平面内一个点的坐标的表示方法

合集下载

平面直角坐标系中的点与坐标关系

平面直角坐标系中的点与坐标关系

平面直角坐标系中的点与坐标关系在平面直角坐标系中,我们可以用一对有序数对来表示一个点的位置。

这对有序数对就是坐标。

平面直角坐标系由横坐标轴(x轴)和纵坐标轴(y轴)组成,它们相互垂直于彼此,并在原点O交汇。

1. 坐标表示坐标表示是指用一对有序数对来表示一个点的位置。

例如,点A位于x轴上,它的坐标为(A, 0),其中A是点的横坐标。

点B位于y轴上,它的坐标为(0,B),其中B是点的纵坐标。

而对于其他点C,它的坐标为(Cx, Cy),其中Cx表示点C的横坐标,Cy表示点C的纵坐标。

2. 坐标系的象限平面直角坐标系被分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。

第一象限是位于x轴和y轴的右上方,第二象限是位于x轴的左上方,第三象限是位于x轴和y轴的左下方,而第四象限是位于x轴的右下方。

根据象限划分,点的坐标可以判别出它们所在的象限。

3. 点与线的位置关系对于一个平面直角坐标系中的点P(x, y),我们可以通过比较其坐标与坐标轴上的值来确定它与坐标轴、坐标系中的线的位置关系。

- P点在x轴上当且仅当y=0;- P点在y轴上当且仅当x=0;- P点在x轴的上方当且仅当y>0;- P点在y轴的右侧当且仅当x>0;- P点在第一象限当且仅当x>0且y>0;- P点在第二象限当且仅当x<0且y>0;- P点在第三象限当且仅当x<0且y<0;- P点在第四象限当且仅当x>0且y<0。

4. 点到原点的距离在平面直角坐标系中,点P(x, y)到原点O的距离可以通过勾股定理来计算。

距离的公式为:d=√(x²+y²)。

5. 点的对称性在平面直角坐标系中,点P(x, y)的关于x轴的对称点为P'(x, -y),关于y轴的对称点为P'(-x, y),关于原点O的对称点为P'(-x, -y)。

利用对称性可以简化一些计算和问题的解决。

平面直角坐标系的认识与应用

平面直角坐标系的认识与应用

平面直角坐标系的认识与应用平面直角坐标系是数学中常用的一种工具,用于描述平面上的点的位置。

通过平面直角坐标系,我们可以准确地表示和计算点的坐标和距离,从而实现对平面上各种几何问题的分析和解决。

本文将介绍平面直角坐标系的基本概念、表示方法以及在数学与几何问题中的应用。

一、平面直角坐标系的基本概念平面直角坐标系由两个相互垂直的坐标轴组成,通常称为x轴和y 轴。

在平面上选择一个点作为原点O,并确定x轴与y轴的正方向,可以得到一个完整的平面直角坐标系。

在这个坐标系中,任意一点P可以用一个有序数对(x, y)来表示,其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。

二、平面直角坐标系的表示方法为了清晰地表示平面直角坐标系,我们通常使用网格线来表示x轴和y轴,并在网格线上标注坐标值。

在x轴和y轴上,我们可以选择一个单位长度,通常用1表示,从而得到其他点的坐标。

例如,点A坐标为(2, 3),表示点A在x轴上的坐标为2,y轴上的坐标为3。

三、平面直角坐标系的应用平面直角坐标系在数学与几何问题中有着广泛的应用,具体如下所示:1. 点的位置关系:通过比较点的坐标值,我们可以准确地确定点的相对位置。

例如,若点A的坐标为(2, 3),而点B的坐标为(4, 5),我们可以判断出点A在点B的左下方。

2. 距离的计算:在平面直角坐标系中,我们可以根据两点的坐标值计算它们之间的距离。

例如,若点A的坐标为(2, 3),而点B的坐标为(4, 5),则点A和点B之间的距离为√[(4-2)² + (5-3)²] = √5。

3. 图形的绘制:通过使用平面直角坐标系,我们可以准确地绘制各种图形,如直线、曲线和多边形等。

利用坐标轴上的点和线段,我们可以将抽象的数学概念具象化,并进行图形的分析和推理。

4. 函数的表示:在数学中,函数可以用平面直角坐标系表示。

将函数的自变量作为x轴坐标,函数的值作为y轴坐标,我们可以绘制函数的图像,并通过分析图像来研究函数的性质。

平面直角坐标系内中点坐标公式

平面直角坐标系内中点坐标公式

平面直角坐标系内中点坐标公式在咱们的数学世界里,平面直角坐标系就像是一个神秘的地图,而中点坐标公式则是我们在这个地图上的重要导航工具。

咱先来说说什么是平面直角坐标系。

想象一下,在一张大白纸上,画两条互相垂直的线,一条水平的,一条竖直的,就像一个大大的“十”字。

水平的这条线我们叫它 x 轴,竖直的这条叫 y 轴。

这两条线相交的地方,就是坐标原点,它的坐标是(0, 0)。

然后呢,任何一个点在这个坐标系里都有自己唯一的坐标,就像每个人都有自己独特的身份证号码一样。

那中点坐标公式是啥呢?其实很简单,假如有两个点 A(x₁, y₁)和B(x₂, y₂),那它们连线的中点 M 的坐标就是((x₁ + x₂)/2, (y₁ +y₂)/2)。

