。
二、 平面一般力系平衡方程的三种形式 1.一般形式
M D (F ) 0
F 'Cy 1.5 F 'Cx 2 FT 1.5 0
F 'Cx FCx 0.375 kN
(3)再考虑ACE,写出其第三个平衡方程,
Fx 0
解得
FCx FEx FT 0 FEx FCx FT 1.375 kN
平面一般力系有三个独立的平衡方程,可求解三个未知数。
M A ( F ) 0 限制条件 M ( F ) 0 2.二力矩形式 B Fx 0
M A (F ) 0 3.三力矩形式 M B ( F ) 0 限制条件 M C ( F ) 0
45°
_ 2
FC
2M 2 2M FA FC b) 45 l sin l
a)
例3-3
塔式起重机机架重W1=700kN,作用线通过塔架的
中心。最大起重量W2=200kN,最大悬臂长为12m,轨道AB的 间距为4m。平衡重W3到机身中心线距离为6m。试问:保证起 重机在满载和空载时都不致翻到,平衡重W3应为多少? 解:取起重机为研究对象,起重机受平行 力系作用。 (一)满载 临界情况下,FA=0
第三章
静力学平衡问题
第一节 平面力系的平衡条件和平衡方程
第二节 物体系统的平衡问题 第三节 考虑摩擦的平衡问题 第四节 空间一般力系的平衡问题
本章重点:
平面力系平衡方程及其应用。
求解物体系统的平衡问题。
第一节 平面力系的平衡条件和平衡方程
一、平面一般力系的平衡条件
FR=0,MO=0。
二、 平面一般力系平衡方程的三种形式 1.一般形式
M D (F ) 0
F 'Cy 1.5 F 'Cx 2 FT 1.5 0
F 'Cx FCx 0.375 kN
(3)再考虑ACE,写出其第三个平衡方程,
Fx 0
解得
FCx FEx FT 0 FEx FCx FT 1.375 kN
第3章 静力学平衡问题 (2)

例题
(2)再研究轮
FOx FOy FʹB
M
O
(F ) 0
FB cos R M 0
F
F
解得:
x
0
0
FOx FB sin 0
FB cos FOy 0
y
M FP R
FOx FP tg
FOy FP
【负号表示力的方向与图中所设方向相反】
由图示几何关系,在Rt△BFE和 Rt△EDA中
BD=BE+DE=1.2 2+
1.8 2
≈2.97(m)
∑ MA(F) =0 M-FA×BD=0
解得 FA=M/BD=269.36(N) FC=FA=269.36N
B
解法二:以整体作为研究对象, 画出受力图。
C
M FCy
FAx
FCx
列平衡方程
∑ Fx=0 ∑ Fy=0
§3-1 平面力系的平衡条件与平衡方程
例题
M A (F ) 0 : MB (F ) 0 MC (F ) 0
解得:
2 3M FA 3a 3P 3
FC
3 aM 0 2
3 a FA aP M 0 2 2 3 a FB a P M 0 2 2
FAx=FCx=190.48kN
【3-5】为了测定飞机螺旋桨所受的空气阻力偶,可将飞机水平放
置,其一轮搁置在地秤上。当螺旋桨未转动时,测得地秤所受的压
力为4.6 kN;当螺旋桨转动时,测得地秤所受的压力为6.4 kN。已 知两轮间的距离l=2.5 m。试求螺旋桨所受的空气阻力偶的力偶矩 M 的数值。
B
α
FNC
∑ MB(F) =0
4-第三章 静力学平衡问题

a
a
再回到原系统,可建立3个平衡 方程解得:
5 2M FOX 0 , FAY 2 F qa , 2 a M FOY F qa a
FOX
O A
F
B
a
a
M
q
FCY qa
C D
FOY FAY FBY
FBX
B
x
D M
a a FCY
[例3-3]图示一结构由AB、BC 与CE 三个构件构成。E 处有一滑轮,细绳 通过该轮悬挂一重为 12 kN 的重物。A为固定铰支座,B 为滑动铰支座, C、D 与E 为圆柱铰。AD = BD = l1= 2m,CD = DE = l2= 1.5m。不计杆件 与滑轮的重量,求支座处的反力。
• 上述第一种情况称为静滑动摩擦力(静摩擦力)
• 第二种情况称为极限摩擦力 • 第三种情况称为动滑动摩擦力(动摩擦力) • 可见极限摩擦力与维持平衡的静摩擦力的关系为: 1、(静)滑动摩擦力的计算、干摩擦与粘性摩擦
Fmax
Fmax F f 0
由大量实验,库仑给出一近似公式:
Fmax f s FN
如果是平面问题(设为xy平面),则平 衡方程简化为 3 个:
X 0 , Y 0 , mO F 0
上式称为平衡方程一矩式,而二矩式和三矩式分别为:
X 0 或 Y 0 mA F 0 mB F 0 m A F 0 mB F 0 m F 0 C
如图 a 所示建立参考基 分析: 系统主动力只有重力 G 约束反力有4个显然无法直接求解
FT
y
C
q FAy A D B
人体静力学与平衡解析课件

