高考数学 必考热点分类集中营8

合集下载

2024年高考数学新增高频考点(解析版)

2024年高考数学新增高频考点(解析版)

(多拿20分)2024年高考数学新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项2023年高考数学新增高频考点专题突破一.复数的三角表示(共5小题)1已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6,则z 1z 2的代数形式是()A.6cosπ4+i sin π4B.6cos π12+i sin π12 C.3-3i D.3+3i2若复数z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π33已知复数z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数4复数z =cos -2π5+i sin -2π5 的辐角主值为()A.8π5B.-8π5C.2π5D.-2π55任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8 m (m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,17利用积化和差公式化简sin αsin π2-β 的结果为()A.-12[cos (α+β)-cos (α-β)]B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]8已知cos α+cos β=12,则cos α+β2cos α-β2的值为.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为.10已知α,β为锐角,且α-β=π6,那么sin αsin β的取值范围是.三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sin α•cos β=sin (α+β)+sin (α-β)B.2cos α•sin β=sin (α+β)+cos (α-β)C.cos α+cos β=2sin α+β2⋅sin α-β2D.cos α-cos β=2cos α+β2⋅cosα-β212在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,则tan A2•tan C 2的值为(参考公式:sin A +sin C =2sin A +C 2cos A -C2)()A.2B.12C.3D.1313已知sin α+sin β=2165,cos α+cos β=2765,则sin β-sin αcos β-cos α=.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为.15在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为三角形.四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CAB.-12CAC.32CAD.-32CA19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.22320已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.8023某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.1024某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为11025某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为.六.点、线、面间的距离(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.七.条件概率(共8小题)29已知事件A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥30已知P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )=,P (A|B )=.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )=.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.9533为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.61735人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.36某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.八.全概率公式(共2小题)37某铅笔工厂有甲、乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.3838假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15九.贝叶斯公式(共2小题)39对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取若干名患者,检测发现其中感染了“普通型毒株”、“奥密克戎型毒株”、“其他型毒株”的人数占比为5:3:2.对他们进行治疗后,统计出该药对“普通型毒株”、“奥密克戎毒株”、“其他型毒株”的有效率分别为78%、60%、75%,那么你预估这款新药对“新冠病毒”的总体有效率是;若已知这款新药对“新冠病毒”有效,求该药对“奥密克戎毒株”的有效率是.40英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件A ,B ,A(A 的对立事件)存在如下关系:P (B )=P (B |A )•P (A )+P (B |A )•P (A).若某地区一种疾病的患病率是0.01,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性;该试剂的误报率为10%,即在被检验者未患病的情况下用该试剂检测,有10%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为()A.0.01B.0.0099C.0.1089D.0.1十.二项分布中的最大项(共3小题)41若X ~B 100,13 ,则当k =0,1,2,⋯,100时()A.P (X =k )≤P (X =50)B.P (X =k )≤P (X =32)C.P (X =k )≤P (X =33)D.P (X =k )≤P (X =49)42已知随变量从二项分布B 1001,12,则()(多选)A.P (X =k )=C k100112 1001 B.P (X ≤301)=P (X ≥701)C.P (X >E (X ))>12D.P (X =k )最大时k =500或50143经检测有一批产品合格率为75%,现从这批产品中任取5件,设取得合格产品的件数为ξ,则P (ξ=k )取得最大值时k 的值为.(多拿20分)2023年高考新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项参考答案与试题解析一.复数的三角表示(共5小题)已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6 ,则z 1z 2的代数形式是()+i sin π4B.6cos π12+i sin π12 D.3+3i【解析】:∵z 1=2cosπ12+i sin π12 ,z 2=3cos π6+i sin π6 ,∴z 1z 2=6cos π12+i sin π12 cos π6+i sin π6=6cos π12cos π6-sin π12sin π6 +cos π12sin π6+sin π12cos π6 i=6cos π12+π6 +i sin π12+π6=6cos π4+i sin π4 =622+22i=3+3i ,故选:D .z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π3【解析】:z =32+12i 的模为1,辐角为π6,则复数z =32+12i 的三角形式为cos π6+i sin π6.