我给您举个例子啊,比如说有两个点 A(1, 3)和 B(5, 7),那它们连线的中点坐标咋算呢?咱就按照公式来,x 坐标就是(1 + 5)/2 = 3,y 坐标就是(3 + 7)/2 = 5,所以中点坐标就是(3, 5)。

有一次,我在课堂上讲这个中点坐标公式。

有个同学就一脸迷茫地问我:“老师,这有啥用啊?”我笑了笑说:“嘿,这用处可大了!”我跟他们说,假如咱们要在城市里找两个地方的中间位置,就可以用这个公式。

比如说,你们周末要和小伙伴约着一起出去玩,一个小伙伴在公园的东边,坐标是(2, 4),另一个在公园的西边,坐标是(6, 8),那你们约在中间见面,不就可以用这个公式算出中点坐标,找到最合适的集合地点嘛。

同学们一听,眼睛都亮了,好像突然发现了这个公式的神奇之处。

而且啊,在建筑设计里,要是设计师要确定两根柱子的中间位置来搭建一个横梁,也得用到这个公式。

还有,在地图上规划路线,找两个地点的中点来设置休息站,也能靠它帮忙。

再想想,要是没有这个公式,咱们得多费劲才能找到中点啊。

所以说,这个中点坐标公式虽然看起来简单,但是在生活和学习中,那可是大有用处的。

咱们学习数学,不能只知道死记硬背公式,还得明白它背后的道理和用途。

直角坐标的表示方法

直角坐标的表示方法

直角坐标的表示方法直角坐标是一种常用的表示空间中点位置的方法。

它是通过两条互相垂直的坐标轴来确定点的位置的。

一般情况下,我们使用 x 轴和 y 轴来表示平面上的点的位置,而在三维空间中,我们使用 x 轴、y 轴和 z 轴来表示点的位置。

下面将详细介绍直角坐标的表示方法。

平面上的直角坐标表示方法在平面上,我们通常使用 x 轴和 y 轴来表示点的位置。

其中,x 轴是水平方向的轴,y 轴是垂直方向的轴。

点的位置是通过它在 x 轴和 y 轴上的坐标来确定的。

以原点 O 为起点,画出 x 轴和 y 轴,将其分成若干等长的小段,这些小段就是刻度。

我们通过一个点在 x 轴和 y 轴上的刻度值来表示这个点的位置。

例如,假设有一个点 P,它在 x 轴上的刻度值为 3,在 y 轴上的刻度值为 4。

那么点 P 在平面上的位置就可以表示为 (3, 4)。

其中,括号中的第一个数表示在 x 轴上的刻度值,第二个数表示在 y 轴上的刻度值。

这种表示方法被称为点的坐标。

三维空间中的直角坐标表示方法在三维空间中,我们需要使用 x 轴、y 轴和 z 轴来表示点的位置。

其中,x 轴是水平方向的轴,y 轴是与 x 轴垂直且位于水平面上的轴,z 轴是与 x 轴和 y 轴都垂直的轴。

点的位置是通过它在 x 轴、y 轴和 z 轴上的坐标来确定的。

和平面上直角坐标的表示方法类似,我们以原点 O 为起点,在三个轴上画出刻度线。

假设有一个点 Q,它在 x 轴上的刻度值为 2,在 y 轴上的刻度值为 3,在 z轴上的刻度值为 4。

那么点 Q 在三维空间中的位置就可以表示为 (2, 3, 4)。

其中,括号中的第一个数表示在 x 轴上的刻度值,第二个数表示在 y 轴上的刻度值,第三个数表示在 z 轴上的刻度值。

直角坐标系的性质直角坐标系有以下几个重要的性质:1.在直角坐标系中,两个坐标轴之间的夹角是 90 度,即垂直于彼此。

这就使得直角坐标系能够准确地表示空间中的点的位置。

平面直角坐标系中点的坐标

平面直角坐标系中点的坐标

平面直角坐标系中点的坐标平面直角坐标系指的是一个平面内具有直角坐标系的坐标系,可以用来描述平面上的点的位置。

在平面直角坐标系中,每个点都可以表示成一个有序数对(x,y),其中x和y分别表示这个点在x轴和y轴上的坐标值。

而对于两个点,它们的中点可以通过它们在坐标系中的坐标计算得出。

最基础的情况是,两个点在x轴上的坐标相同。

此时它们的中点的x坐标也等于它们在x轴上的坐标的平均值,而y坐标等于它们在y轴上的坐标的平均值。

比如,对于两个点A(3,2)和B(3,6),它们在x轴上的坐标都是3,那它们的中点C就是(3,(2+6)/2)=(3,4)。

同理,如果两个点在y轴上的坐标相同,它们的中点的y坐标也等于它们在y轴上的坐标的平均值,而x坐标等于它们在x轴上的坐标的平均值。

接下来,我们考虑两个点在不同坐标轴上的情况。

比如,对于点D(2,3)和E(5,3),它们在x轴和y轴上的坐标分别为2和3,5和3。

它们的中点F可以通过对x坐标和y坐标分别求平均值得到:F=((2+5)/2,(3+3)/2)=(3.5, 3)。

最后,我们考虑两点坐标都不在坐标轴上的情况。

设这两个点分别为G(x1,y1)和H(x2,y2),那么它们的中点I的坐标可以通过如下公式计算:I=((x1+x2)/2, (y1+y2)/2)比如,对于点J(2,5)和K(6,3),它们的中点L=((2+6)/2,(5+3)/2)=(4,4)。