在人着地的瞬间,其速度是4.5m/s,设地面 在5ms内使人体停止,此时所受的力约是其 体重的100倍。
如果人落在体操垫上,则其减速时间会长一 些,
另外,如果他按照人体的正常反应,先将脚 尖着地然后曲膝,使减速的时间更长,则可 07: 2 减少着地力。
59 9
人体在加速和减速力作用下的行为,是和 飞机、汽车、太空飞行器有关的人员感兴趣 的领域。人体经受得起的加速度的量值,决 定于人体的方位和加速度的持续时间。
07: 2 59 3
二、摩擦力 Friction
f N
接触表面 钢与钢 橡胶轮胎在干水泥地上 橡胶轮胎在湿水泥地上 钢在冰上 润滑的骨关节
u (摩擦系数) 0.15 1.0 0.7 0.03 0.003
07: 2 59 4
2.1 Standing at an Incline
f G cos
Ft G sin
三、动力学 Dynamics
习题
1.12 1.14 1.15 1.16 1.17 1.18
07: 3 59 7
r
F
力矩 T rF
大小:T rF sin
矢量差积
是r与F所夹 的锐角
07: 59 3
重心
刚体的重心: 刚 体 的 重 量 可 以 认 为 集中 在 该 点 上 。
密 度 均 匀 且 几 何 形 状 对称 的 物 体 的 重 心 位于它们的几何中心。
形状不规则的物体的重心?
07: 59 4
会倒吗?
07: 59 1
一、静力学 Static Forces
研究作用在处于平衡和静止的物体上的
力。
质点平衡的条件:
T r F 其受到的各力之和为零
刚体平衡的条件:
如果人落在体操垫上,则其减速时间会长一 些,
另外,如果他按照人体的正常反应,先将脚 尖着地然后曲膝,使减速的时间更长,则可 07: 2 减少着地力。
59 9
人体在加速和减速力作用下的行为,是和 飞机、汽车、太空飞行器有关的人员感兴趣 的领域。人体经受得起的加速度的量值,决 定于人体的方位和加速度的持续时间。
07: 2 59 3
二、摩擦力 Friction
f N
接触表面 钢与钢 橡胶轮胎在干水泥地上 橡胶轮胎在湿水泥地上 钢在冰上 润滑的骨关节
u (摩擦系数) 0.15 1.0 0.7 0.03 0.003
07: 2 59 4
2.1 Standing at an Incline
f G cos
Ft G sin
三、动力学 Dynamics
习题
1.12 1.14 1.15 1.16 1.17 1.18
07: 3 59 7
r
F
力矩 T rF
大小:T rF sin
矢量差积
是r与F所夹 的锐角
07: 59 3
重心
刚体的重心: 刚 体 的 重 量 可 以 认 为 集中 在 该 点 上 。
密 度 均 匀 且 几 何 形 状 对称 的 物 体 的 重 心 位于它们的几何中心。
形状不规则的物体的重心?
07: 59 4
会倒吗?
07: 59 1
一、静力学 Static Forces
研究作用在处于平衡和静止的物体上的
力。
质点平衡的条件:
T r F 其受到的各力之和为零
刚体平衡的条件:
理论力学第三章(静力学平衡1)

1.空间任意力系的平衡方程
Fxi 0, Fyi 0, Fzi 0
M xi 0, M yi 0, M zi 0
空间平行力系的平衡方程
Fzi 0, Mxi 0, M yi 0
2020年9月29日星期二
平行力系
4
F1 O F2
《理论力学》
汇交力系的平衡
Fxi 0, Fyi 0, Fzi 0
13《理论力学》yFra bibliotek2qa
A
YA
XA
2a
C
B
M Pa P
4a
YB
x
Fx 0
Fy
0
M A(F)
0
2020年9月29日星期二
1,研究对象 2,选取坐标 3,受力分析 4,列解方程求解
14
《理论力学》
Fx Fy M
0 0
A (F )
0
XA 0 YA YB 2aq P 0
4aYB Pa 2aP 2a2q 0
2020年9月29日星期二
30
物系平衡的特点:物体系统的平衡
《理论力学》
1 物系静止且静定
要分清内力与外力,内力
2 物系中每部分也是平衡的。 不画在受力图上。
3 选择所需的研究对象,分析研究对象的受力,列出相应的平衡
方程; 如果要求的未知量没有全部求出,再一次选择所需的研
究对象,分析研究对象的受力,列出相应的平衡方程……
R
两个简化的结果是等效 的,则结果只能是
A
Fx 0 。Rcos 0
由 90 ,知 R 0
B
α
原力系平衡.
o
x
2020年9月29日星期二
9
《理论力学》
《工程力学第三章》PPT课件