故选:A .z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数【解析】:对于A ,|z |=cos 2θ+sin 2θ=1,故A 错误,对于B ,z 2=(cos θ+i sin θ)2=cos 2θ+2sin θcos θi +i 2sin 2θ=cos 2θ-sin 2θ+2cos θsin θi ,故B 错误,对于C ,z ⋅z=(cos θ+i sin θ)(cos θ-i sin θ)=cos 2θ+sin 2θ=1,故C 正确,对于D ,z +1z =cos θ+i sin θ+1cos θ+i sin θ=cos θ+i sin θ+cos θ-i sin θ(cos θ+i sin θ)(cos θ-i sin θ)=2cos θ,故D 错误.故选:C .=cos -2π5 +i sin -2π5的辐角主值为()B.-8π5C.2π5D.-2π5=cos -2π5 +i sin -2π5 ,∴复数z 的辐角为2k π-2π5,k ∈Z ,∴复数z 的辐角主值为2π-2π5=8π5.5任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8m(m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8【解析】:∵复数cosπ8+i sin π8 m =cos m π8+i sin m π8为纯虚数,∴cos m π8=0,sin m π8≠0,∴m π8=k π+π2,k ∈Z ,根据m ∈N *,可得正整数m 的最小值为4,此时,k =0,故选:B .二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,1【解析】:直角三角形中两锐角为A 和B ,A +B =C =π2,则cos A cos B =12[cos (A -B )+cos (A +B )]=12cos (A -B ),再结合A -B ∈-π2,π2,可得cos (A -B )∈(0,1],∴12cos (A -B )∈0,12 ,故选:A .7利用积化和差公式化简sin αsin π2-β的结果为()A.-12[cos (α+β)-cos (α-β)] B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]【解析】:sin αsin π2-β =sin αcos β=12[sin (α+β)+sin (α-β)]故选:D .8已知cos α+cos β=12,则cos α+β2cos α-β2的值为 14 .【解析】:∵cos α+cos β=12,∴cos α+β2cos α-β2=12cos α+β2-α-β2 +cos α+β2+α-β2 =12(cos α+cos β)=12×12=14.故答案为:14.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为 m .【解析】:由已知得:sin (α+β)•sin (β-α)=cos2α-cos2β2=(2cos 2α-1)-(2cos 2β-1)2=cos 2α-cos 2β=m10已知α,β为锐角,且α-β=π6,那么sinαsinβ的取值范围是 0,32 .【解析】:∵α-β=π6∴sinαsinβ=-12[cos(α+β)-cos(α-β)]=-12cos(α+β)-32=-12cos2β+π6-32∵β为锐角,即0<β<π3∴π6<2β+π6<5π6,∴-32<cos2β+π6<32∴0<-12cos2β+π6-32<32故答案为:0,3 2三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sinα•cosβ=sin(α+β)+sin(α-β)B.2cosα•sinβ=sin(α+β)+cos(α-β)C.cosα+cosβ=2sinα+β2⋅sinα-β2D.cosα-cosβ=2cosα+β2⋅cosα-β2【解析】:sin(α+β)+sin(α-β)=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ=2sinαcosβ,故选:A.12在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,则tan A2•tan C2的值为(参考公式:sin A+sin C=2sin A+C2cos A-C2)()A.2B.12C.3 D.13【解析】:∵a+c=2b,∴由正弦定理得sin A+sin C=2sin B=2sin(A+C),即2sin A+C2cos A-C2=4sin A+C2cos A+C2,在三角形中sin A+C2≠0,∴cos A-C2=cos A+C2,即cosαA2cos C2+sin A2sin C2=2cos A2cos C2-2sin A2sin C2,即3sin A2sin C2=cos A2cos C2,即sin A2sin C2cos A2cos C2=13,即tan A2•tan C2=13,故选:D.13已知sinα+sinβ=2165,cosα+cosβ=2765,则sinβ-sinαcosβ-cosα= -97 .【解析】:sin α+sin β=2165,可得2sin α+β2cos α-β2=2165⋯①cos α+cos β=2765,2cos α+β2cos α-β2=2765⋯②.①②可得sin α+β2cosα+β2=2127=79.sin β-sin αcos β-cos α=-2cos α+β2sin α-β22sin α+β2sin α-β2=-cos α+β2sinα+β2=-97.故答案为:-97.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为 247 .【解析】:由sin α+sin β=14,得2sinα+β2cos α-β2=14,由cos α+cos β=13,得2cos α+β2cos α-β2=13,两式相除,得tanα+β2=34,则tan (α+β)=2tan α+β21-tan 2α+β2=2×341-34 2=247故答案为:24715在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为直角三角形.【解析】:由cos B +cos C =sin B +sin C 得到2cosB +C 2cos B -C 2=2sin B +C 2cos B -C2两边同除以2cos B -C 2得sin B +C 2=cos B +C 2即tan B +C2=1,由0<B <π,0<C <π,得到B +C 2∈(0,π),所以B +C 2=π4即B +C =π2,所以A =π2,则△ABC 为直角三角形.故答案为:直角四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b【解析】:因为两个单位向量a 和b的夹角为120°,所以a ⋅b =|a |⋅|b |cos120°=1×1×-12=-12,所以(a -b )⋅b =a ⋅b -b 2=-12-1=-32,故所求投影向量为(a-b )⋅b |b |⋅b =-32b.故选:D .17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)【解析】:已知a =(-2,λ),b =(1,1),由于a ⊥b ,所以a ⋅b=(-2)×1+λ×1=0,解得λ=2,所以a =(-2,2),b =(1,1),得a -b=(-3,1),则(a -b )⋅b=(-3)×1+1×1=-2,|b |=12+12=2,故a -b 在b 方向上的投影为(a -b )⋅b|b |=-22=-2,得a -b 在b方向上的投影向量为-2⋅b 2=(-1,-1).故选:D .18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CA B.