苏教版数学中考总复习[中考总复习:全等三角形--知识点整理及重点题型梳理]
苏教版《全等三角形》知识点总结+习题+单元测试题

第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。
2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
⑵全等三角形的周长相等、面积相等。
⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
④边边边公理(SSS)有三边对应相等的两个三角形全等。
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS;②找夹角(SAS;③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA;②找夹边(SAS .⑶已知两角:①找夹边(ASA ;②找其它边(AAS .例题评析例1已知:如图,点D、E在BC上,且BD=CE AD=AE, 求证:AB=AC例 2 已知:如图,A、C、F、D 在同一直线上,AF= DC, AB= DE, BC= EF,求证:△ ABC^^DEF.BD例 3 已知:BE X CD, BE = DE, BC = DA ,例 4 如图,在△ ABE 中,AB = AE,AD = AC,/ BAD =Z EAC, BC DE 交于点 O •求证:(1) △ ABC ^^ AED; (2) OB = OE .例5如图,在正方形 ABCD 中,E 为DC 边上的点,连接BE,将厶BCE 绕点C 顺时针方向旋转 90°得到△ DCF连接EF,若/ BEC=6C °,求/ EFD 的度数.例6如图,将长方形纸片 ABCD&对角线AC 折叠,使点B 落到点B'的位置,AB 与CD 交于点E(1) 试找出一个三角形与△ AED 全等,并加以证明• (2)若AB=8, D E =3, P 为线段AC 上的任意一点,PGL AE 于G PH X EC 于 H, PG +PH的值会变化吗?若 变化,请说明理由; 若不变化,请求出这个值。
初中教育数学全等三角形知识点总结材料及复习

适用标准全等三角形知识点总结及复习一、知识网络对应角相等性质对应边相等全等形全等三角形判断角均分线边边边SSS边角边SAS应用角边角ASA角角边AAS斜边、直角边HL作图性质与判断定理二、根基知识梳理〔一〕、根本观点1、“全等〞的理解全等的图形一定知足:〔1〕形状相同的图形;〔2〕大小相等的图形;即能够完整重合的两个图形叫全等形。
相同我们把能够完整重合的两个三角形叫做全等三角形。
全等三角形定义:能够完整重合的两个三角形称为全等三角形。
〔注:全等三角形是相像三角形中的特别状况〕当两个三角形完整重合时,相互重合的极点叫做对应极点,相互重合的边叫做对应边,相互重合的角叫做对应角。
由此,能够得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边必定是对应边;(4)有公共角的,角必定是对应角;(5)有对顶角的,对顶角必定是对应角;2、全等三角形的性质〔 1 〕全等三角形对应边相等;〔2〕全等三角形对应角相等;3、全等三角形的判断方法(1 〕三边对应相等的两个三角形全等。
(2 〕两角和它们的夹边对应相等的两个三角形全等。
(3 〕两角和此中一角的对边对应相等的两个三角形全等。
(4 〕两边和它们的夹角对应相等的两个三角形全等。
(5 〕斜边和一条直角边对应相等的两个直角三角形全等。
4、角均分线的性质及判断性质:角均分线上的点到这个角的两边的距离相等判断:到一个角的两边距离相等的点在这个角均分线上〔二〕灵巧运用定理1、判断两个三角形全等的定理中,一定具备三个条件,且起码要有一组边对应相等,所以在找寻全等的条件时,老是先找寻边相等的可能性。
2、要擅长发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要擅长灵巧选择适合的方法判断两个三角形全等。
(1〕条件中有两角对应相等,可找:①夹边相等〔 ASA 〕②任一组等角的对边相等 (AAS)①夹角相等 (SAS) ②第三组边也相等(SSS)〔3 〕条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)〔三〕经典例题例 1. :以下列图,AB=AC ,,求证:.例 2. 以下列图,:AF=AE , AC=AD , CF 与 DE 交于点 B。
专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1.3 全等三角形-重难点题型【苏科版】【题型1 全等三角形的对应元素判断】【例1】(2020秋•潍城区期中)如图,△ABC≌△DEF,点E、C、F、B在同一条直线上.下列结论正确的是()A.∠B=∠D B.∠ACB=∠DEF C.AC=EF D.BF=CE【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△DEF,∴∠B=∠E,但∠B与∠D不一定相等,A选项结论错误,不符合题意;∵△ABC≌△DEF,∴∠ACB=∠EFD,当∠ACB与∠DEF不一定相等,B选项结论错误,不符合题意;∵△ABC≌△DEF,∴AC=DF,当AC与EF不一定相等,C选项结论错误,不符合题意;∵△ABC≌△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即BF=CE,D选项结论正确,符合题意;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式1-1】(2020秋•合江县月考)如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB【分析】由全等三角形的性质可得S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,进而可得AD∥BC,即可求解.【解答】解:∵△ABC≌△CDA,∴S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,∴AD∥BC,故选项A、B、D都不符合题意,∵∠ACB不一定等于∠ACD,∴∠B+∠ACB不一定等于∠D+∠ACD,故选项C符合题意,故选:C.【点评】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.【变式1-2】(2020秋•海珠区校级期中)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用全等三角形的性质可得答案.【解答】解:∵△ABC≌△AEF,∴AF=AC,EF=CB,∠F AE=∠BAC,∴∠F AE﹣∠F AB=∠BAC﹣∠BAF,即∠BAE=∠F AC,∴正确的结论是①③④,共3个,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形,对应边相等,对应角相等.【变式1-3】(2020秋•北碚区期中)如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2B.3C.4D.5【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C 可能不在同一直线上,所以AD+CD可能不等于AC.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.【题型2 利用全等三角形的性质求角度】【例2】(2020秋•兰山区期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BCA,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质、全等三角形的性质解答即可.【解答】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.【变式2-1】(2020春•沙坪坝区校级期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC 度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.【点评】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-2】(2020秋•覃塘区期中)如图,已知△AEF≌△ABC,点E在BC边上,EF与AC交于点D.若∠B=64°,∠C=30°,求∠CDF的度数.【分析】根据全等三角形的性质和三角形外角性质解答即可.【解答】解:∵△AEF≌△ABC,∴AE=AB,∠AEF=∠B=64°,∵点E在BC边上,∴∠AEB=∠B=64°,∴∠DEC=180°﹣∠AEB﹣∠AEF=180°﹣64°﹣64°=52°,又∵∠C=30°,且∠CDF是△CDE的外角,∴∠CDF=∠DEC+∠C=52°+30°=82°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.【变式2-3】(2020秋•西湖区校级月考)如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.【点评】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.【题型3 利用全等三角形的性质求线段长度】【例3】(2020秋•永吉县期中)如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG 和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.