总之,在平面直角坐标系中,对于任意两个点而言,求解它们的中点只需对它们的坐标进行一些简单的计算即可。

当然,如果你觉得这些计算过程过于繁琐,也可以通过使用一些辅助工具来简化计算,比如使用计算机程序或各种数学应用软件。

笔者相信,通过对平面直角坐标系中的点和中点的坐标的介绍,大家已经可以清楚地了解中点概念的计算方法,掌握如何用坐标表示平面上的点,进而能够更加熟练地应用这些知识解决实际问题了。

11.1平面内点的坐标

11.1平面内点的坐标

X
确定点的位置
点的坐标的确定方法
有了平面直角坐标 系,平面内的点就 可以用一对实数来 表示。例如:
P
y 点的纵坐标 N b (y坐标)
P (a,b)
横坐标写在前,
M
a
点的横坐标 (x坐标)
O
x
纵坐标写在后,
中间用逗号隔开
在方格图中建立平面直角坐标系 y
2 1
-3
-2
-1 O -1
1
2
3
x
注意事项:在画平面直角坐标系时, -2 一定要画x轴、y轴的正方向,即箭 头,标出原点O,单位长度要统一( -3 长度不统一的情况目前不要求)
x
D(-4,-2.5)
y
2
在平面直角坐标 系中找到表示 A(3,-2)的点.
1
-3
-2
-1 O -1 -2
-3
1
2
3
x
A
由坐标找点的方法: 先找到表示横坐标与纵坐标的点, 然后过这两点分别作x轴与y轴的垂线, 垂线的交点就是该坐标对应的点。
练习2:在直角坐标系中,画出下列各点: A(4,3), B(-2,y 3), C(-4,-1), 6 D(2,-2),E(3, 0 ), F ( 0 , -4 ) 5 B·
D D(2 , 0) (2 , -3)
y 5 4 3 2 1 -4 -3 -2 -1 O -1 -2 1
●C ● A
两点间的距离=
F F(2 , -4) (5 , -3)
x1 x2
2、平行于y轴的直线上 的点,其横坐标相同, 两点间的距离= y1 y2
2D3 4
●B


5 x
E

考点01 平面直角坐标系内点的坐标特征(解析版)

考点01 平面直角坐标系内点的坐标特征(解析版)

考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。

空间直角坐标系及点的坐标表示完整版本

空间直角坐标系及点的坐标表示完整版本

同单位长度的数轴,这 样就建立了空间直角坐
o
y
标系0-xyz. x
点O叫做坐标原点,x轴、y轴、z轴叫做
坐标轴,这三条坐标轴中每两条确定一个坐标
平面,分别称为xoy平面、 yoz平面、和 Zox
平面.
在空间直角坐标系中,让 右手拇指指向x轴的正方向, 食指指向y轴的正方向,若中 指指向z轴的正方向,则称这 个坐标系为右手直角坐标系.
z D'
C&A
B
Cy
z D'
A' O
xA
C' B'
Cy B
1.坐标平面内的点
xoy平面上的点表示为(x,y,0) yoz平面上的点表示为(0,y,z) xoz平面上的点表示为(x,0,z)
2.坐标轴上的点
x轴上的点表示为(x,0,0) y轴上的点表示为(0,y,0)
z轴上的点表示为(0,0,z)
求下列各点的坐标
1 、 A ( 6 ,2 ,4 ) ,B ( 0 ,2 ,1 ) 的 中 点 坐 标 为 _ (_ _ 3_ ,2_ ,2.5)
2 、 A ( 3 ,1 ,4 ) ,B ( 1 ,2 ,8 ) 的 中 点 坐 标 为 _ (_ 2_ ,_ 1_ .5_ ,6)
3 、 A B 的 中 点 坐 标 为 (3 ,1 ,4 ), 其 中 B 点 坐 标 为 ( 0 , 0 , 0 ) , 那 么 A 点 的 坐 标 为 _ (_ _ 6_ ,2_ ,_ 8_ )
四、空间中点坐标公式
空 间 两 点 A(x1,y1,z1)B(x2,y2,z2)的 中 点 坐 标 为 (x1+x2,y1+y2,z1+z2)
222
例 2 : A ( 1 ,2 ,4 ) ,B ( 0 ,2 ,5 ) 的 中 点 坐 标 为 ( 1 , 2 , 9 ) 22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档