-12CA C.32CA D.-32CA【解析】:AB 与CA 的夹角为2π3,则cos ‹AB ,CA ›=-12,根据投影向量的定义有:AB 在CA 上的投影向量为|AB |⋅cos ‹AB ,CA ›⋅CA|CA |=-12CA .故选:B .19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.223【解析】:∵a +b 在b 上的投影向量为23b,∴(a+b )⋅b |b |⋅b |b |=23b ,∴a ⋅b =-13,∵|a|=|b |=1,∴由向量的夹角公式可知,cos ‹a ,b ›=a ⋅b |a ||b |=-13.故选:A .20已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a【解析】:∵|a|=2|b |,a 与b 的夹角为120°,∴(2b -a )⋅a =2a ⋅b -a 2=2|a |⋅12|a | ⋅cos120°-a 2=-32a 2,∴2b -a 在a 上的投影向量为:(2b -a )⋅a |a |⋅a|a |=-32a .故选:B .五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是90分.【解析】:8名学生的成绩从小到大排列为:63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即12×(88+92)=90(分).故答案为:90分.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.80【解析】:记构成的等差数列为{a n },则a n =70+2(n -1)=2n +68,∵10×40%=4,∴这10个班级的平均成绩的第40百分位数为a 4+a 52=76+782=77,故选:B .23某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.10【解析】;抽取的工人总数为20,20×75%=15,那么第75百分位数是所有数据从小到大排序的第15项与第16项数据的平均数,第15项与第16项数据分别为9,10,所以第75百分位数是9+102=9.5.故选:C .24某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为110【解析】:由频率分布直方图可得,(a +0.01+0.03+0.035+0.01)×10=1,解得a =0.015,故A 错误,设第60百分位数为x ,则0.1+0.015+(x -70)×0.035=0.6,解得x =80,故B 正确,估计这20名学生数学考试成绩的众数为75,故C 错误,估计总体中成绩落在[50,60)内的学生人数为1000×0.01×10=100,故D 错误.故选:B .25某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为10.8.【解析】:数据从小到大排序为:8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个,所以12×80%=9.6,所以这组数据的第80百分位数是第10个数即:10.8.故答案为:10.8.六.点、线、面间的距离计算(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.【答案】(1)证明:取DE 中点G ,连接FG ,CG ,∵F ,G 分别为AE ,DE 中点,∴FG ∥AD ,FG =12AD ,又AD ∥BC ,BC =12AD ,∴BC ∥FG ,BC =FG ,∴四边形BCGF 为平行四边形,∴BF ∥CG ,又BF ⊄平面CDE ,CG ⊂平面CDE ,∴BF ∥平面CDE .(2)∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABE ,又∠BAE =π2,则以A 为坐标原点,AB ,AE ,AD正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则F (0,1,0),C (2,0,1),D (0,0,2),E (0,2,0),∴CD =(-2,0,1),DE =(0,2,-2),FE =(0,1,0),设平面CDE 的法向量n=(x ,y ,z ),则CD ⋅n=-2x +z =0DE ⋅n =2y -2z =0,令x =1,解得:y =2,z =2,∴n=(1,2,2),∴点F 到平面CDE 的距离d =|FE ⋅n||n |=23.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.【答案】(1)证明:取AE 的中点G ,连接GD ,GF ,因为BF ∥EA ,且BF =12AE ,所以AG ∥BF 且AG =BF ,所以四边形AGFB 是平行四边形,所以GF ∥AB ,又因为ABCD 是菱形,所以AB ∥DC ,且AB =DC ,所以GF ∥DC 且GF =DC ,所以四边形CFGD 是平行四边形,CF ∥DG ,又CF ⊄平面ADE ,DG ⊂平面ADE ,所以CF ∥平面ADE ;解:(2)连接BD 交AC 于N ,取CE 中点P ,∵PN ∥AE ,EA ⊥平面ABCD ,∴PN ⊥平面ABCD ,且CN ⊥BN ,∴以N 为原点,NC ,NB ,NP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设在棱EC 上存在点M 使得平面MBD 与平面BCF 的夹角余弦值为155,E (-1,0,2),B (0,3,0),C (1,0,0),F (0,3,1),A (-1,0,0),D (0,-3,0)则设CM =λCE=λ(-2,0,2)(0<λ<1),∴M (1-2λ,0,2λ),所以DM =(1-2λ,3,2λ),DB =(0,23,0),BC =(1,-3,0),FB=(0,0,-1)设平面DBM 的一个法向量为n=(x ,y ,z ),则n ⋅DM=0n ⋅DB =0,即(1-2λ)x +3y +2λz =023y =0 ,令y =0,x =-2λ,z =1-2λ,得n=(-2λ,0,1-2λ),设平面FBC 的一个法向量为m=(a ,b ,c ),则m ⋅BC =0m ⋅FB =0,即a -3b =0-c =0 ,取b =1,得m=(3,1,0),∴|cos ‹n ,m ›|=|m ⋅n ||m |⋅|n |=|-23λ|2(-2λ)2+(1-2i )2=155,解得λ=13或λ=1,又∵0<λ<1,∴λ=13,此时M 13,0,23 ,∴CM =-23,0,23 ,∴点M 到平面BCF 的距离d =|CM ⋅m||m |=2332=33.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.【解析】:(1)证明:因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC .因为ABCD 为正方形,所以AB ⊥BC ,又因为PA ∩AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以BC ⊥平面PAB .因为AE ⊂平面PAB ,所以AE ⊥BC .因为PA =AB ,E 为线段PB 的中点,所以AE ⊥PB ,又因为PB ∩BC =B ,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC .又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC .(2)因为PA ⊥底面ABCD ,AB ⊥AD ,以A 为坐标原点,以AB ,AD ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),P (0,0,2),E (1,0,1),易知u=(0,1,0)是平面PAB 的法向量,设BF =t (t ∈[0,2]),则F (2,t ,0),所以AE=(1,0,1),AF =(2,t ,0),所以|cos ‹AF ,u ›|=|AF ⋅u||AF ||u |=1-255 2,即t t 2+4=55,得t =1,所以AF =(2,1,0),设n=(x 1,y 1,z 1)为平面AEF 的法向量,则n ⋅AE=0,n ⋅AF =0,,所以平面AEF 的法向量n=(-1,2,1),又因为AP=(0,0,2),所以点P 到平面AEF 的距离为d =|AP ⋅n ||n |=26=63,所以点P 到平面AEF 的距离为63,由(1)可知,∠BAF 是直线AF 与平面PAB 所成的角,所以cos ∠BAF =AB AF =AB AB 2+BF 2=255,解得BF =12AB =12BC ,故F 是BC 的中点,所以AF =AB 2+BF 2=5,AE =12PB =2,EF =AF 2-AE 2=3,所以△AEF 的面积为S △AEF =12AE ⋅EF =62,因为PA =AB =2,△PAE 的面积为S △PAE =12S △PAB =14PA ⋅AB =1,设点P 到平面AEF 的距离为h ,则有V P -AEF =13S △AEF ⋅h =66h =V F -PAE =13S △PAE ⋅BF =13,解得h =63,所以点P 到平面AEF 的距离为63.七.条件概率(共8小题)A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥【解析】:根据题意,设P (B )=x ,由于P (A |B )=0.7,则P (AB )=P (B )P (A |B )=0.7x ,P (A )=1-P (A)=0.7,则P (A )P (B )=0.7x ,则有P (AB )=P (A )P (B ),事件A ,B 相互独立.不确定x 的值,P (A ∩B )=P (AB )=0.7x ,A 错误;P (B |A )=P (AB )P (A )=x ,B 错误;由于A 、B 相互独立,事件A 、B 可能同时发生,则事件A 、B 一定不互斥,D 错误.故选:C .P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )= 1936 ,P (A |B )= 319 .【解析】:P (A )=13,则P (A )=1-P (A )=23,故P (B )=P (AB )+P (A B )=P (A )P (B |A )+P (A )P B |A )=23×23+13×14=1936,P (A |B )=P (AB )P (B )=13×141936=319.故答案为:1936,319.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )= 38 .【解析】:由题意可知P (C )=P (A ∩B )=710,则P (A ∪B )=1-P (A ∩B )=1-710=310.又P (A ∪B )=P (A )+P (B )-P (AB ),所以P (AB )=P (A )+P (B )-P (A ∪B )=415+215-310=110,则P (B |A )=P (AB )P (A )=110415=38.故答案为:38.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.95【解析】:设买到的产品是甲厂产品为事件A ,买到的产品是乙厂产品为事件B ,则P (A )=0.8,P (B )=0.2,记事件C :从该地市场上买到一个合格产品,则P (C |A )=0.75,P (C |B )=0.8,所以P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=0.8×0.75+0.2×0.8=0.76.故选:C .33为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M 对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M 在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M 上场的概率.【解析】:(Ⅰ)事件B =“甲乙两队比赛4局甲队最终获胜”,事件A j =“甲队第j 局获胜”,其中j =1,2,3,4,A j 相互独立.又甲队明星队员M 前四局不出场,故P (A j )=12,j =1,2,3,4,B =A 1 A 2A 3A 4+A 1A 2 A 3A 4+A 1A 2A 3 A 4,所以P (B )=C 13×124=316.(Ⅱ)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛,由全概率公式知,P (C )=P (C |D )P (D )+P (C |D )P (D),因为每名队员上场顺序随机,故P (D )=C 24A 33A 35=35,P (D )=1-35=25,P (C |D )=122×34=316,P C |D )=123=18, 所以P (C )=316×35+18×25=1380.(Ⅲ)由(2),P (D |C )=P (CD )P (C )=P (C |D )P (D )P (C )=316×351380=913.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.617【解析】:需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,设事件A 表示“选派3名男医生和2名女医生,有一名主任医生被选派”,B 表示“选派3名男医生和2名女医生,两名主任医师都被选派”,P (A )=C 23C 24+C 33C 14+C 23C 14C 34C 25=1720,P (AB )=C 23C 14C 34C 25=310,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为:P (B |A )=P (AB )P (A )=3101720=617.故选:D .35人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.【解析】:设试验一次,“取到甲袋”为事件A 1,“取到乙袋”为事件A 2,“试验结果为红球”为事件B 1,“试验结果为白球”为事件B 2,(1)P (B 1)=P (A 1)P (B 1|A 1)+P (A 2)P (B 1|A 2)=12×910+12×210=1120;所以试验一次结果为红球的概率为1120.(2)①因为B 1,B 2是对立事件,P (B 2)=1-P (B 1)=920,所以P A 1|B 2)=P (A 1B 2)P (B 2)=P (B 2|A 1)P (A 1)P (B 2)=110×12920=19,所以选到的袋子为甲袋的概率为19;②由①得P (A 2|B 2)=1-P A 1|B 2)=1-19=89,中取到红球的概率为:P 1=P (A 1|B2)P (B1|A1)+P (A2|B2)910+89×210=518,方案二中取到红球的概率为:P 2=P (A 2|B 2)P (B 1|A 1)+P (A 1|B 2)P B 1|A 2)=89×910+19×210=3745, 所以方案二中取到红球的概率更大.该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】:(1)该款芯片生产在进入第四道工序前的次品率P =1-1-110 ×1-19 ×1-18=310.(2)设该批次智能自动检测合格为事件A ,人工抽检合格为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.八.全概率公式(共2小题)乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.38【解析】:甲生产线的产量是乙生产线产量的1.5倍,则从这种铅笔中任取一件抽到甲生产线的概率为0.6,抽到乙生产线的概率为0.4,从这种铅笔产品中任取一件,则取到次品的概率为0.6×10%+0.4×5%=0.08,所以取到合格产品的概率为1-0.08=0.92.故选:A .第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15【解析】:设事件A i 表示从第i (i =1,2)箱中取一个零件,事件B 表示取出的零件是次品,则P (B )=P (A 1。