【分析】由△EFG≌△NMH,EF和NM,FG和MH是对应边,得到EG和NH是对应边,根据全等三角形的性质得到EG=NH,根据线段的和差计算即可得到结果.【解答】解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∴EH=NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).【点评】本题主要考查了全等三角形全等的性质,熟练找出两个全等三角形的对应边是解此题的关键.【变式3-1】(2020秋•永定区期中)如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.【分析】根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC﹣CD=2cm.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.【变式3-2】(2020秋•东莞市校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式3-3】(2020秋•中山市期中)一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是 .【分析】根据全等三角形的性质可得方程组{3x −2y =5x +2y =7,或{x +2y =53x −2y =7,解方程组可得答案. 【解答】解:由题意得{3x −2y =5x +2y =7,或{x +2y =53x −2y =7, 解得:{x =3y =2或{x =3y =1, x +y =5或x +y =4,故答案为:5或4【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.【题型4 与全等三角形性质有关的证明】【例4】(2020秋•安徽月考)如图,△ABC ≌△ADE ,点E 在边BC 上,求证:∠BED =∠BAD .【分析】根据全等三角形的性质和三角形的外角的性质即可得到结论.【解答】证明:∵△ABC ≌△ADE ,∴∠C =∠AED ,∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠CAE =∠BAD ,∵∠AEB =∠AED +∠DEB =∠CAE +∠C ,∴∠CAE =∠BED ,∴∠BED =∠BAD .【点评】本题考查了三角形全等的性质,三角形的外角的性质,关键是熟练掌握全等三角形的性质.【变式4-1】(2020秋•大安市校级期中)已知△ABF ≌△DCE ,E 与F 是对应顶点.证明AF ∥DE .【分析】根据全等三角形的性质得出∠B =∠C ,∠BAF =∠CDE ,根据三角形外角性质求出∠AFE =∠DEF ,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的性质,三角形外角性质,平行线的判定等知识点,能灵活运用定理机芯推理是解此题的关键.【变式4-2】(2020春•成都期中)如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF ⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE⊥AB,理由:∵△BCE≌△ACE,∴BEC=∠AEC=12×180°=90°,∴CE⊥AB;(2)∵ED∥AC,∴∠DEC=∠ACE,∵△BCE≌△ACE,∴∠BCE=∠ACE,∴∠CED=∠DCE,∵DF⊥AB,∴DF∥CE,∴∠BDF=∠DCE,∠EDF=∠CED,∴∠EDF=∠BDF.【点评】本题考查了全等三角形的性质,平行线的性质,正确的识别图形是解题的关键.【变式4-3】(2020秋•定远县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【点评】本题考查了全等三角形的判定定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【题型5 与全等三角形性质有关的综合】【例5】(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式5-1】(2020秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【分析】(1)根据全等三角形的对应边相等得到BD=BC=5cm,BE=AB=2cm,计算即可;(2)根据全等三角形的对应角相等和平角的定义解答;(3)根据全等三角形的对应角相等和三角形内角和定理进行解答.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式5-2】(2018春•德化县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.【点评】本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【变式5-3】(2020春•铁西区期中)如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.【点评】本题考查了全等三角形的性质,平行线的判定,三角形的内角和,正确的识别图形是解题的关键.【题型6 与全等三角形性质有关的动点问题】【例6】(2020秋•丹徒区校级月考)如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2020秋•滨湖区期中)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.【变式6-2】如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A 出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QP A两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QP A时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【点评】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等是解题的关键,注意分情况讨论思想的应用.【变式6-3】(2020春•广饶县期末)如图①,在Rt △ABC 中,∠C =90°,BC =9cm ,AC =12cm ,AB =15cm ,现有一动点P ,从点A 出发,沿着三角形的边AC →CB →BA 运动,回到点A 停止,速度为3cm /s ,设运动时间为ts .(1)如图(1),当t = 时,△APC 的面积等于△ABC 面积的一半;(2)如图(2),在△DEF 中,∠E =90°,DE =4cm ,DF =5cm ,∠D =∠A .在△ABC 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB →BC →CA 运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,求点Q 的运动速度.【分析】(1)分两种情况进行解答,①当点P 在BC 上时,②当点P 在BA 上时,分别画出图形,利用三角形的面积之间的关系,求出点P 移动的距离,从而求出时间即可;(2)由△APQ ≌△DEF ,可得对应顶点为A 与D ,P 与E ,Q 与F ;于是分两种情况进行解答,①当点P 在AC 上,AP =4,AQ =5,②当点P 在AB 上,AP =4,AQ =5,分别求出P 移动的距离和时间,进而求出Q 的移动速度.【解答】解:(1)①当点P 在BC 上时,如图①﹣1,若△APC 的面积等于△ABC 面积的一半;则CP =12BC =92cm ,此时,点P 移动的距离为AC +CP =12+92=332,移动的时间为:332÷3=112秒, ②当点P 在BA 上时,如图①﹣2若△APC 的面积等于△ABC 面积的一半;则PD =12BC ,即点P 为BA 中点,此时,点P 移动的距离为AC +CB +BP =12+9+152=572cm ,移动的时间为:572÷3=192秒, 故答案为:112或192;(2)△APQ ≌△DEF ,即,对应顶点为A 与D ,P 与E ,Q 与F ;①当点P 在AC 上,如图②﹣1所示:此时,AP =4,AQ =5,∴点Q 移动的速度为5÷(4÷3)=154cm /s ,②当点P 在AB 上,如图②﹣2所示:此时,AP =4,AQ =5,即,点P 移动的距离为9+12+15﹣4=32cm ,点Q 移动的距离为9+12+15﹣5=31cm ,∴点Q 移动的速度为31÷(32÷3)=9332cm /s , 综上所述,两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,点Q 的运动速为154cm /s 或9332cm /s .【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。
苏州市初三数学中考复习专题五三角形及其全等相似

