浸渍法制备PdAl2O3催化剂

浸渍法制备PdAl2O3催化剂
浸渍法制备PdAl2O3催化剂

山西大学

综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂

学院化学化工学院

学生姓名 ddd

专业化学

学号 4444

年级 2009

指导教师王永钊

二Ο一二年 5月11日

浸渍法制备Pd/γ-Al2O3催化剂

姓名:tttt 学号:jikij 专业:化学

(山西大学化学化工学院,山西太原030006)

摘要:用等体积浸渍法,预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的Pd溶液与蒸馏水的量,经干燥,焙烧,还原制备Pd/γ-Al2O3催化剂,此催化剂为银灰色蛋壳型。

关键词:浸渍法 Pd/γ-Al2O3 催化剂

引言:

固体催化剂的制备方法很多。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。本次实验使用等体积浸渍法制备Pd/γ-Al2O3催化剂,使学生了解并掌握催化剂制备的基本原理与简单操作。

浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。而等体积浸渍法,能较便捷的得出所需净渍液的大概体积,由此可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。此方法预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量。

用浸渍法制备催化剂时,毛细管中浸渍液所含的溶质在干燥过程中会发生迁移,造成活性组分的不均匀分布。这时由于在缓慢干燥过程中,热量从颗粒外部传递到其内部,颗粒外部总是先达到液体的蒸发温度,因而孔口部分先蒸发使一部分溶质析出,由于毛细管上升现象,含有活性组分的溶液不断地从毛细管内部上升到孔口,并随溶剂的蒸发溶质不断地析出,活性组分就会向表层集中,留在孔内的活性组分减少。因此,为了减少干燥过程中溶质的迁移,常采用快速干燥法,使溶质迅速析出。有时也可采用稀溶液多次浸渍法来改善。

浸渍完全后再经干燥,焙烧处理得到催化剂产物。

实验部分

1、实验步骤

1.1实验试剂与仪器

1.1.1 试剂:γ-Al2O3小球,蒸馏水,Pd[9.6 mg/mL]溶液

1.1.2 仪器:坩埚,玻璃棒,移液管(1ml),洗耳球,小量筒(10ml),烘箱,马弗炉

1.2具体操作方法

1.2.1 载体吸入溶液能力试验称取三份1.0 g的40-60 目γ-Al2O3小球,逐步滴加蒸馏水,

正好使载体吸附饱和,记录加入量v1、v2和v3 ml,并求出平均加入量v。

1.2.2 计算出制备0.5%Pd/Al2O3催化剂(载体为1 g)所需Pd[9.6 mg/mL]溶液的体积v4:

V4= 0.5%×[1/(1-0.5%)]×1000/9.6

1.2.3 等体积溶液浸渍再称取1.0 g 40-60 目的γ-Al2O3小球,移取所需量(v4)的PdCl2 溶液和(v-v4)的蒸馏水水混合均匀,总体积为v(达到等量浸渍的目的), 将该溶液一次倒入已称好的Al2O3载体上,并不断搅拌,载体正好被完全浸渍,放置0.5 h。

1.2.4 干燥,焙烧将上述催化剂放入干燥箱80 ℃干燥1.5 h,120 ℃干燥2 h,然后置于马弗炉中以升温至480 ℃,焙烧2 h。

1.2.5 收集产物,装瓶密封储存。

2实验结果

2.1数据处理

2.1.1 记录载体吸入溶液能力试验消耗的体积,并求出平均值:

载体编号载体质量(g)消耗体积(ml)吸入能力(ml/g)平均值

1 1.0009 0.79 0.783

0.763

2 1.0000 0.75 0.750

3 1.0007 0.76 0.655

2.1.2 制备0.5%Pd/γ-Al2O3催化剂:

载体质量(g)需Pd溶液体积(ml)需消耗水体积(ml)

1.0002 0.524 0.243

2.2实验产物

实验最后得到银灰色产物。

3讨论

3.1 本实验用等体积浸渍法制备催化剂,这种方法可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。

3.2 深刻体会载体吸附饱和的状态,实验时逐滴滴加溶液,搅拌均匀再观察载体是否吸附饱和。

3.3 正确计算出制备Pd/γ-Al2O3所需要的PdCl2溶液的体积。

3.4 制备0.5%Pd/Al2O3催化剂时,应将该溶液一次倒入已称好的Al2O3载体上,并不断搅拌,至载体正好被完全浸渍后,需放置0.5 h,以便Pd/Al2O3完全渗透载体。

3.5 将所制备催化剂放入干燥箱80 ℃干燥时需不时搅拌。

3.6 马弗炉使用完后不能立即打开,要等温度降至300℃,先打开一小缝,待温度再下降一定程度后打开降温,降温后再取产品,观察产物颜色为银灰色,掰开发现此催化剂为蛋壳型。

参考文献

1. 黄仲涛编,工业催化,化学工业出版社,2003

2. 张继光编,催化剂制备过程技术,中国石化出版社,2006

3. 朱洪法刘丽芝编,催化剂制备及应用技术,中国石化出版社,2011

4. 中国石油化工集团公司人事部中国石油天然气集团公司人事服务中心编,催化剂制造工,中国石化出版社,2011

5. 中国石油天然气集团公司中国石油化工集团公司编,催化剂与添加剂中国石化出版社,2008

6. 辛勤编,固体催化剂研究方法,科学出版社,2004

7. 闵恩泽编,工业催化剂的研制与开发,中国石化出版社,1996

8. 唐新硕编,催化剂设计,浙江大学出版社,2010

Repare the P d/γ-Al2O3 catalyst by immersion method Name:Zhai Xiaoqian Student Id:2009296075 Professional: chemical (Shanxi university Chemical engineering, Shanxi Taiyuan 030006)

Abstract:With the incipient wetness impregnation method, pre-determination of the ability ofthe carrier inhalation solution, then add just so that the carrier is completelyimpregnated with the amount of Pd solution and distilled water, After drying, roasting, to restore the the preparation Pd/γ-Al2O3 catalyst catalyst for silver eggshell.