高考数学重点知识点汇总.doc

高考数学重点知识点汇总.doc

高考数学重点知识点汇总高考数学重点知识点1.进行集合的交、并、补运算时,不要忘了全集和空集这两种特殊情况,不要忘记了借助数轴和维恩图进行求解2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否定形式的区别吗?6.求解与函数有关的问题易忽略定义域优先的原则7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称这一点8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17. 实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:一正;二定;三等.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用根轴法解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意同号可倒.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在已知,求的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。

高考数学八个模块知识点

高考数学八个模块知识点

高考数学八个模块知识点在高中数学教学中,高考是一个重要的里程碑。

数学作为高考的一门主要科目,涉及到了各个模块的知识点。

在这篇文章中,我们将会系统地总结高考数学中的八个模块的知识点,以帮助同学们更好地复习和备考。

一、函数与方程函数与方程是高考数学中的基础模块,也是最为常见和重要的知识点之一。

主要包括函数的性质与图像、一次函数与二次函数、指数函数与对数函数、三角函数等内容。

同学们需要掌握函数的定义、性质,能够绘制函数图像,熟练运用函数的基本性质解决实际问题。

二、数列与数学归纳法数列与数学归纳法是高考数学中的第二个模块,也是一个相对容易掌握的知识点。

这一模块主要包括等差数列与等比数列的概念与性质,数列的通项公式,以及数学归纳法的基本原理与应用。

通过学习数列与数学归纳法,同学们可以解决一些关于数列和求和的问题。

三、三角函数三角函数是高考数学中的一个较为复杂的模块,也是许多同学感到困难的知识点之一。

这一模块主要包括角度的度量、三角函数的概念、性质与图像,以及相关的恒等变换与解三角方程等内容。

同学们需要深入理解三角函数的性质,能够运用三角函数解决各种相关的题目。

四、平面向量平面向量作为高考数学中的一个重要模块,主要包括向量的概念与性质、向量的运算、向量的共线与垂直、向量的应用等内容。

同学们需要掌握向量的基本概念,能够进行向量的加法、减法、数量积、向量积等运算,并能够应用向量解决几何与物理问题。

五、解析几何解析几何作为高考数学中的一个重要模块,主要包括平面解析几何与空间解析几何。

同学们需要掌握坐标系的建立及相关的性质,能够利用解析几何的方法解决几何问题,包括直线的方程与位置关系、圆与圆的位置关系、曲线方程与性质等内容。

六、概率与统计概率与统计作为高考数学中的一个实际应用模块,主要包括事件与概率、随机事件的概率计算、离散型随机变量与其分布、统计图表与数据分析等内容。

同学们需要掌握统计学中的基本概念与方法,能够运用概率与统计解决实际问题,包括随机事件的计算、概率模型的应用、数据的整理与分析等。

(推荐)高三数学专题分类

(推荐)高三数学专题分类

专题1集合考点1: 集合的含义与表示、集合间的基本关系考点2:集合的基本运算考点3:与集合相关的新概念问题专题2 命题及其关系、充分条件和必要条件考点4、命题及其关系考点5、充分条件和必要条件考点6、利用关系或条件求解参数范围问题专题3、简单的逻辑联结词、全称量词和存在量词考点7、逻辑连接词考点8、全称量词和存在量词考点9、利用逻辑连接词探求参数问题专题4:函数概念与基本初等函数考点10、函数的表示与函数的定义域考点11、分段函数及其应用专题5、函数的基本性质考点12、函数的单调性考点13、函数的奇偶性考点14、函数性质的综合性质应用问题二次函数与幂函数考点15、二次函数及其应用考点16、幂函数主题7、指数与指数函数考点17、幂的运算考点18、指数函数的图像与性质考点19、与指数函数相关的综合问题专题8、对数与对数函数考点20、对数的运算考点21、对数函数的图像与性质考点22、函数图像的应用问题专题9、函数的图像考点23、函数图像的辨识考点24、函数图像的变换考点25、函数图像的应用问题考点26、函数零点所在区间的判断考点27、函数零点、方程根的个数考点28、函数零点的应用问题函数的模型与应用考点29、函数常见的模型与应用考点30、函数与其他知识相联系问题导数专题12 导数及其运算考点31、导数的概念与几何意义考点32、导数的运算专题13、导数的应用考点33、导数与函数的单调性考点34、函数与函数的极值、最值考点35、利用导数求参数的范围问题考点36、利用导数求参数的范围问题考点37、利用导数解决综合问题专题14、定积分与微积分基本定理考点38、利用微积分基本定理求解定积分考点39、利用定积分求分平面图形的面积第四部分、三角函数专题15、三角函数的概念、同角三角函数的的基本关系考点40、三角函数的概念考点41、同角三角函数的基本关系、诱导公式专题16、三角函数的图像与应用考点42、三角函数的的图形与变换考点43、求三角函数的解析式专题17、三角函数的性质与应用考点44、三角函数的定义域、值域、最值考点45、三角函数的单调性、奇偶性、对称性和周期性考点46、与三角函数相关的综合问题专题18三角恒等变换考点47、三角函数式的化简与求值考点48、与三角化简求值相关的综合问题考点49、正选定理与余弦定理考点50、解三角形及其应用考点51、与平面向量、不等式综合等综合的三角形问题第五部分平面向量专题20平面向量的概念与及线性运算、平面向量基本定理考点52、平面向量的线性运算和几何意义考点53、平面向量基本定理和坐标运算考点54、平面向量的数量积考点55、平面向量的长度与角度问题考点56、平面向量的综合应用题第六部分数列专题22、数列的概念与数列的通项公式考点57、数列的概念考点58、数列的通项公式专题23、等差数列考点59、等差数列的概念与运算考点60、等差数列的性质考点61、等差数列相关的综合问题专题24、等比数列考点62、等比数列的概念与运算考点63、等比数列的性质考点64、等比数列相关的综合问题专题25、数列的综合问日考点65、数列求和考点66、数列与不等式相结合问题考点67、数列与函数相结合问题考点68、数列中的探索问题专题26、不等关系与不等式的解法考点69、不懂关系考点70、不等式的解法专题27、二元一次不等式组与简单的线性规划考点71、用二元一次不等式组表示区域问题考点72、利用线性规划求目标函数考点73、以可行域为载体与其他知识的教会问题专题28、基本不等式及其应用考点74、基本不等式考点75、基本不等式的实际应用问题第八部分立体几何专题29、空间几何体结构及三视图和直观图考点76、空间几何体的的结构考点77、三视图与直观图专题30、空间几何体的表面积和体积考点78、几何体的表面积考点79、几何体的体积考点80、组合体的“接”“切”的综合问题专题31、空间点、线、面的位置关系考点81、空间点、线、面的位置关系考点82、异面直线所成的角专题32、直线、平面平行与垂直的判定与性质考点83、直线、平面平行的判定与性质考点84、直线、平面垂直的判定与性质专题33、空间角与综合问题考点85、直线与平面所成的角考点86、二面角考点87、立体几何中的折叠问题、最值问题和探索性问题专题34、空间向量与立体几何考点88、空间向量运算与利用平面向量证明平行、垂直的位置关系考点89、利用空间向量求空间角考点90、利用空间向量解决开放性、探索性等问题专题35、(注:文档可能无法思考全面,请浏览后下载,供参考。