五、三角形及其全等、相似徐国红吴中区木渎实验中学【近三年江苏省十三大市中考三角形及其全等、相似的分值与比率】(仅供参考)【课标要求】1.三角形的有关概念:(1)了解三角形有关的概念,掌握三角形的三边关系;(2)理解三角形内角和定理及推论;(3)理解三角形的角平分线、中线、高的概念及画法和性质.2.特殊三角形的性质和判定:(1)了解等腰三角形及等边三角形的有关概念,掌握其性质及判定;(2)掌握线段中垂线和角平分线的性质及判定;(3)了解直角三角形的有关概念,掌握其性质与判定;(4)掌握勾股定理与逆定理,并能用来解决有关问题.3.全等三角形:(1)理解全等三角形的定义和性质;(2)掌握三角形全等的性质与判定,熟练掌握三角形全等的证明;4.相似三角形:(1)比例线段:了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.(2)相似图形:了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用;(3)相似三角形:①了解两个三角形相似的概念,探索两个三角形相似的条件;②能利用图形的相似解决一些实际问题;③通过实例了解中心投影和平行投影,了解视点、视线及盲区的涵义;(4)位似了解位似变换和位似图形的概念,掌握并运用其性质.【课时分布】).【知识回顾】(1)三角形的概念及性质三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.三角形的性质:①三角形的内角和是180°;②三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角;③三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边.(2)三角形中的重要线段三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.三角形的中线在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.三角形的中位线①连接三角形两边中点的线段叫做三角形的中位线.②定理:三角形的中位线平行于第三边,且等于它的一半.(3)三角形的外心、内心①三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到三角形各顶点的距离相等.②三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三角形三边的距离相等.(4)等腰三角形等腰三角形的有关概念及分类:①有两边相等的三角形叫等腰三角形,三边相等的三角形叫做等边三角形,也叫正三角形;②等腰三角形分为腰和底不相等的等腰三角形和腰和底相等的等腰三角形;等腰三角形的性质:①等腰三角形的两个底角相等(简称为“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);③等腰三角形是轴对称图形.等腰三角形的判定:①有两边相等的三角形是等腰三角形;②如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”).(5)等边三角形的性质与判定等边三角形的性质:①等边三角形的内角相等,且都等于60°;②等边三角形的三条边都相等;等边三角形的判定:①三条边相等的三角形是等边三角形;②三个角相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.(6)线段的垂直平分线线段的垂直平分线概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线. 线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等.线段的垂直平分线判定:到一条线段的两个端点距离相等的点在线段的垂直平分线上,线段的垂直平分线可以看作是到线段两端点距离相等的点的集合.(7)角平分线的性质及判定角平分线的性质:角平分线上的点到角的两边的距离相等.角平分线的判定:角的内部到角的两边距离相等的点在角的平分线上,角的平分线可以看作是到角两边距离相等的点的集合.直角三角形的性质:①直角三角形的两锐角互余; ②直角三角形中,30°角所对的边等于斜边的一半; ③直角三角形斜边上的中线等于斜边的一半;④勾股定理:直角三角形两直角边的平方和等于斜边的平方. 直角三角形的判定: ①有一个角等于90°的三角形是直角三角形; ②有两角互余的三角形是直角三角形;③如果三角形一边上的中线等于这边的一半,则该三角形是直角三角形; ④勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(8)全等三角形的性质与判定 全等三角形的概念:能够完全重合的两个三角形叫做全等三角形. 全等三角形的性质:全等三角形的对应边、对应角分别相等. 全等三角形的判定:①有三边对应相等的两个三角形全等,简记为(SSS);②有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); ③有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); ④有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); ⑤有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL). (9)比例线段比例线段的概念:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,即dc b a = (或a ∶b =c ∶d ),那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 比例线段的性质: ①基本性质:a b =cdad =bc ; ②合比性质:a b =cdddc b b a +=+; ③等比性质:若a b =c d =···=mn (b +d +···+n ≠0),那么ba n db mc a =+⋅⋅⋅+++⋅⋅⋅++.黄金分割的概念:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BCAC ,则线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. (10)相似多边形相似多边形的概念:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比,相似比为1的两个多边形全等. 相似多边形的性质:①相似多边形的对应角相等,对应边成比例;②相似多边形周长的比等于相似比;③相似多边形面积的比等于相似比的平方. (11)相似三角形 相似三角形概念各角对应相等,各边对应成比例的两个三角形叫做相似三角形. 相似三角形判定:① 平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似; ④三边对应成比例,两三角形相似. 相似三角形性质:①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比; ③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方. (12)图形的位似 图形位似的概念:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这两个图形叫位似图形.这个点叫做位似中心,这时的相似比称为位似比. 图形的位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.能力要求例1 如图5-1-1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图5-1-2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC =45°,原题设其它条件不变.求证:△AEF ≌△BCF . 【分析】(1)根据等腰三角形三线合一的性质可得AD 是BC 边上的垂直平分线,然后利用线段垂直平分线的性质定理,可直接证明BE=CE ;(2)先判定△ABF 为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF ,再根据同角的余角相等求出∠EAF =∠CBF ,然后利用“角边角”证明△AEF 和BCF 全等即可.【解】(1)∵AB=AC ,D 是BC 的中点,∴AD ⊥BC . ∴BE=CE .(2)∵∠BAC =45°,BF ⊥AF ,∴△ABF 为等腰直角三角形. ∴AF=BF .∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC .∴∠EAF +∠C =90°. ∵BF ⊥AC ,∴∠CBF +∠C =90°.∴∠EAF =∠CBF .在△AEF 和△BCF 中,90EAF CBFAF BF AFE BFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AEF ≌△BCF (ASA ).【说明】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,线段垂直平分线的性质定理,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记和灵活运用三角形全等的判定方法与各性质是解题的关键.例2 如图5-2,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:2AC =AB ·AD ;(2)求证:CE ∥AD ;(3)若AD =4,AB =6,求AC AF的值.【分析】(1)由AC 平分∠DAB ,∠ADC =∠ACB =90°,可证得△ADC ∽△ACB ,然后由相似三角形的对应边成比 例,证得2AC =AB ·AD ;(2)由E 为AB 的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE =BE =AE ,继而可证得∠DAC =∠ECA ,得到CE ∥AD ; (3)易证得△AFD ∽△CFE ,然后由相似三角形的对应边成比例,求得ACAF的值. 