高考线性回归方程总结
高考回归方程的知识点

高考回归方程的知识点高考是每个学生都经历的重要考试,它对于一个学生的未来起着决定性的作用。
而高考数学中的回归方程是一个比较重要的知识点,它不仅在数学中有着广泛的应用,而且在实际生活中也有着很多的应用价值。
下面我们就来详细了解一下高考回归方程的知识点。
1. 回归方程的概念回归方程是一种用于揭示自变量与因变量之间关系的数学模型。
在数学中,通常用直线或曲线来表示回归方程。
回归分析主要用于统计数据的分析和预测。
通过回归方程,我们可以根据已有的数据来预测未知的数据。
2. 简单线性回归方程简单线性回归方程是回归方程中最简单的一种形式。
它表示两个变量之间的线性关系。
简单线性回归方程的一般形式为:y = ax + b,其中y是因变量,x是自变量,a和b是常数。
a代表的是变量y随着变量x的变化而变化的速率,b代表的是y在x=0时的值。
3. 多元线性回归方程多元线性回归方程是回归方程中常用的一种形式。
它表示多个自变量与因变量之间的线性关系。
多元线性回归方程的一般形式为:y =a₁x₁ + a₂x₂ + ... + anxn + b,其中y是因变量,x₁、x₂、...、xn是自变量,a₁、a₂、...、an和b是常数。
多元线性回归方程可以用来分析多个自变量对于因变量的影响程度。
4. 回归方程的确定系数确定系数是用来衡量回归方程对于实际数据拟合程度的指标。
它的取值范围在0到1之间,越接近1表示回归方程对数据的拟合程度越好。
确定系数的计算公式为:R² = 1 - (SSE/SST),其中SSE表示残差平方和,SST表示总平方和。
通过计算确定系数,我们可以评估回归方程的质量,并对预测结果进行准确性评估。
5. 回归方程在实际生活中的应用回归方程在实际生活中有着广泛的应用。
例如,在经济学中,可以使用回归方程来分析商品价格与供需关系,从而预测价格变动趋势;在医学研究中,可以使用回归方程分析药物剂量与疗效之间的关系,从而确定最佳剂量;在市场营销中,可以使用回归方程来分析消费者行为与销售量之间的关系,从而制定合理的市场营销策略。
高三回归方程知识点汇总

高三回归方程知识点汇总回归方程是数学中重要的数学模型,用于描述变量之间的关系和进行预测。
在高三阶段,学生需要掌握回归分析的基本知识和技巧。
本文将对高三数学中回归方程的知识点进行全面汇总,并提供一些实例和应用场景供参考。
一、线性回归方程1.1 线性关系与线性回归方程线性关系指的是两个变量之间存在直线关系,可用一条直线来近似表示。
线性回归方程是线性关系的数学表达式,常用形式为 y = kx + b,其中 k 表示直线的斜率,b 表示直线在 y 轴上的截距。
1.2 最小二乘法最小二乘法是确定线性回归方程中斜率 k 和截距 b 的常用方法。
它通过最小化观测值与回归直线的拟合误差平方和,找到最佳的拟合直线。
1.3 直线拟合与误差分析直线拟合是利用线性回归方程将观测数据点拟合到一条直线上。
误差分析可以评估回归方程的拟合优度,常用指标有决定系数R²、平均绝对误差 MAE 等。
二、非线性回归方程2.1 非线性关系与非线性回归方程非线性关系指的是两个变量之间的关系不能用一条直线来近似表示,而是需要使用曲线或其他非线性形式进行描述。
非线性回归方程可以是多项式方程、指数方程、对数方程等形式。
2.2 最小二乘法拟合非线性回归方程与线性回归相似,最小二乘法也可以用于拟合非线性回归方程。
但由于非线性方程的复杂性,通常需要借助计算工具进行求解,例如利用数学软件进行非线性拟合。
2.3 模型选择和拟合优度检验在选择非线性回归模型时,需要综合考虑模型的拟合优度和实际应用的需求。
常见的方法包括比较不同模型的决定系数 R²、检验残差分布等。
三、应用实例3.1 人口增长模型以某地区的人口数据为例,通过拟合合适的回归方程,可以预测未来的人口增长趋势,为城市规划和社会发展提供决策依据。
3.2 经济增长模型回归方程可以用于分析经济数据,例如拟合国民生产总值与时间的关系,预测未来的经济增长态势,为政府制定经济政策提供参考。
3.3 科学实验数据分析在科学研究中,常常需要利用回归方程对实验数据进行拟合和分析。
高中数学线性回归方程线性回归方程公式详解