高考数学必考知识点归纳

高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。

o运算:交集、并集、补集(相对于全集)。

2.函数o概念:输入与输出之间的对应关系。

o表示法:解析法、列表法、图像法。

o单调性:增函数、减函数。

o奇偶性:奇函数、偶函数、非奇非偶函数。

二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。

o表示法:通项公式、递推公式。

2.等差数列o定义、通项公式、前n项和公式。

o性质:中项性质、等差中项。

3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。

o性质:中项性质、等比中项。

4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。

5.数列的极限o数列极限的概念、性质及简单计算。

三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。

2.诱导公式o角度加减变换公式。

3.同角关系式o基本恒等式、平方关系、商数关系。

4.性质o周期性、奇偶性、单调性、有界性。

5.图像与性质o各三角函数图像特征、相位变换、振幅变换。

6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。

7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。

四、向量1.基本概念o向量的模、方向、坐标表示。

2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。

o模长与夹角的关系、平行与垂直的条件。

五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。

o斜率:定义、公式、倾斜角。

o位置关系:平行、垂直的条件。

2.圆o方程:标准方程、一般方程。

o性质:圆心、半径、切线、弦的性质(如相交弦定理)。

3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。

六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。

2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。

3.三视图o正视图、侧视图、俯视图及其绘制方法。

七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。

2024年高考数学专项复习数列考查的九个热点(解析版)

2024年高考数学专项复习数列考查的九个热点(解析版)

数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

高考数学常考知识点高考数学120个必考点

高考数学常考知识点高考数学120个必考点

高考数学常考知识点整理高考数学120个必考点对于高中生来说高考数学必考学问点有哪些,高中数学重点学问归纳有哪些重要,需要我们把握?下面是小编整理的高考数学常考学问点,欢送大家阅读共享借鉴,盼望大家喜爱,也盼望对大家有所帮忙。

高考数学常考学问点1高中数学重点学问点讲解:直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°高中数学重点学问点讲解:直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