F A y - F Q - F W + F T B sin= 0
FA= y - l- l xFW+F2Q
h
15
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
FTB=FWlxs+ iF nQ2l=2FlWxFQ
解: 3.讨论 由结果可以看出,当x=l,即电动机移动到吊车大梁 右端B点处时,钢索所受拉力最大。钢索拉力最大值为
因此,力系平衡的必要与充分条件是力系的主矢和对任意一 点的主矩同时等于零。这一条件简称为平衡条件
满足平衡条件的力系称为平衡力系。 本章主要介绍构件在平面力系作用下的平衡问题。
h
8
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程
对于平面力系,根据第2章中所得到的主矢和主矩 的表达式,力系的平衡条件可以写成
吊 车 大 梁 AB 上 既 有 未 知 的 A 处 约 束力和钢索的拉力,又作用有已知的 电动机和重物的重力以及大梁的重力。 所以选择吊车大梁AB作为研究对象。 将吊车大梁从吊车中隔离出来。
h
12
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
平面一般力系的平衡条件与平衡方程-例题 1
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q2 l- F W xF T Blsi= n0
FTB=FWlxs+ inFQ2l=2FlWxFQ
FAxFTBco= s0
Fy=0
F A= x 2F W x lF Q l co= s3 3 0 F lW xF 2 Q
FA= y - l- l xFW+F2Q
h
15
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
FTB=FWlxs+ iF nQ2l=2FlWxFQ
解: 3.讨论 由结果可以看出,当x=l,即电动机移动到吊车大梁 右端B点处时,钢索所受拉力最大。钢索拉力最大值为
因此,力系平衡的必要与充分条件是力系的主矢和对任意一 点的主矩同时等于零。这一条件简称为平衡条件
满足平衡条件的力系称为平衡力系。 本章主要介绍构件在平面力系作用下的平衡问题。
h
8
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程
对于平面力系,根据第2章中所得到的主矢和主矩 的表达式,力系的平衡条件可以写成
吊 车 大 梁 AB 上 既 有 未 知 的 A 处 约 束力和钢索的拉力,又作用有已知的 电动机和重物的重力以及大梁的重力。 所以选择吊车大梁AB作为研究对象。 将吊车大梁从吊车中隔离出来。
h
12
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
平面一般力系的平衡条件与平衡方程-例题 1
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q2 l- F W xF T Blsi= n0
FTB=FWlxs+ inFQ2l=2FlWxFQ
FAxFTBco= s0
Fy=0
F A= x 2F W x lF Q l co= s3 3 0 F lW xF 2 Q
论力学第三章课件

Fq
FAx
MA
FAy
解:取ABD为对象,受力图如图示。 其中Fq=1/2×q×3l=30kN
∑X=0: FAx+Fq–Fsin600=0
∑Y=0: FAy–P–Fcos600=0
MA–M–Fql+Fcos600l+Fsin6003l=0
解得:FAx=316.4kN; FAy=300kN MA=–1188kN.m (与图示转向相反)
静力学/第三章:平面任意力系
■ 平衡方程的其它形式
1 二矩式: X = 0
B
A
x
C
A
A、B 连线不垂直 于x 轴
A、B、C 三点不 在同一条直线上
附加条件:
附加条件:
B
2 三矩式:
静力学/第三章:平面任意力系
■二矩式的证明:
必要性
即
力系平衡
二矩式成立
由力系平衡→
F1
F2
F3
Fn
二、 平面任意力系向一点简化,主矢和主矩
1、 简化 思路:用力的平移定理将各力移至同一点,然后再合成。
将每个力向简化中心O平移
任选一个 简化中心O
其中:
O
因此:
平面任意力系
平面汇交力系
+ 平面力偶系
O
F1’
M1
F2’
M2
F3’
M3
Fn’
Mn
静力学/第三章:平面任意力系
向O点简化
F1
静力学/第三章:平面任意力系
几点讨论: 根据题意选择研究对象 分析研究对象的受力情况,正确地画出其受力图 研究对象与其他物体相互连接处的约束,按约束的性质表示约束反力 正确地运用二力杆的性质和三力平衡定理来确定约束反力的方位
FAx
MA
FAy
解:取ABD为对象,受力图如图示。 其中Fq=1/2×q×3l=30kN
∑X=0: FAx+Fq–Fsin600=0
∑Y=0: FAy–P–Fcos600=0
MA–M–Fql+Fcos600l+Fsin6003l=0
解得:FAx=316.4kN; FAy=300kN MA=–1188kN.m (与图示转向相反)
静力学/第三章:平面任意力系
■ 平衡方程的其它形式
1 二矩式: X = 0
B
A
x
C
A
A、B 连线不垂直 于x 轴
A、B、C 三点不 在同一条直线上
附加条件:
附加条件:
B
2 三矩式:
静力学/第三章:平面任意力系
■二矩式的证明:
必要性
即
力系平衡
二矩式成立
由力系平衡→
F1
F2
F3
Fn
二、 平面任意力系向一点简化,主矢和主矩
1、 简化 思路:用力的平移定理将各力移至同一点,然后再合成。
将每个力向简化中心O平移
任选一个 简化中心O
其中:
O
因此:
平面任意力系
平面汇交力系
+ 平面力偶系
O
F1’
M1
F2’
M2
F3’
M3
Fn’
Mn
静力学/第三章:平面任意力系
向O点简化
F1
静力学/第三章:平面任意力系
几点讨论: 根据题意选择研究对象 分析研究对象的受力情况,正确地画出其受力图 研究对象与其他物体相互连接处的约束,按约束的性质表示约束反力 正确地运用二力杆的性质和三力平衡定理来确定约束反力的方位
第3章 静力学平衡问题