【解】(1)∵AC 平分∠DAB ,∴∠DAC =∠CAB . ∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB . ∴AD :AC =AC :AB .∴AC 2=AB ·AD .(2)∵E 为AB 的中点,∠ACB=90°∴CE =12AB =AE .∴∠EAC =∠ECA . ∵∠DAC =∠CAB ,∴∠DAC =∠ECA .∴CE ∥AD . (3)∵CE ∥AD ,∴△AFD ∽△CFE .∴AD :CE =AF :CF . ∵CE =12AB ,∴CE =12×6=3. ∵AD =4,∴43AF CF =.∴74AC AF =. 【说明】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.相似三角形相似的判定方法有:(1)平行于三角形的一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.其基本图形可分别记为“A ”型和“X ”型,在应用时要善于从复杂的图形中抽象出这些基本图形;(2) 两角对应相等,两三角形相似,此种判定方法最为常用,应熟练掌握; (3) 两边对应成比例且夹角相等,两三角形相似; (4) 三边对应成比例,两三角形相似.例3 如图5-3,在Rt △ABC 中,∠C =90°,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点P ′),当AP 旋转至AP ′⊥AB 时,点B ,P ,P ′恰好在同一直线上,此时作P ′E ⊥AC 于点E .(1)求证:∠CBP =∠ABP ;(2)求证:AE =CP ; (3)当32CP PE =,BP ′=AB 的长【分析】(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P ,再根据等角的余角相等证明即可;(2)过点P 作PD ⊥AB 于D ,根据角平分线上的点到角的两边的距离相等可得CP=DP ,然后求出∠P AD=∠AP′E ,从而证明△APD 和△P′AE 全等,根据全等三角形对应边相等可得AE=DP ,从而得证; (3)设CP=3k ,PE=2k ,表示出AE=CP=3k ,AP ′=AP=5k ,然后利用勾股定理列式求出P ′E=4k ,再证明△ABP ′和△EPP ′相似,根据相似三角形对应边成比例列式求出P ′A=12AB ,然后在Rt △ABP ′中,利用勾股定理列式求解即可. 【解】(1)∵AP′是AP 旋转得到,∴AP=AP ′. ∴∠APP′=∠AP′P . ∵∠C =90°,AP′⊥AB , ∴∠CBP +∠BPC =90°,∠ABP +∠AP′P 又∵∠BPC =∠APP′,∴∠CBP =∠ABP . (2)如图5-3-1,过点P 作PD ⊥AB 于D . ∵∠CBP =∠ABP ,∠C =90°,∴CP=DP , ∵P′E ⊥AC ,∴∠EAP′+∠AP′E =90°. 又∵∠P AD +∠EAP′=90°,∴∠P AD =∠在△APD 和△P′AE 中,'''PAD AP EADP P EA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△P′AE (AAS ). ∴AE=DP . ∴AE=CP . (3)∵32CP PE =,∴设CP =3k ,PE =2k ,则AE=CP =3k ,AP ′=AP =3k +2k =5k . 在Rt △AEP′中,P′E 4k =,∵∠C =90°,P′E ⊥AC ,∴∠CBP +∠BPC =90°,∠EP′P +∠P′PE =90°, ∵∠BPC =∠EPP′(对顶角相等), ∴∠CBP =∠PP′E .∵∠CBP =∠ABP ,∴∠ABP =∠PP′E . 又∵∠BAP′=∠P′EP =90°,∴△ABP′∽△EPP′. ∴''AB P A P E PE =,即'42AB P A k k =,解得P′A =12AB . 在Rt △ABP′中,AB 2+P′A 2=BP′2,即AB 2+14AB 2=(2,解得AB =10. 【说明】本题考查了全等三角形的判定与性质,旋转的性质,角平分线的性质定理,勾股定理,相似三角形的判定与性质,在解题中可以发现,图形的全等或相似往往不是解决问题的最终目的,而是一种手段和途径,体现了图形的全等和相似的“工具性”.类似于本题这种“一题多问”的出题形式,应注意上下题之间的内在联系,把握住这种联系,就容易找到解题的突破口.如本题中较难的第(3)小题,利用(2)中的结论能很快的表示出AP′的长度,结合已知条件BP′=55,就容易想到用k 来表示出AB 的长度,最后利用勾股定理得出关于k 的方程,从而解决问题.例4 如图5-4,已知AB ⊥BD ,CD ⊥BD .(1)若AB =9,CD =4,BD =15,请问在BD 上是否存在P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?若存在,则有多少个这样的P 点,并求BP 的长;若不存在,请说明理由;(2) 若AB =m ,CD =n ,BD = l ,请问在m ,n ,l 满足什么关系时,存在以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似的一个P 点?【分析】 由于问题中没有明确两个直角三角形的对应关系,因此每 小问应按两种对应关系来说明.【解】(1)设BP =x ,则DP =15−x . 若△ABP ∽△CDP ,则AB BP CD DP =,即9415x x=-,解得13513x =. 若△ABP ∽△PDC ,则AB BP PD CD =,即9154x x =-,得方程:212360x x -+=.解得x =3或12. 所以BP =13513,3或12. (2)设BP =x ,则DP =l −x . 若△ABP ∽△CDP ,则AB BPCD DP =,即m n x l x =-,解得ml x m n =+. 若△ABP ∽△PDC ,则AB BP PD CD =,即m xl x n=-.得方程:20x lx mn -+=,24l mn ∆=-.当240l mn ∆=-<时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个P 点;当240l mn ∆=-=时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的两个P 点;当240l mn ∆=->时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的三个P 点. 【说明】三角形相似如果没有明确对应关系,需要分情形来讨论,这个知识点也是相似问题中常考内容之一,要会利用图形中的已知条件来排除不必要的分类情况.由于本题是两个直角三角形,所以对应关系有两种.由于数量关系的制约,本题有一种对应关系是始终存在的,另一种对应关系则需要通过一元二次方程的判别式来进行讨论.解题时注意数形结合、分类讨论、方程思想的应用.例5 如图5-5-1,矩形ABCD 中,∠ACB =30°,将一块直角三角板的直角顶点P 放在两对角线AC ,BD 的交点处,以点P 为旋转中心转动三角板,并保证三角板的两直角边分别于边AB ,BC 所在的直线相交,交点分别为E ,F .(1)当PE ⊥AB ,PF ⊥BC 时,如图5-5-1,则PEPF的值为 ; (2)现将三角板绕点P 逆时针旋转α(0°<α<60°)角,如图5-5-2,求PEPF的值; (3)在(2)的基础上继续旋转,当60°<α<90°,且使AP :PC =1:2时,如图5-5-3,PEPF的值是否变化?证明你的结论.(1)证明△APE ≌△PCF ,得PE=CF ;在Rt △PCF 中,解直角三角形求得PF的值; (2)如图5-5-4所示,作辅助线,构造直角三角形,证明△PME ∽△PNF ,并利用(1)的结论,求得PEPF的值; (3)如图5-5-5所示,作辅助线,构造直角三角形,首先证明△APM ∽△PCN ,求得PMPN的值;然后证明△PME ∽△PNF ,从而由PE PM PF PN =求得PE PF 的值.与(1)、(2)问相比较,PEPF的值发生了变化. 【解】(1)∵矩形ABCD ,∴AB ⊥BC ,P A=PC .∵PE ⊥AB ,BC ⊥AB ,∴PE ∥BC .∴∠APE =∠PCF .∵PF ⊥BC ,AB ⊥BC ,∴PF ∥AB . ∴∠P AE =∠CPF . ∵在△APE 与△PCF 中,PAE CPF PA PC APE PCF ∠=∠⎧⎪=⎨⎪∠=∠⎩.∴△APE ≌△PCF (ASA ),∴PE=CF .在Rt △PCF 中,PF PF CF PE ==t a n 30°,∴PEPF(2)如图5-5-4,过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N ,则PM ⊥PN . ∵PM ⊥PN ,PE ⊥PF ,∴∠EPM=∠FPN .又∵∠PME =∠PNF =90°,∴△PME ∽△PNF .∴PE PM PF PN=. 由(1)知,PM PN∴PEPF(3)答:变化.如图5-5-5,过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N ,则PM ⊥PN ,PM ∥BC ,PN ∥AB . ∵PM ∥BC ,PN ∥AB ,∴∠APM =∠PCN ,∠P AM=∠CPN . ∴△APM ∽△PCN . ∴21==PC AP CN PM ,得CN =2PM . 在Rt △PCN 中,2PN PN CN PM ==t a n 30°,∴PMPN. ∵PM ⊥PN ,PE ⊥PF , ∴∠EPM =∠FPN . 