在高中数学里直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,。

当时,;当时,不存在。

②过两点的直线的斜率公式:留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的挨次无关;(3)以后高中数学涉及到求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高中数学重点学问点讲解:直线方程①点斜式:直线斜率k,且过点留意:高中数学在关于直线方程解法中,当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)⑤一般式:(A,B不全为0)留意:○1各式的适用范围○2特别的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);高考数学常考学问点2一、三角函数1.周期函数:一般地,对于函数f(x),假如存在一个不为0的常数T 使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把全部周期中存在的最小正数,叫做最小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学 必考热点分类集中营82.【2011 新课标全国文,4】椭圆221168x y +=的离心率为( )A .13 B .12C 3D 23.【2010⋅新课标全国理,15】过点A(4,1)的圆C 与直线x-y=0相切于点B (2,1),则圆C 的方程为.4.【2010⋅新课标全国文,5】中心在远点,焦点在x 轴上的双曲线的一条渐近线经过(4,2), 则它的离心率为( )(A 6 (B 5 (C 6(D 5 5.【2010⋅新课标全国文,13】圆心在原点上与直线20x y +-=相切的圆的方程为.6.【2012⋅新课标全国】设12,F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 是直线32ax =上一点,21,F PF ∆是底角为30︒的等腰三角形,则E 的离心率为( ) A 、12 B 、23 C 、34 D 、45【命题意图猜想】1.通过2010年和2011年的新课标的高考试题来看,直线与圆的位置关系在2010年文理各一道,而在2011,2012年均没有考查,试题难度较低,文科题目难度更低.虽然2012年小题没有涉及到,但是在解答题20中,有关圆的知识进行的了考查.可能两方面的原因:一是隔年考查的特征,二是在选修的第二道目中也常对直线和圆的位置关系进行考查.由此来看,在2013年高考题中很有可能考查这个知识点,以考查概念与计算为主.关于曲线的离心率是一个热点,连续三年考题的文理均有设计,且易以双曲线为背景考查,以一道小题的形式出现,试题难度中低档. 2012年高考试题以椭圆为背景,结合三角形的特征进行考查,试题难度较低.预测2013年高考试题应该有所改变,一是可能增加难度,考查曲线的离心率的范围,二是可能考查曲线的其他的几何性质,并与向量相结合是一个方向.2.从近几年的高考试题来看,直线与圆的位置关系、弦长、圆与圆的位置关系等是高考的热点,三种题型都有可能出现,难度属中等偏高;客观题主要考查直线与圆的位置关系,弦长等问题;主观题考查较为全面,除考查直线与圆的位置关系、弦长等问题外,还考查基本运算、等价转化、数形结合等思想.预测2013年高考仍将以直线与圆的位置关系为主要考点,考查学生的运算能力和逻辑推理能力.3.从近几年的高考试题来看,双曲线的定义、标准方程及几何性质是高考的热点,题型大多为选择题、填空题,难度为中等偏低,主要考查双曲线的定义及几何性质,考查基本运算能力及等价转化思想.预测2013年高考仍将以双曲线的定义及几何性质为主要考查点,重点考查学生的运算能力、逻辑推理能力. 【最新考纲解读】1.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程. (2)能根据所给定直线、圆的方程,判断直线与圆的位置关系;能根据所给定两个圆的方程,判断两圆的位置关系. (3)能用直线和圆的方程解决一些简单的问题. (4)初步了解用代数方法处理几何问题的思想. 2.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质. (4)了解圆锥曲线的简单应用. (5)理解数形结合的思想. 【回归课本整合】 1.直线与圆位置关系直线与圆的位置关系有三种:相离、相切、相交,判定方法有两种: ⑴代数法:直线:A x +B y +C=0,圆:x 2+y 2+D x +E y +F=0,联立得方程组2200Ax By C x y Dx Ey F ++=⎧⎨++++=⎩−−−→消元一元二次方程24b ac=-−−−→判别式△000>⇔⎧⎪=⇔⎨⎪<⇔⎩△相交,△相切,△相离.(2)几何法:直线:A x +B y +C=0,圆:(x -a )2+(y -b )2=r 2,圆心(a ,b )到直线的距离为,则d r d r d r >⇔⎧⎪=⇔⎨⎪<⇔⎩相离,相切,相交.注意:判断直线与圆的位置关系一般用几何方法较简捷. 2.椭圆的离心率:c e a =,范围:01e <<,由ba=可知:e 越小,椭圆越圆;e 越大,椭圆越扁.注意:离心率是一个刻画椭圆扁平程度的量,它是焦距和长轴长的比,与坐标系的选取无关. 3.双曲线的离心率:ce a=,范围:1e >,e 越接近1,双曲线的开口越窄;e 越大,双曲线的开口就越开阔.注意:(1)由c e a ==可知:当0,b a <<1e <<当0,b a <=e =当0,a b <<e >【方法技巧提炼】1.如何求解圆的切线方程(1)求过圆上的一点00(,)x y 圆的切线方程:先求切点与圆心连线的斜率k ,则由垂直关系,切线斜率为1-k,由点斜式方程可求得切线方程; 结论:过圆222x y r +=上一点00(,)P x y 的切线方程为200xx yy r +=.(2)求过圆外一点00(,)x y 圆的切线方程: 方法一:设切线方程为00()y y x x -=-k 即00-0x y x y -+=k k ,然后由圆心到直线的距离等于半径,可求得k ,切线方程即可求出;方法二:设切线方程为00()y y x x -=-k ,即00y x x y =-+k k 代入圆方程得一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出;(3)若斜率不存在,可设切线为0x x =,然后结合图形求得; 2.直线与圆相交所得的弦长求法(1)利用弦长计算公式:设直线y kx b =+与圆相交于()11,A x y ,()22,B x y 两点,则弦AB ==.(2)利用垂径定理和勾股定理:AB =r 为圆的半径,d 直线到圆心的距离).此法计算简洁,是常用的方法. 3.如何求椭圆的离心率离心率是刻画圆锥曲线几何特点的一个重要尺度.求解的思路方法比较多,思路也是比较灵活.