高中数学线性回归方程线性回归方程公式详解
线性回归方程是一种用于拟合一组数据的最常见的数学模型,它可以用来预测一个因变量(例如销售额)和一个或多个自变量(例如广告费用)之间的关系。
下面是线性回归方程的公式详解:
假设有n个数据点,每个数据点包含一个因变量y和k个自变量x1,x2,...,xk。
线性回归方程可以表示为:
y = β0 + β1*x1 + β2*x2 + ... + βk*xk + ε
其中,β0, β1, β2, ..., βk是模型的系数,ε是误差项,用来表示实际数据和模型预测之间的差异。
系数β0表示当所有自变量均为0时的截距,而β1, β2, ..., βk 则表示每个自变量对因变量的影响。
当系数为正时,自变量增加时因变量也会增加;而当系数为负时,自变量增加时因变量会减少。
通常,我们使用最小二乘法来估计模型的系数。
最小二乘法就是通过最小化所有数据点与模型预测之间的距离来找到最优的系数。
具体来说,我们可以使用以下公式来计算系数:
β = (X'X)-1 X'y
其中,X是一个n×(k+1)的矩阵,第一列全为1,其余的列为自变量x1,x2,...,xk。
y是一个n×1的向量,每一行对应一个因
变量。
X'表示X的转置,-1表示X的逆矩阵,而β则是一个(k+1)×1的向量,包含所有系数。
当拟合出线性回归方程后,我们可以使用它来预测新的数据点的因变量。
具体来说,我们可以将自变量代入方程中,计算出相应的因变量值。
如果模型的系数是可靠的,我们可以相信这些预测结果是比较准确的。
高三数学一轮复习课件:线性回归方程

课堂互动讲练
(3)若由线性回归方程得到的估计数据与 所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的, 试问该小组在(2)中所得线性回归方程是 否理想?
课堂互动讲练
解:(1)设“抽到相邻2个月的数据”为事件 A.因为从6组数据中选取2组数据共有15 种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种, 所以P(A)= = .4分 1 5 15 3
,a= y -b x .其中
a,b是由观察值按最小二乘法求得 的估计值 ,也叫 回归系数 .
三基能力强化
1.下列关系中,是相关关系的为 ________. ①学生的学习态度与学习成绩之间的关 系; ②教师的执教水平与学生的学习成绩之 间的关系;
三基能力强化
③学生的身高与学生的学习成绩之间的 关系; ④家庭的经济条件与学生的学习成绩之 间的关系. 答案:①②
(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.
课堂互动讲练
【思路点拨】 利用散点图观察 收入x和支出y是否线性相关,若呈线性相 关关系,可利用公式来求回归系数,然 后获得回归直线方程.
课堂互动讲练
【解】 (1)作出散点图:
课堂互动讲练
观察发现各个数据对应的点都在一条 直线附近,所以二者呈线性相关关系. (2) = (0.8+1.1+1.3+1.5+1.5+ 1 1.8+2.0+ 2.2 +2.4+2.8)=1.74, x 10 = (0.7+1.0+1.2+1.0+1.3+1.5 1 +1.3+ 1.7 +2.0+2.5)=1.42, y 10
课堂互动讲练
i= 1 i i
∑ x y =0.8×0.7+1.1×1.0+1.3×1.2+
线性回归方程-高中数学知识点讲解

线性回归方程
1.线性回归方程
【概念】
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.
【实例解析】
例:对于线性回归方程푦=1.5푥+45,푥1∈{1,7,5,13,19},则푦=
解:푥=1+7+5+13+19
5
=
9,因为回归直线必过样本中心(푥,푦),
所以푦=1.5×9+45=13.5+45=58.5.
故答案为:58.5.
方法就是根据线性回归直线必过样本中心(푥,푦),求出푥,代入即可求푦.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.
【考点点评】
这类题记住公式就可以了,也是高考中一个比较重要的点.