又∵∠PME =∠PNF =90°,∴△PME ∽△PNF .∴PE PM PF PN ==. ∴PEPF 的值发生变化. 【说明】本题考查了相似三角形的判定与性质、矩形的性质、全等三角形的判定与性质、解直角三角形等知识点.本题三问的解题思路是一致的:都是通过直接作辅助线构造直角三角形,通过相似三角形或全等三角形转化为题(1)或类似于题(1)的问题,从而解决.对于此类从特殊到一般的思路设置问题情境的综合题,解题的思路往往是将一般情况转化为特殊情况来解决.因此,在分析和解决此类问题的过程中要善于从特殊情况中总结和归纳出解题的基本思路和方法,并应用于一般情形.要特别注意从特殊到一般和化归思想的应用.例6 如图5-6,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H .(1)求证:AH EFAD BC=; (2)设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线DA 匀速向上运动(当矩形的边PQ 到达A 点时停止运动),设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围. 【分析】(1)由相似三角形,列出比例关系式,即可证明,或利用相似三角形对应高的比等于相似比也可解决;(2)首先求出矩形EFPQ 面积的表达式,然后利用二次函数求其最大面积; (3)本问是运动型问题,要点是弄清矩形EFPQ 的运动过程:(I)当0≤t ≤2时,如图5-7-1所示,此时重叠部分是一个矩形和一个梯形; (II)当2<t ≤4时,如图5-7-2所示,此时重叠部分是一个三角形. 【解】(1)∵矩形EFPQ ,∴EF ∥B C ,∴△AHF ∽△ADC . ∴AH AFAD AC=. ∵EF ∥BC ,∴△AEF ∽△ABC . ∴EF AF BC AC=. ∴AH EFAD BC =. (2)∵∠B =45°,∴BD=AD =4. ∴CD =BC −BD =5−4=1. ∵EF ∥BC ,∴△AEH ∽△ABD . ∴AH EHAD BD=. ∵EF ∥BC ,∴△AFH ∽△ACD . ∴AH HFAD CD=. ∴EH HF BD CD =,即41EH HF=. ∴EH=4HF . 已知EF=x ,则EH=45x . ∵∠B =45︒,∴EQ=BQ=BD −QD =BD −EH =4−45x . ∴S 矩形EFPQ =EF ·EQ =x ·(4−45x )=−45x 2+4x =−45(x −52)2+5. ∴当x=52时,矩形EFPQ 的面积最大,最大面积为5. (3)解:由(2)可知,当矩形EFPQ 的面积最大时,矩形的长为52,宽为4−45×52=2. (I)当0≤t ≤2时,如图5-5-1所示.设矩形与AB 、AC 分别交于点K 、N ,与AD 分别交于点H 1,D 1. 此时DD 1=t ,H 1D 1=2,∴HD 1=HD -DD 1=2-t ,HH 1=H 1D 1-HD 1=t ,AH 1=∵KN ∥EF ,∴1AH KN EF AH =,即2522KN t -=,得KN =54S =S 梯形KNFE +S 矩形EFP 1Q 1=12(KN +EF )·HH 1+E F ·EQ 1=12 [54(2−t )+52]×t +52(2−t )=258t -+5. 图5-6-1(II)当2<t ≤4时,如图5-5-2所示.设矩形与AB 、AC 分别交于点K 、N ,与AD 交于点D此时DD 2=t ,AD 2=AD -DD 2=4-t , ∵KN ∥EF ,∴2AD KN EF AH =,即4522KN t -=,得KN =5S =S △AKN =12K N ·AD 2 =12 (5-54t )(4-t )=58t 2-5t +10.综上所述,S 与t 的函数关系式为:S =2255(085510(24)8t t t t t ⎧-+≤⎪⎪⎨⎪-+<≤⎪⎩.【说明】本题是相似三角形的判定和性质与二次函数的最值相结合的综合题.本题的(1)、(2)两小题改编自教材中的习题,因此在复习过程中,要注意教材中典型问题和基本图形的复习、归纳和延伸.第(3)小题这类题要注意自变量的取值范围.对于图形运动的问题,往往需要将图形的运动转换到图形的线段长度上,实现这一转换的主要途径常是通过图形的相似来实现.【复习建议】 1.三角形的全等、相似是平面几何中的重要的内容,在中考中不论是基础题还是压轴题往往都要涉及到全等或相似的有关知识.事实上,许多中考题在教材中都能找到它的“源头”,有鉴于此,在进行复习时,应以教材为“纲”,紧扣教材.重视双基训练.要掌握典型的例题、习题,能对典型试题进行拆分和组合,引导学生学会从多角度、多侧面来分析解决典型试题,从中抽离出基本图形和基本规律方法;要结合三角形全等和相似的特点进行专项有针对性的训练,加大知识的横向与纵向联系,提高答题速度和质量,提高应变能力.要指导学生掌握解题方法,对例题、习题能举一反三,达到触类旁通; 2.复习时要注意总结和归纳例题、习题中所体现的数学思想和方法,重视解题方法和解题策略的教学.涉及三角形全等、相似的问题中常用到的数学思想方法有:化归思想、函数与方程思想、数形结合思想、分类讨论思想等,这些思想方法在中考试题中都有体现.要注重培养学生用数学思想方法解决问题的意识,引导学生审题时要透过现象看本质,注意隐含条件的挖掘,学会将实际问题转化为数学问题,建立数学模型,从而解决问题; 3.复习中要重视数学逻辑推理能力的训练和书写规范的训练,要及时纠正学生在解题时,出现的答题不规范,抓不住得分要点,思维不严谨等问题.避免学生出现题题会做,题题被扣分的现象.。
苏教版数学中考总复习(知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:实数—知识讲解(基础)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用.【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如nm(m ,n 是整数n≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数. 实数:有理数和无理数统称为实数. 要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念 1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0; (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数; (3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0. 2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0. 要点诠释:若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离. 3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=. 4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a . 5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度. (2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔;或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算 1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c). 2.减法减去一个数等于加上这个数的相反数. 3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac . 4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0. 5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数. (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方. (3)零指数与负指数011(0)(0).pp a a aa a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法.要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: =______.0ab(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩. 【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:0 0 |||| 0 ||().a b a b a b a b a b a b ><<∴+<=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解. 举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、、3.14159、(2- )个A .1B .2C .3D .4【答案】C.【解析】无理数有sin60°、3π【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【课程名称: 实数 369214 :经典例题1】 【变式】在,30cos ,2π,)23(,4,8,14.30 --,45tan ,712,1010010001.0 ,51-13.0%,3 中,哪些是有理数? 