有限元复习试题库.doc

合集下载

有限元考题

有限元考题

一、填空题(每空3分共45分)1.有限元方法所处理的对象是任意变形体。

2.变形体的基本变量有位移速度应力,基本方程有平衡方程几何方程物理方程。

3.实现有限元分析标准化和规范化的载体就是单元4.参数单元的三种类型分别是等参元超参元亚参元5.由于差值阶次是由节点数量决定的,所以可由几何形状变换的节点数和位移差值函数的节点数直接判断参数单元的性质。

6.带宽是一个反映非零数据集中程度的指标。

二、选择题(每个5分,共30分)B1.有限元中的坐标系有整体坐标系和局部坐标系。

对于一个结构,整体坐标系一般只有_________;局部坐标系有_______。

A 一个,一个B 一个,多个C 多个,多个D 多个,一个B 2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。

(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同B 3 有限元位移模式中,广义坐标的个数应与___________相等。

(A)单元结点个数(B)单元结点自由度数(C)场变量个数C 4 采用位移元计算得到应力近似解与精确解相比较,一般___________。

(A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律C 5 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。

(A)单元编号(B)单元组集次序(C)结点编号D 6.为了保证有限单元法解答的收敛性,位移函数应具备的条件是。

A. 位移函数必须能反映单元的刚体位移和常量应变;B. 位移函数必须能反映单元的刚体位移和单元间的位移连续性;C. 位移函数必须能反映单元的常量应变和单元间的位移连续性;D. 位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。

三、简答题(25分)1.有限元方法分析的目的(9分)1)对变形体中的位移、应力、应变进行定义和表达,进而建立平衡方程、几何方程和物理方程。

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。

A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。

答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。

答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。

(完整word版)有限元法复习题(word文档良心出品)

(完整word版)有限元法复习题(word文档良心出品)

《有限元法》复习题一. 单选题1.平面刚架单元坐标转换矩阵的阶数为( ) A .2⨯2 B .2⨯4 C .4⨯4 D .6⨯62.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8⨯8阶矩阵 B.10⨯10阶矩阵 C.12⨯12阶矩阵 D.16⨯16阶矩阵3.坐标转换矩阵可归类为( )A.正交矩阵B.奇异矩阵C.正定矩阵D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( )A 11112322244434000000k k k k k k k k k k k k k k -⎡⎤⎢⎥-++-⎢⎥⎢⎥-+⎢⎥-+⎣⎦ B. 1111222244434000000k k k k k k k k k k k k k -⎡⎤⎢⎥-+-⎢⎥⎢⎥-+-⎢⎥-+⎣⎦C. 11112323224434340000k k k k k k k k k k k k k k k k -⎡⎤⎢⎥-++--⎢⎥⎢⎥-+-⎢⎥--+⎣⎦D. 1111223224434340000k k k k k k k k k k k k k k k -⎡⎤⎢⎥-+--⎢⎥⎢⎥-+⎢⎥--+⎣⎦5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。

A.1行2列B.3行12列C.6行12列D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( )A.第3行和第3列上的所有元素换为大数AB.第6行第6列上的对角线元素乘以大数AC.第3行和第3列上的所有元素换为零D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( )A.只有节点符合位移模式B.只有边界点符合位移模式C.只有边界点和节点符合位移模式D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( )A.单元刚度矩阵阶数不同B.局部坐标系的维数不同C.无任何不同D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( )A.400和200B.400和160C.484和200D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( )A.单元数量应多一些,单元尺寸小一些B.单元数量应少一些,单元尺寸大一些C.单元数量应多一些,单元尺寸大一些D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( )A.应变为零,但应力不为零B.应力为零,但应变不为零C.应变、应力都为零D.应变、应力都不为零16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0 D. F yi =-50KN F yj =-100KN F yk =018.半斜带宽矩阵r 行s 列的元素对应于竖带矩阵元素( )。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。