1/ 1。
(完整word版)线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用ˆ+a ˆ=bx ˆ的求法:第一公式:线性回归方程为y(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(x 1+x 2+x 3+⋅⋅⋅+x n )n 1(y 1+y 2+y 3+⋅⋅⋅+y n )n ˆ,有两个方法(3)求变量x 的系数bˆ=法1b∑(x -x )(y -y )iii =1n∑(x -x )ii =1n(题目给出不用记忆)2(x1-x )(y 1-y )+(x 2-x )(y 2-y )+...+(x n-x )(y n-y )][(需理解并会代入数据)=222⎡⎤(x -x )+(x -x )+...+(x -x )2n ⎣1⎦nˆ=法2b∑(x -x )(y -y )iii =1∑(x -x )ii =1n(题目给出不用记忆)2=[x 1y1+x 2y 2+...x ny n]-nx ⋅y,(这个公式需要自己记忆,稍微简单些)2222⎡⎣x 1+x 2+...+x n ⎤⎦-nx ˆˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ-a ˆ=bx ˆ。
可以改写为:y =bx ˆ(y ˆ与y 不做区分)最后写出写出回归方程y例.已知x ,y 之间的一组数据:x0123y1357求y 与x 的回归方程:解:(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(0+1+2+3)=1.541(1+3+5+7)=44ˆ,有两个方法(3)求变量x 的系数b2222⎡⎤(x -x )+(x -x )+(x -x )+(x -x )1234⎣⎦ˆ法1b=(0-1.5)(1-4)+(1-1.5)(3-4)+(2-1.5)(5-4)+(3-1.5)(7-4)5==22227⎡⎣(0-1.5)+(1-1.5)+(2-1.5)+(3-1.5)⎤⎦(x1-x )(y 1-y )+(x 2-x )(y 2-y )+(x 3-x )(y 3-y )+(x 4-x )(y 4-y )][=ˆ=法2b[x 1y1+x 2y 2+...x ny n]-nx ⋅y=[0⨯1+1⨯3+2⨯5+3⨯7]-4⨯1.5⨯4=52222⎡⎤x +x +...+x -nx 12n ⎣⎦2222⎡⎤0+1+2+3⎣⎦7ˆ=4-ˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ=bx ˆ=最后写出写出回归方程y第二公式:独立性检验两个分类变量的独立性检验:525⨯1.5=77525x +77y1a ca +cy2b d总计x 1a +b c +d a +b +c +d注意:数据a 具有两个属性x 1,y 1。
高一数学必修线性回归分析知识点

⾼⼀数学必修线性回归分析知识点 分析按照⾃变量和因变量之间的关系类型,可分为线性回归分析和⾮线性回归分析。
下⾯是店铺给⼤家带来的⾼⼀数学必修线性回归分析知识点,希望对你有帮助。
⾼⼀数学线性回归分析知识点总结(⼀) 重点难点讲解: 1.回归分析: 就是对具有相关关系的两个变量之间的关系形式进⾏测定,确定⼀个相关的数学表达式,以便进⾏估计预测的统计分析⽅法。
根据回归分析⽅法得出的数学表达式称为回归⽅程,它可能是直线,也可能是曲线。
2.线性回归⽅程 设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi, yi)(i=1,......,n)⼤致分布在⼀条直线的附近,则回归直线的⽅程为。
其中 。
3.线性相关性检验 线性相关性检验是⼀种假设检验,它给出了⼀个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性⽔平0.05与⾃由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果 如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成⽴的,即y与x之间具有线性相关关系。
典型例题讲解: 例1.从某班50名学⽣中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建⽴该10名学⽣的物理成绩对数学成绩的线性回归模型。
解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为, 计算,代⼊公式得 ∴所求线性回归模型为=0.74x+22.28。
说明:将⾃变量x的值分别代⼊上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。
⼤家可以在⽼师的帮助下对⾃⼰班的数学、化学成绩进⾏分析。
线性回归方程公式

线性回归方程公式线性回归是一种常见的统计学方法,用于建立一个预测目标变量与一个或多个自变量之间的线性关系模型。
它是一种广泛应用的回归方法,适用于各种领域,如经济学、金融学、社会学、生物学和工程学等。
线性回归模型可以表示为以下形式:Y = b0 + b1*X1 + b2*X2+ ... + bp*Xp,其中Y是目标变量,X1、X2、...、Xp是自变量,b0、b1、b2、...、bp是回归系数。