哪些是无理数?【答案】03.14,2),-,45tan ,712,51-13.0%,3 都是有理数; π,cos30,2-0.1010010001,都是无理数.3.(2015•梅州)计算:+|2﹣3|﹣()﹣1﹣(2015+)0.【答案与解析】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等.只要准确把握各自的意义,就能正确的进行运算.举一反三:【课程名称:实数 369214 :经典例题8-9】【变式1】计算:(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.【答案】解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3.【变式2】计算:12004200320022001+⨯⨯⨯ 【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体)=1)3(2)3(222++++n n n n =n 2+3n+1=n(n+3)+1 =2001×2004+1 =4010005.类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a1(a ≠0) 【答案与解析】(140=>,40=>,4+与4+440>+>,44-<- (2)当a<-1或O<a<1时,a<a1;当-1<a<0或a>1时,a>a1; 当a=1±时,a=a1.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;(2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小: (1)817-和511- (2)52+和23+【答案】(1)将其通分,转化成同分母分数比较大小,1785840= ,1188540=, 171185<,所以171185->-.(2)277+=+=+)2277+=+=+<2+<+.类型四、平方根的应用5.已知:x ,y 2690y y +-+=,若axy-3x=y ,则实数a 的值是_______.【答案】14.2690y y -+=2(3)0y +-=两个非负数相加和为0,则这两个非负数必定同时为0,0=,(y-3)2=0, ∴ x=43-, y=3又∵axy-3x=y,∴ a=43()33134433x yxy⨯-++==-⨯.【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题21222312,213,214,2SSS+==+==+==1A2AA(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+ S22+ S32+…+ S102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112nSnn n=+=+(2)因为OA1=1,OA2=2,OA3=3…,所以OA10=10(3)S12+ S22+ S32+…+ S102=2222)210()23()22()21(++++=)10321(41++++=455.【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:实数—巩固练习 (基础)【巩固练习】 一、选择题1. 在实数-23,0,-3.1415,2-0.1010010001…(每两个1之间依次多1个0),sin30° 这8个实数中,无理数有( )A .1个B .2个C .3个D .4个2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A .66.6×107B .6.66×108C .0.666×108D .6.66×1073.(2015•杭州)若k <<k+1(k 是整数),则k=( ) A .6 B .7 C .8 D .94.在三个数0.5、、中,最大的数是( )A .0.5B .C .D .不能确定5.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( ) A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.050(精确到0.001)D .0.05(精确到千分位)6.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )二、填空题7. ()0201112=-++y x 则x y= .8. (2014•辽阳)5﹣的小数部分是 .9.若22+-b a 与互为相反数,则a+b 的值为________. 10.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,则2m cd mba +-+的值为________.11.已知:22222233445522 33 44 55338815152424+=⨯+=⨯+=⨯+=⨯,,,,,若21010b ba a+=⨯符合前面式子的规律,则a+b=________.12.将正偶数按下表排列:第1列 第2列 第3列 第4列 第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20 ……根据上面的规律,则2006所在行、列分别是________.三、解答题13. 计算:(1)2012201280.125⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e14.若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
![苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/e7dd1abe71fe910ef12df8f7.png)
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习全等三角形全章复习与巩固(基础)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1. 证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2. 证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3. 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4. 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△A BE和△ADG中,,∴△ABE≌△A DG(SAS),∴A E=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90°∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是( ) A.1 <x < 6 B.5 <x < 7 C.2 <x < 12 D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB +∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∴∠PAE=∠PCB ,∵∠BAP +∠PAE=180°,∴∠PCB +∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB -MC <AB -AC .【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:∵AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
苏教版八年级上册数学[全等三角形的概念和性质(提高)知识点整理及重点题型梳理]
![苏教版八年级上册数学[全等三角形的概念和性质(提高)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/82a2e61b0722192e4536f6f7.png)