以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。

答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。

答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。

答案:迭代三、简答题1. 简述有限元方法的基本步骤。

答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。

- 将几何域划分为有限数量的小单元。

- 为每个单元定义形状函数。

- 计算单元刚度矩阵和载荷向量。

- 组装全局刚度矩阵和载荷向量。

- 施加边界条件。

- 求解线性方程组,得到节点位移。

- 计算单元应力和应变。

2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。

通过网格划分,可以: - 简化复杂几何形状的分析。

- 适应不同的材料属性和边界条件。

- 提供足够的细节以捕捉应力和位移的局部变化。

- 减少计算复杂度,提高求解效率。

四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。

请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。

答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。

有限元试题及答案

有限元试题及答案

有限元试题及答案 有限元试题及答案 一 判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。

二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。

2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。

3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。

4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]eD B σδ=。

有限元参考复习题

有限元参考复习题
(1)有限元模型:
有材料属性:密度、弹性、屈服极限等
有约束信息:约束条件(固定、支撑条件)
有载荷信息:受力情况
(2)几何模型:只有几何形状信息
4.有限元分析在机械设计中能起到什么作用 机械设计方面主要用的多的就是对机械产品做受力分析、看看产品在承受
载荷之后的变形情况、从而验证设计是否合理.
就是设计的产品仿真它的运行情况,看他的受力变形,震动等实际相比符 不符合,或者对新设计的产品进行改进后进行分析仿真
② 有限元方法的实施主要是依靠手工计算还是商业软件?
③ 有限元法能够用于固体结构的分析,是否可以用于流体、热、电磁场、声 场的分析? ④ 传统的机械零件强度校核中,一般要求零件形状简单,可以简化成杆或 者梁,有限元方法有这方面的要求么? ⑤ CAD建模得到的模型与有限元的模型之间有什么联系?
三 ① 列举常用的5个常用有限元软件? ② 工程中常用的模拟、仿真技术除了有限元方法以外,还有哪几种? ③ 主流的有限元软件架构一般是怎样的? ④ CAD软件经常在有限元软件中经常扮演什么角色? ⑤ 有限元分析在机械设计中能起到什么作用? 四
7.什么是 Tresca 应力和 Mises 应力?分别说明其应用场合。 第三强度理论的等效应力(Tresca stress,stress intensity, 应力强度,
最大
剪应力理论,1864,1773,库伦)s 1 2 1, 2,3 0
第四强度理论的等效应力(Von Mises stress,equinvalent stress, 等
减缩积分即选取高斯积分点的数目少于精确积分要求的积分点数。 9. 什么是有限元位移解的下限性质?
有限元解的特点:过刚,变形小于实际结果; 有意识地软化结构刚度,可以 改善解的精度; 连续结构上任意一点都可以变形;有限元模型的变形只在单元尺 度上 10. 雅可比矩阵对单元形状的要求是什么? 11. 什么是应力磨平?

有限元考试题库及答案

有限元考试题库及答案

有限元考试题库及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。

A. 材料力学B. 结构力学C. 弹性力学D. 流体力学答案:C2. 在有限元分析中,边界条件不包括以下哪一项?()A. 位移边界条件B. 载荷边界条件C. 温度边界条件D. 速度边界条件答案:D3. 有限元分析中,以下哪种类型的单元是二维的?()A. 杆单元B. 梁单元C. 壳单元D. 体单元答案:C4. 有限元分析中,以下哪种类型的网格划分方法适用于复杂几何形状?()A. 结构化网格B. 非结构化网格C. 规则网格D. 混合网格答案:B5. 在有限元分析中,以下哪种方法用于求解线性方程组?()A. 高斯消元法B. 牛顿迭代法C. 有限差分法D. 有限体积法答案:A二、多项选择题(每题3分,共15分)6. 有限元分析中,以下哪些因素会影响网格划分的质量?()A. 网格大小B. 网格形状C. 网格数量D. 网格排列答案:ABCD7. 在有限元分析中,以下哪些是常见的单元类型?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:ABCD8. 有限元分析中,以下哪些是常见的边界条件?()A. 固定边界B. 自由边界C. 压力边界D. 位移边界答案:ACD9. 在有限元分析中,以下哪些是常见的求解器类型?()A. 直接求解器B. 迭代求解器C. 混合求解器D. 并行求解器答案:ABD10. 有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 频率响应分析答案:ABCD三、简答题(每题5分,共20分)11. 简述有限元分析中网格划分的基本原则。

答案:有限元分析中网格划分的基本原则包括:确保网格的几何形状规则、避免过度扭曲的单元、保持网格大小的一致性、在应力集中区域细化网格、以及考虑分析的精度和计算成本。

12. 描述有限元分析中单元刚度矩阵的物理意义。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元复习
一、选择题(每题1分,共10分) 二、判断题(每空1分,共10分) 三、填空题(每空1分,共10分) 三、简答题(共44分)共6题 四、综述题(共26分)两题
一.基本概念
1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线性与非线性问题
平面应力问题
(1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布
在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。

一般
z σ=,
z
ε并不一定等于零,但可由
x
σ及
y
σ求得,在分析问题时不必
考虑。

于是只需要考虑
x y xy
εεγ、、三个应变分量即可。

平面应变问题
(1) 纵向很长,且横截面沿纵向不变。

(2)载荷平行于横截面且沿纵向
均匀分布
0z yz zx εγγ===只剩下三个应变分量
x y xy
εεγ、、。

也只需要考虑
x y xy
σστ、、三个应力分量即可
轴对称问题
物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。

轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。

在轴对称问题中,周向应变分量θε是与r 有关。

板壳问题
一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。

如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。

杆梁问题
杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。

在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。

平面(应力应变)问题与板壳问题的区别与联系
平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时
体力也平行于横截面并且不沿长度变化。

板壳问题的弹性体受垂直于板面的力的作用,板将变成有弯有扭的曲面。

线性问题/非线性问题
线性问题:基于小变形假设,应力与应变方程、应力与位移关系方程、平衡方程都是线性的。

非线性问题:材料非线性(非线性弹性、非线性弹塑性),几何非线性(大变形大应变如金属橡胶,小应变大位移如薄壁结构)
2.不同类型单元的节点自由度的理解:
3.有限元法的基本思想与有限元分析的基本步骤(5步)
有限元法的基本思想:离散、分片插值;其中离散的思想吸收了差分法的启示。

有限元分析的基本步骤:数学建模(问题分析),结构离散(第一次近似),单元分析(位移函数,单刚方程)(第二次近似),整体分析与求解(总刚度方程,引入约束,解方程组求节点位移,根据节点位移求应力),结果分析及后处理。

4.里兹法的基本思想及与有限元法区别
里兹法的基本思想:先根据描述问题的微分方程和相应定解条件构造等价的泛函变分形式,然后在整个求解区域上假设一个试探函数(或近似函数),通过求解泛函极值来获得原问题的近似解。

与有限元法的区别:里兹法是整体场函数用近似函数代替,有限元法是离散求解域,分片连续函数来近似整体未知场函数。

5.有限元法的基本定义(节点、单元、节点力、节点载荷)
•单元:即原始结构离散后,满足一定几何特性和物理特性的最小结构域•节点:单元与单元间的连接点。

•节点力:单元与单元间通过节点的相互作用力
•节点载荷:作用于节点上的外载(等效)。

6.位移函数的构造方法及满足的基本条件
构造方法:(1)广义坐标法,按照帕斯卡三角形选择多项式,项数多少由单元的自由度数决定。

(2)插值函数法,表示为形函数和节点位移的乘积表示。

基本条件:(1)位移函数在单元节点的值应等于节点位移(即单元内部是连续的);(2)所选位移函数必须保证有限元的解收敛于真实解。

7.位移函数的收敛性条件(协调元、非协调元)及单元协调性的判

位移函数的收敛性条件
(1)位移函数应包含刚体位移
(2)位移函数应包含常量应变(反映单元的常应变状态)
(3)位移函数在单元内连续,在单元之间的边界上要协调
满足1和2称为完备单元,满足1,2,3称为协调单元。

单元协调性的判断
以3节点三角形单元为例,位移分量在每个单元中都是坐标的线性函数的话,在公共边界上也会是线性变化的,那么相邻单元在公共边界上的任意一点都具有相同的位移,也就是协调单元。

有限元法中,假设一种位移函数近似表达单元内部的真实位移分布,该位移函数可表示为位移函数和节点位移的线性插值。

8.有限元解的性质
有限元解具有下限性质,即有限元的解小于实际的精确解。

这是因为实际结构本来是具有无限自由度的,当用有限元求解时,结构被离散为有限个单元的集合后,便只有有限个自由度了。

由无限自由度变为有限自由度可以认为是对真实位移函数增加了约束,限制了结构的变形能力,从而导致结构的刚度增大、计算的位移减小。

9.虚功原理、最小势能原理及变分法(里兹法)
虚功原理:在力的作用下处于平衡状态的体系,当发生与约束条件相符合的任意微小的虚刚体位移时,体系上所有的主动力在虚位移上所作的总功(各力所作的功的代数和)恒等于零。

最小势能原理:表明在满足位移边界条件的所有可能位移中,实际发生的位移使弹性体的势能最小。

10.形函数特性
1)形函数Ni 为x、y 坐标的函数,与位移函数有相同的阶次。

2)形函数Ni 在i 节点处的值等于1,而在其他节点上的值为0。

3)单元内任一点的形函数之和恒等于1。

4)形函数的值在0-1 间变化。

11.单元刚度矩阵的性质及元素的物理意义
单元刚度矩阵的性质特点:
(1)对称性(2)奇异性,|K|=0(3)主对角线元素恒为正值(4)奇偶行元素之和分别为零(各行或各列元素之和为零)
物理意义:
单元刚阵[K]的物理意义是单元受节点力作用后抗变形的能力。

其中分块矩阵[K ij]的物理意义为:当在j节点处产生单位位移而其他节点位移为零时,在i节点上需要作用力的大小。

其中元素K ij表示在第j号自由度上产生单位位移时,其他自由度位移为零时,在i号自由度上所需要施加的力的大小。

相关文档
最新文档