这个方程描述了目标变量Y与自变量X之间的线性关系,通过调整回归系数的值可以拟合数据并预测未知数据的值。
线性回归模型的目标是找到最佳拟合直线,使得预测值与实际观测值之间的误差最小化。
常用的误差衡量指标是残差平方和(RSS),也可以使用其他指标如平均绝对误差(MAE)和均方根误差(RMSE)。
线性回归模型的建立过程包括两个主要步骤:参数估计和模型评估。
参数估计是通过最小化误差来确定回归系数的值。
最常用的方法是最小二乘法,通过最小化残差平方和来估计回归系数。
模型评估是用来评估模型的拟合优度和预测能力,常用的指标包括决定系数(R^2)、调整决定系数(Adjusted R^2)和F统计量。
线性回归模型的假设包括线性关系、误差项的独立性、误差项的方差恒定以及误差项服从正态分布。
如果这些假设不成立,可能会导致模型的拟合效果不佳或不可靠的预测结果。
对于线性回归模型的建立,首先需要收集相关的数据,然后进行数据的处理和变量选择。
数据处理包括缺失值处理、异常值处理和变量转换等。
变量选择是通过统计方法或经验判断来选择对目标变量有影响的自变量。
常见的变量选择方法包括逐步回归、岭回归和lasso回归等。
在建立模型之后,需要对模型进行评估和验证。
评估模型的拟合优度是通过决定系数和F统计量来实现的,较高的决定系数和较小的F统计量表明模型的拟合效果较好。
验证模型的预测能力可以使用交叉验证等方法。
线性回归模型还有一些扩展形式,如多项式回归、加权回归和广义线性回归等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 线性回归方程一、相关关系:1、⎩⎨⎧<=1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:∑∑∑===-⋅---=ni ini ini iiy y x x y y x x r 12121)()())((,其中:(1)⎩⎨⎧<>负相关正相关00r r ;(2)相关性很弱;相关性很强;3.0||75.0||<>r r例题1:下列两个变量具有相关关系的是( )A.正方形的体积与棱长;B.匀速行驶的车辆的行驶距离与行驶时间;C.人的身高和体重;D.人的身高与视力。
例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散点图中,若所有样本点),2,1)(,(n i y x i i =都在直线121+-=x y 上,则样本相关系数为( )21.21.1.1.--D C B A 例题3:r 是相关系数,则下列命题正确的是:(1)]75.0,1[--∈r 时,两个变量负相关很强;(2)]1,75.0[∈r 时,两个变量正相关很强;(3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)(4)1.0=r 时,两个变量相关性很弱。
3、散点图:初步判断两个变量的相关关系。
例题4:在画两个变量的散点图时,下列叙述正确的是( ) A.预报变量在x 轴上,解释变量在y 轴上; B.解释变量在x 轴上,预报变量在y 轴上; C.可以选择两个变量中的任意一个变量在x 轴上; D.可以选择两个变量中的任意一个变量在y 轴上; 例题5:散点图在回归分析过程中的作用是( )A.查找个体个数B.比较个体数据的大小C.研究个体分类D.粗略判断变量是否线性相关二、线性回归方程:1、回归方程:a x b yˆˆˆ+= 其中2121121)())((ˆxn x yx n yx x x y yx x bn i i ni ii n i i ni ii--=---=∑∑∑∑====,x b y aˆˆ-=(代入样本点的中心) 例题1:设),(),,(),,(2211n n y x y x y x 是变量n y x 的和个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(过一、二、四象限),以下结论正确的是( ) A.直线l 过点),(y x B.当n 为偶数时,分布在l 两侧的样本点的个数一定相同 C.的和y x 相关系数在0到1之间 D.的和y x 相关系数为直线l 的斜率例题2:工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为x y9060ˆ+=,下列判断正确的是( ) A.劳动生产率为1000元时,工资为150元; B.劳动生产率提高1000元时,工资平均提高150元; C.劳动生产率提高1000元时,工资平均提高90元;D.劳动生产率为1000元时,工资为90元;例题3:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数据)2,1)(,(n i y x i i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y,则不正确的是( )A.y 与x 具有正的线性相关关系;B.回归直线过样本点的中心),(y xC.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg例题4:为了了解儿子的身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A.1-=x y B.1+=x y C.x y 2188+= D.176=y2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。