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(提高)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】【379108 全等三角形的概念和性质基本概念梳理回顾】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等;要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、请观察下图中的6组图案,其中是全等形的是__________.【答案】(1)(4)(5)(6);【解析】(1)(5)是由其中一个图形旋转一定角度得到另一个图形的,(4)是将其中一个图形翻折后得到另一个图形的,(6)是将其中一个图形旋转180°再平移得到的,(2)(3)形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式1】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )【答案】B;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,故选B;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角2、(2016春•新疆期末)如图,△ABC≌△AEF,那么与∠EAC相等的角是()A.∠ACB B. ∠BAF C. ∠CAF D. ∠AFE【答案】B【解析】∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC-∠CAF=∠EAF-∠CAF,即∠BAF=∠EAC.【总结升华】全等三角形的对应顶点的字母放在对应位置上容易确定出对应边或对应角. 类型三、全等三角形性质3、(2014秋•盐城期中)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?【思路点拨】(1)根据全等三角形对应边相等可得BD=BC=6cm,BE=AB=3cm,然后根据DE=BD ﹣BE代入数据进行计算即可得解;(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC,又A、B、C在一条直线上,根据平角的定义得出∠ABD+∠EBC=180°,所以∠ABD=∠EBC=90°,由垂直的定义即可得到DB⊥AC.【答案与解析】解:(1)∵△ABD≌△EBC,∴BD=BC=6cm,BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,又∵∠ABD+∠EBC=180°,∴∠ABD=∠EBC=90°,∴DB⊥AC.【总结升华】本题主要考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了平角的定义与垂直的定义,熟记性质与定义是解题的关键.举一反三:【变式】(2014春•吉州区期末)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个【答案】C;提示:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选C.【全等三角形的概念和性质例14】4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.【思路点拨】(1)由∠1,∠2,∠3之间的比例关系及利用三角形内角和可求出∠1,∠2,∠3的度数;(2)由全等三角形的性质求∠EBC,∠BCD的度数;(3)运用外角求∠α的度数.【答案】∠α=80°【解析】∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°【总结升华】此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题.见“比例”设未知数x是比较常用的解题思路.举一反三:【变式】如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN 等于()A.1:2 B.1:3 C.2:3 D.1:4【答案】D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,则3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠ABC=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.。
苏教版数学中考总复习[中考总复习:图形的相似--知识点整理及重点题型梳理](基础)
](https://img.taocdn.com/s3/m/34e0712cf18583d048645911.png)
苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:图形的相似--知识讲解(基础)【考纲要求】1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.【知识网络】应用:解决实际问题3.面积的比等于相似比的平方2.对应边、对应中线、对应角平分线、 对应高线、周长的比等于相似比1.对应角相等4.三边对应成比例3.两边对应成比例且夹角相等2.两角对应相等1.定义图形的运动与坐标用坐标来确定位置位似性质识别方法相似多边形的特征概念图形与坐标相似三角形相似的图形图形的相似【考点梳理】考点一、比例线段1. 比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是 nm b a ,或写成a :b=m :n.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项. 在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项.如果作为比例内项的是两条相同的线段,即c b b a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项.2、比例的基本性质:①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2.3、黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB. 考点二、相似图形1.相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.【要点诠释】结合两个图形相似,得出对应角相等,对应边的比相等,这样可以由题中已知条件求得其它角的度数和线段的长.对于复杂的图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相 等,那么这两个三角形相似.考点三、位似图形1.位似图形的定义:两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类:(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.【要点诠释】位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【要点诠释】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【典型例题】类型一、比例线段1.在比例尺1:10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 __________km.【思路点拨】地图上的比例尺是一种比例关系,即图上距离与实际距离的比.【答案与解析】1:10 000 000=8:80 000 000,即实际距离是80 000 000cm=800km.【总结升华】本题考点:比例性质.举一反三:【变式】如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6m、与树相距15m,则树的高度为______________m【答案】因为,所以树高=7.类型二、相似图形【图形的相似考点7 (3)】2.如图,一个矩形ABCD的长AD=a cm,宽AB=b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值.【思路点拨】根据相似多边形对应边的比相等,即可求得.【答案与解析】∵矩形ABCD的长AD=a,宽AB=b,则AE=12AD=12a.又矩形AEFB与矩形ABCD相似.∴AEAB=ABAD,即12a bb a=,即2212b a=∴:2:1a b =【总结升华】本题主要考查了相似多边形的对应边的比相等,注意分清对应边是解决本题的关键.3.如图,△ABC是一块直角三角形的木块,∠C=90°,AC=3cm,BC=4cm,AB=5cm,要利用它加工成一块面积最大的正方形木块,问按正方形CDEF 加工还是按正方形PQRS加工?说出你的理由.【思路点拨】要加工成一块面积最大的正方形木块,有两种方法,利用相似三角形的判定和性质求出两个正方形的边长,比较大小即可.【答案与解析】(1)如图1,设正方形CDEF的边长为x,则有,得x=cm;(2)如图2,设正方形PQRS的边长为y,作CN⊥AB于N交RS于M,而知CN=,同样有得(cm),x-y=>0,故x>y,所以按正方形CDEF加工,可得面积最大的正方形.【总结升华】考查相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比.举一反三:【变式】已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?【答案】设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD= 90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即∴经过秒或2秒,△PBQ∽△BCD.4. (2016•闵行区一模)如图,已知在△ABC中AB=AC,点D为BC边的中点,点F在边AB上,点E在线段DF的延长线上,且∠BAE=∠BDF,点M在线段DF上,且∠EBM=∠C.(1)求证:EB•BD=BM•AB;(2)求证:AE⊥BE.【思路点拨】(1)根据等腰三角形的性质得到∠ABC=∠C,由已知条件得到∠EBM=∠C,等量代换得到∠EBM=∠ABC,求得∠ABE=∠DBM,推出△BEA∽△BDM,根据相似三角形的性质得到,于是得到结论;(2)连接AD,由等腰三角形的性质得到AD⊥BC,推出△ABD∽△EBM,根据相似三角形的性质得到∠ADB=∠EMB=90°,求得∠AEB=∠BMD=90°,于是得到结论.【答案与解析】证明:(1)∵AB=AC,∴∠ABC=∠C,∵∠EBM=∠C,∴∠EBM=∠ABC,∴∠ABE=∠DBM,∵∠BAE=∠BDF,∴△BEA∽△BDM,∴,∴EB•BD=BM•AB;(2)连接AD,∵AB=AC,点D为BC边的中点,∴AD⊥BC,∵,∠ABD=∠EBM,∴△ABD∽△EBM,∴∠ADB=∠EMB=90°,∴∠AEB=∠BMD=90°,∴AE⊥BE.