常用的方法:(1)直接求出a 、c ,求解e :已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解;(2)变用公式,整体求出e :如利用e ===,e == (3)构造a 、c 的齐次式,解出e :根据题设条件,借助a 、b 、c 之间的关系,构造出a 、c 的齐次式,进而得到关于e 的方程,通过解方程得出离心率e 的值;另外,求解离心率的范围也是一个热点题型,关键在于如何找到不等关系式,从而得到关于离心率的不等式,进而求其范围. 4. 如何求双曲线的离心率离心率是刻画圆锥曲线几何特点的一个重要尺度.求解的思路方法比较多,思路也是比较灵活.常用的方法:(1)直接求出a 、c ,求解e :已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解; (2)变用公式,整体求出e :如利用e ===,e ==; (3)构造a 、c 的齐次式,解出e :根据题设条件,借助a 、b 、c 之间的关系,构造出a 、c 的齐次式,进而得到关于e 的方程,通过解方程得出离心率e 的值;另外,求解离心率的范围也是一个热点题型,关键是善于发掘题目的隐含条件,借助双曲线的几何性质构造关系,从而确定不等关系式,进而得到关于离心率的不等式,最后求其范围.【考场经验分享】1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.注意利用圆的性质解题,可以简化计算.例如,求圆外一点到圆上任意一点的最小距离或最大距离,利用两点的距离减去或加圆半径就很简便.3.一般地,过圆外一点可向圆作两条切线,在两种方法中都应注意斜率不存在的情况.4.区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.双曲线的离心率大于1,而椭圆的离心率e ∈(0,1).6.在双曲线的定义中,加一条件“常数要大于0且小于|F 1F 2|”,若将定义中“差的绝对值”中的“绝对值”去掉,点的轨迹为双曲线的一支.7.本热点一般放在客观题的中间位置,试题难度不大,属于解析几何问题中最基础的一道,故应为得全分的题目,解题时务必小心仔细,区分好曲线的焦点的位置和a ,b 的取值是正确解题的保证.【新题预测演练】1.【天津市新华中学2013届高三上学期第三次月考数学试卷】若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行,则a 的值为( )A. 1B. 1或2C. -2D. 1或-22.【广东省华南师大附中2012-2013学年度高三第三次月考】曲线3 yx=(0x>)上的点到直线3430x y++=的距离的最小值为()(A)3 (B)516(C)518(D)44.【2013河北省名校名师俱乐部高三3月模拟考试】若圆22490x y x+--=与y轴的两个交点A、B都在双曲线上,且A、B两个恰好将此双曲线的焦距三等分,则此双曲线的标准方程为()A.221972x y-= B.221972y x-= C.2211681x y-= D.2218116y x-=5.【云南玉溪一中高2013届高三上学期第三次月考】已知点1F,2F分别是双曲线22221(0,0)x ya ba b-=>>的左、右焦点,过1F且垂直于x轴的直线与双曲线交于A,B两点,若2ABF∆是钝角三角形,则该双曲线离心率的取值范围是()A.21,)-+∞B.(31,)++∞ C.(12,)+∞D.(1,12)+6.【2013年长春市高中毕业班第一次调研测试】已知直线0x y k+-=(0)k>与圆224x y+=交于不同的两点A、B,O是坐标原点,且有3||||3OA OB AB+≥,那么k的取值范围是A.(3,)+∞ B.2,)+∞C.[2,2)D.[3,22)7.【广西百所高中2013届高三年级第三届联考】已知圆22:230(0)M x y mx m++-=<xyAOB的半径为2,椭圆222:13x y C a +=的左焦点为(,0)F c -,若垂直于x 轴且经过F 点的直线与圆M 相切,则a 的值为( )A .34B .1C .2D .48.【安徽省黄山市2013届高中毕业班第一次质量检测】已知00(,)M x y 为圆222(0)x y a a +=>内异于圆心的一点,则直线200x x y y a +=与该圆的位置关系是 ( )A 、相切B 、相交C 、相离D 、相切或相交9.【广东省肇庆市中小学教学质量评估2012—2013学年第一学期统一检测题】经过圆2220x y y ++=的圆心C ,且与直线2340x y +-=平行的直线方程为( )A. 2330x y ++= B. 2330x y +-= C. 2320x y ++= D. 3220x y --=10.【山东省威海市2013届高三上学期期末考试】已知三个数2,8m ,构成一个等比数列,则圆锥曲线2212x y m +=的离心率为(A (B (C (D 11.【广东省华附、省实、广雅、深中2013届高三上学期期末四校联考】已知椭圆的方程为)0(3222>=+m m y x ,则此椭圆的离心率为( )(A)31(B)33(C)22(D)2112.【安徽省2013届高三开年第一考】“m>2”是“直线10x my -+=与圆2220x y x +-=相交”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件13.【山东省济宁市2013届高三上学期期末考试】若圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为 A.()()22112x y ++-= B.()()22112x y -+-= C.()()22112x y -++=D.()()22112x y +++=14.【山东省济宁市2013届高三上学期期末考试】已知双曲线的方程为()222210,2x y a b a b -=>>(其中c 为双曲线的半焦距长),则该双曲线的离心率为 A.32B.D.5215.【2013年长春市高中毕业班第一次调研测试】如图,等腰梯形ABCD 中,//AB CD 且2AB AD =,设DAB θ∠=,(0,)2πθ∈,以A 、B 为焦点,且过点D 的双曲线的离心率为1e ;以C 、D 为焦点,且过点A 的椭圆的离心率为2e ,则A. 当θ增大时,1e 增大,12e e ⋅为定值B. 当θ增大时,1e 减小,12e e ⋅为定值C. 当θ增大时,1e 增大,12e e ⋅增大D. 当θ增大时,1e 减小,12e e ⋅减小16.【2013届浙江省重点中学协作体高三摸底测试】若2222(0)a b c c +=≠,则直线0ax by c ++=被圆221x y +=所截得的弦长为A .12B .1 CD17.【北京市海淀区北师特学校2013届高三第四次月考】设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么双曲线的离心率是 ( )18.[安徽省宣城市6校2013届高三联合测评考]已知点00(,)P x y ,圆0:222(0)x y r r +=>,直线l :200x x y y r +=,有以下几个结论:①若点P 在圆O 上,则直线l 与圆O 相切;②若点P 在圆O 外,则直线l 与圆O 相离;③若点P 在圆O 内,则直线l 与圆O 相交;④无论点P在何处,直线l 与圆O 恒相切,其中正确的个数是( ) A .1 B .2 C .3 D .4A BDC。

相关文档
最新文档