α
FQ Cx FN
习题 3-11b 解图
取节点C为研究对象,见习题3-11b解图,
∑ Fy = 0 : F'BC cosα = FN
∴ FN
=
FP cosα 2 sin α
=
FP 2 tan α
=
3 × 15 2×2
= 11.25kN
3-12 蒸汽机的活塞面积为0.1m2,连杆AB长2m,曲柄BC长0.4m。在图示位置时, 活塞两侧的压力分别为p0=6.0×105Pa, p1=1.0×105Pa, ∠ABC=90D 。试求连杆AB作用于曲柄 上 的 推 力 和 十 字 头 A对 导 轨 的压力(各部件之间均为光滑接触)。
图(b):ΣMi = 0
∴ 由对称性知
FRB
=
M d
(←)
FRA
=
M d
(→)
FBy = FAy = 0
FBx
=
M d
M
FB
3-10 固定在工作台上的虎钳如图所示,虎钳丝杠将一铅垂力 F=800N 施加于压头上, 且沿着丝杠轴线方向。压头钳紧一段水管。试求压头对管子的压力。
习题 3-10 图
FNB
FNC FN
10
由几何关系得 cosα = 4500 = 0.9 , 5000
列平衡方程
sin α = 0.436
∑ MO (F ) = 0 : 2FA × 4500 −F Wcosα × 5000 +F Wsinα ×1250 = 0
解得 FA = 27.25 kN
∑ Fx = 0 : FOx = FW sin α = 27.03kN ∑ Fy = 0 : FOy = FW cosα − 2FA = 1.3kN
FQ Cx FN
习题 3-11b 解图
取节点C为研究对象,见习题3-11b解图,
∑ Fy = 0 : F'BC cosα = FN
∴ FN
=
FP cosα 2 sin α
=
FP 2 tan α
=
3 × 15 2×2
= 11.25kN
3-12 蒸汽机的活塞面积为0.1m2,连杆AB长2m,曲柄BC长0.4m。在图示位置时, 活塞两侧的压力分别为p0=6.0×105Pa, p1=1.0×105Pa, ∠ABC=90D 。试求连杆AB作用于曲柄 上 的 推 力 和 十 字 头 A对 导 轨 的压力(各部件之间均为光滑接触)。
图(b):ΣMi = 0
∴ 由对称性知
FRB
=
M d
(←)
FRA
=
M d
(→)
FBy = FAy = 0
FBx
=
M d
M
FB
3-10 固定在工作台上的虎钳如图所示,虎钳丝杠将一铅垂力 F=800N 施加于压头上, 且沿着丝杠轴线方向。压头钳紧一段水管。试求压头对管子的压力。
习题 3-10 图
FNB
FNC FN
10
由几何关系得 cosα = 4500 = 0.9 , 5000
列平衡方程
sin α = 0.436
∑ MO (F ) = 0 : 2FA × 4500 −F Wcosα × 5000 +F Wsinα ×1250 = 0
解得 FA = 27.25 kN
∑ Fx = 0 : FOx = FW sin α = 27.03kN ∑ Fy = 0 : FOy = FW cosα − 2FA = 1.3kN