【总结升华】此题考查了相似三角形的判定与性质、勾股定理、等边三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,掌握转化思想与数形结合思想的应用.5.(2015•丽水)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB 于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n,当n为何值时,MN∥BE?【思路点拨】(1)如图1,易证△BMF≌△ECF,则有BM=EC,然后根据E为CD的中点及AB=DC就可得到AM=EC;(2)如图2,设MB=a,易证△ECF∽△BMF,根据相似三角形的性质可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易证△AMN∽△BCM,根据相似三角形的性质即可得到AN=a,从而可得ND=AD ﹣AN=a,就可求出的值;(3)如图3,设MB=a,同(2)可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,从而可证到△MBC∽△BCE,然后根据相似三角形的性质即可求出n的值.【答案与解析】解:(1)当F为BE中点时,如图1,则有BF=EF.∵四边形ABCD是矩形,∴AB=DC,AB∥DC,∴∠MBF=∠CEF,∠BMF=∠ECF.在△BMF和△ECF中,,∴△BMF≌△ECF,∴BM=EC.∵E为CD的中点,∴EC=DC,∴BM=EC=DC=AB,∴AM=BM=EC;(2)如图2,设MB=a,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,∴△ECF∽△BMF,∴==2,∴EC=2a,∴AB=CD=2CE=4a,AM=AB﹣MB=3a.∵=2,∴BC=AD=2a.∵MN⊥MC,∴∠CMN=90°,∴∠AMN+∠BMC=90°.∵∠A=90°,∴∠ANM+∠AMN=90°,∴∠BMC=∠ANM,∴△AMN∽△BCM,∴=,∴=,∴AN=a,ND=AD﹣AN=2a﹣a=a,∴==3;(3)当==n时,如图3,设MB=a,同(2)可得BC=2a,CE=na.∵MN∥BE,MN⊥MC,∴∠EFC=∠H MC=90°,∴∠FCB+∠FBC=90°.∵∠MBC=90°,∴∠BMC+∠FCB=90°,∴∠BMC=∠FBC.∵∠MBC=∠BCE=90°,∴△MBC∽△BCE,x 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 A 1 B 1 C 1 A B C y ∴=, ∴=,∴n=4.【总结升华】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,利用相似三角形的性质得到线段之间的关系是解决本题的关键. 类型三、位似图形【图形的相似 考点9 (1)】6 . 如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC 与△A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标是___________.【思路点拨】连接任意两对对应点,看连线的交点为那一点即为位似中心.【答案与解析】连接BB 1,A 1A ,易得交点为(9,0).【总结升华】用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.举一反三:【变式】下列图形中不是位似图形的是( ).【答案】C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:全等三角形—知识讲解【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE 上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高,∴∠1+∠CAE=90°,∠2+∠CAE=90°.∴∠1=∠2,∵在△AQC和△PAB中,∴△AQC≌△PAB.∴ AP=AQ.(2)∵ AP=AQ,∠QAC=∠P,∵∠PAD+∠P=90°,∴∠PAD+∠QAC=90°,即∠PAQ=90°.∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【全等三角形例8】【变式】(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE=CM.又∵∠1=∠2,∠3=∠4 ,∠1+∠2+∠3+∠4=180°,∴∠3+∠2=90°,即∠EDF=90°,∴∠FDM=∠EDF =90°.在△EDF和△MDF中∴△EDF≌△MDF(SAS),∴EF=MF (全等三角形对应边相等),∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边),∴BE+CF>EF.【总结升华】当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.举一反三:【变式】如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,∵ D为BC中点,∴ BD=DC,在△ADC和△HDB中,∴△ADC≌△HDB(SAS),∴ AC=BH, ∠H=∠HAC,∵ EA=EF,∴∠HAE=∠AFE,又∵∠BFH=∠AFE,∴ BH=BF,∴ BF=AC.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB-AD与CD-CB的大小关系,并证明你的结论.【思路点拨】解答本题的关键是熟练运用三角形中大边对应大角的关系.【答案与解析】AB-AD>CD-CB;证明:在AB上取一点E,使得AE=AD,连结CE.∵AC平分∠BAD,∴∠1=∠2.∵在△ACE和△ACD中,∴△ACE≌△ACD.∴CD=CE.∵在△BCE中,BE>CE-CB,即AB-AE>CE-CB,∴AB-AD>CD-CB.【总结升华】本题也可以延长AD到E,使得AE=AB,连结CE.涉及几条线段的大小关系时,用“截长补短”法构造全等三角形是常用的方法.举一反三:【变式】如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】证明:∵AB>AC,在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.【思路点拨】在AC上取AF=AE,连接OF,即可证得△AEO≌△AFO,得∠AOE=∠AOF;再证得∠COF=∠COD,则根据全等三角形的判定方法AAS即可证△FOC≌△DOC,可得DC=FC,即可得结论.【答案与解析】在AC上取AF=AE,连接OF,∵AD 平分∠BAC 、 ∴∠EAO=∠FAO ,在△AEO 与△AFO 中,∵AE AF EAO FAO AO AO =⎧⎪=⎨⎪=⎩∠∠类型三、综合运用5 (2015•泰安)如图,△ABC 是直角三角形,且∠AB C=90°,四边形BCDE 是平行四边形,E 为AC 中点,BD 平分∠ABC ,点F 在AB 上,且BF=BC .求证:(1)DF=AE ;(2)DF ⊥AC .【思路点拨】(1)由等边三角形的性质可写出结论.(2)要证明以上结论,需创造一些条件,首先可从△ABC 中分出一部分使得与△ACF 的面积相等,则过A 作AM ∥FC 交BC 于M ,连接DM 、EM ,就可创造出这样的条件,然后再证其它的面积也相等即可.【答案与解析】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【总结升华】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.举一反三:【全等三角形例9】【变式】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④ C D·AE=EF·CG;一定正确的结论有( ) .A.1个 B.2个 C.3个 D.4个【答案】D.6.如图,已知△ABC.(1)请你在BC 边上分别取两点D 、E(BC 的中点除外),连结AD 、AE ,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC >AD+AE .【思路点拨】考查了三角形面积的求法,全等三角形的判定以及三角形三边的关系.本题(2)中通过构建全等三角形将已知和所求条件转化到相关的三角形中是解题的关键.【答案与解析】(1)令BD=CE ≠DE,有△ABD 和△ACE ,△ABE 和△ACD 面积相等.(2)取DE 的中点O ,连结AO 并延长到F 点,使得FO=AO ,连结EF ,CF .在△AD0和△FEO 中,又∠AOD=∠FOE ,DO=EO,可证△ADO ≌△FEO .所以AD=FE .因为BD=CE ,DO=EO ,所以BO=CO.同理可证△ABD ≌△FCO ,所以AB=FC. 延长AE 交CF 于G 点, A BC D EF G在△ACG中,AC+CG>AE+EG,在△EFG中,EG+FG>EF,可推得AC+CG+EG+FG>AE+EG+EF,即AC+CF>AE+EF,所以AB+AC>AD+AE.【总结升华】正确构造全等和利用三角形的任意两边之和大于第三边的结论是关键.举一反三:【变式】在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD-BE.(3)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=BE-AD.。