(2)残差图呈带状分布在横轴附近,越窄模型拟合精度越高。
(3)残差平方和∑=-ni i iyy12)ˆ(越小,模型拟合精度越高。
3、相关指数:∑∑==---=n i ini i iy yyyR 12122)()ˆ(1(1)其中:∑=-ni i iyy12)ˆ(为残差平方和;∑=-ni i y y 12)(为总偏差平方和。
(2))1,0(2∈R ,越大模型拟合精度越高。
例题5:下列说法正确的是( )(1)残差平方和越小,相关指数2R 越小,模型拟合效果越差; (2)残差平方和越大,相关指数2R 越大,模型拟合效果越好; (3)残差平方和越小,相关指数2R 越大,模型拟合效果越好; (4)残差平方和越大,相关指数2R 越小,模型拟合效果越差; A.(1)(2) B.(3)(4) C.(1)(4) D.(2)(3) 例题6:关于回归分析,下列说法错误的是( )A.在回归分析中,变量间的关系若是非确定关系,则因变量不能由自变量唯一确定;B.线性相关系数r 可以是正的,也可以是负的C.样本点的残差可以是正的,也可以是负的D.相关指数2R 可以是正的,也可以是负的 例题7:下列命题正确的是( )(1)线性相关系数r 越大,两个变量的线性相关性越强,反之,线性相关性越弱; (2)残差平方和越小的模型,拟合的效果越好;(3)用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好; (4)随机误差e 是衡量预报精确度的一个量,但它是一个不可观测的量;(5)i eˆ表示相应于点),(i i y x 的残差,且0ˆ1=∑=ni ie。
A.(1)(3)(5)B.(2)(4)(5)C.(1)(2)(4)D.(2)(3) 例题8:已知x 与y 之间的几组数据如下表:假设根据上表数据所得的线性回归直线方程为a x b yˆˆˆ+=。
若某同学根据上表中的前两个数据)2,2(),0,1(求得的直线方程为a x b y '+'=,则下列结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 例题9:关于某设备的使用年限x (年)和所支出的维修费用y (万元)有下表所示的资料:(1)线性回归方程a x b yˆˆˆ+=中的回归系数b a ˆ,ˆ; (2)残差平方和与相关指数2R ,作出残差图,并对该回归模型的拟合精度作出适当判断;(3)使用年限为10年时,维修费用大约是多少?三、非线性回归模型:例题1:如果样本点分布在某一条指数函数曲线bx ae y =的周围,其中a 和b 是参数,通过两边取自然对数的方法,把指数关系式变成对数关系式后,下列哪个变换结果是正确的( )A.a bx y ln ln ⋅=B.a bx y ln ln +=C.a bx y ln ln ln ⋅=D.a bx y ln ln ln += 例题2:下列回归方程中, 是线性回归方程; 是非线性回归方程。
(1)27.3688.0ˆ+=x y(2)8.1225.0ˆ2-=x y (3)x e y 3.16.2ˆ= (4)x y5.14ˆ-= (5)xe y 185.038.1ˆ-=例题3:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
xyw81(i =∑46.65636.8289.8 表中w 1 =x ,w =1881i w=∑1(Ⅰ)根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。
根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v=αβ+u 的斜率和截距的最小二乘估计分别为:^^^121()(),()niii nii u u v v v u u u βαβ==--==--∑∑四、独立性检验:例题1:下表是一个22⨯列联表:的值分别为 。
例题2:可以粗略的判断两个分类变量是否有关系的是( ) A.散点图 B.残差图 C.等高条形图 D.以上都不对例题3:在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )A.d c c b a a ++与 B.d a c d c a ++与 C.c b c d a a ++与 D.ca cd b a ++与例题4:在判断两个分类变量是否有关系的常用方法中,最为精确的方法是( ) A.考察随机误差e B.考察线性相关系数r C.考察相关指数2R D.考察独立性检验中的2K例题5:在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()。
①若2k 的观测值满足635.62 k ,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有 99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99&的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误。
A. ①B. ①③C. ③D. ②例题6:在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):数学成绩与物理成绩之间有()把握有关。
A. B.C.D.。