催化裂化产品方案分析

催化裂化产品方案 分析 1

催化裂化产品方案分析 催化裂化是石油炼制过程之一, 是在热和催化剂的作用下使重质油发生裂化反应, 转变为裂化气、汽油和柴油等的过程。 催化裂化原料是原油经过原油蒸馏( 或其它石油炼制过程) 分馏所得的重质馏分油;或在重质馏分油中掺入少量渣油,或经溶剂脱沥青后的脱沥青渣油; 或全部用常压渣油或减压渣油。在反应过程中由于不挥发的类碳物质沉积在催化剂上, 缩合为焦炭, 使催化剂活性下降, 需要用空气烧去( 见催化剂再生) , 以恢复催化活性, 并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高( 马达法80左右) , 裂化气( 一种炼厂气) 含丙烯、丁烯、异构烃多。 催化裂化技术由法国 E.J.胡德利研究成功, 于1936年由美国索康尼真空油公司和太阳石油公司合作实现工业化, 当时采用固定床反应器, 反应和催化剂再生交替进行。由于高压缩比的汽油发动机需要较高辛烷值汽油, 催化裂化向移动床( 反应和催化剂再生在移动床反应器中进行) 和流化床( 反应和催化剂再生在流化床反应器中进行) 两个方向发展。移动床催化裂化因设备复杂逐渐被淘汰; 流化床催化裂化设备较简单、处理能力大、较易操作, 得到较大发展。60年代, 出现分子筛催化剂, 因其活性高, 裂化反应改在一个管式反应器( 提升管反应器) 中进行, 称为提升管催化裂化。 2

中国1958年在兰州建成移动床催化裂化装置, 1965年在抚顺建成流化床催化裂化装置, 1974年在玉门建成提升管催化裂化装置。1984年, 中国催化裂化装置共39套, 占原油加工能力23%。 反应机理: 与按自由基反应机理进行的热裂化不同, 催化裂化是按碳正离子机理进行的, 催化剂促进了裂化、异构化和芳构化反应, 裂化产物比热裂化具有更高的经济价值, 气体中C3和C4较多, 异构物多; 汽油中异构烃多, 二烯烃极少, 芳烃较多。其主要反应包括: ①分解, 使重质烃转变为轻质烃; ②异构化; ③氢转移; ④芳构化; ⑤缩合反应、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。 装置类型: 流化床催化裂化装置有多种类型, 按反应器( 或沉降器) 和再生器布置的相对位置的不同可分为两大类: ①反应器和再生器分开布置的并列式; ②反应器和再生器架叠在一起的同轴式。并列 3

综合化学实验报告浸渍法

综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名张宇周超朱军洁 专业化学 学号70 71 72 年级2013 指导教师王永钊

浸渍法制备Pd/γ-Al2O3催化剂 张宇周超朱军洁 (山西大学化学化工学院,山西太原030006) 摘要:浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。本实验采用等体积浸渍法制备负载型Pd/γ-Al2O3催化剂。实验中首先测出γ-Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ-Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 关键字:等体积浸渍法催化剂Pd/γ-Al2O3 0 引言: 固体催化剂的制备方法很多,工业上使用的固体催化剂的制备方法有:沉淀法,浸渍法,机械混合法,离子交换法,熔融等[1]。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。

浸渍法是将载体浸泡在含有在活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂[2]。由于浸渍法比较经济,且催化剂形状、表面积、孔隙率等主要取决于载体,容易选取。等体积浸渍法是预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量,这种方法称为等体积浸渍法。应用这种方法可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。因此,本实验采用等体积浸渍法[3][4]制备负载型Pd/γ- Al2O3催化剂。实验中首先测出γ- Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ- Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 1.载体的选择和浸渍液的配制[5] (1)载体的选择浸渍催化剂的物理性能很大程度上取决于载体的物理性质,载体甚至还影响到催化剂的化学活性。因此正确的选择载体和对载体进行必要的预处理,是采用浸渍法制备催化剂时首先要考虑的问题。载体种类繁多,作用各异,有关载体的选择要从物理因素和化学因素两方面考虑。物理因素指的是颗粒大小,表面积和孔结构。通常采用已成型好的具有一定尺寸和外形的载体进行浸渍,省去催化剂的成型。化学因素指的是载体可分为三种情况:(ⅰ)惰性载体,载体的作用是使活性组份得到适当的分布;(ⅱ)载体与活性组分有相互作用,它使活性组分有良好的分散并趋于稳定,从而改变催化剂的性能(ⅲ)载体具有催化作用,载体除有负载活性组分的功能外,还与所负载的活性组分一起发挥自身的催化作用。 (2)浸渍液的配制进行浸渍时,通常并不是用活性组分本身制成溶液,而是用活性组分金属的易容盐配成溶液,本实验采用PbCl2溶液。所用的活性组分化合物应该是易溶于水的,而且在焙烧时能分解成所需活性组分,或在还原后变成金属活性组分;同时还必须使无用组分,特别是对催化剂有毒的物质在热分解或还原过程中挥发出去。因此常用的是硝酸盐,铵盐,有机盐。一般以去离子水为溶剂,但当载体易溶于水或活性组分不溶于水时,则可用醇或烃作为溶剂。 2.活性组分在载体上的分布与控制[6] 浸渍时溶解在溶剂中含活性组分的盐类(溶质)在载体表面的分布,与载体对溶质和溶剂的吸附性能有很大的关系。

催化裂化催化剂的种类

催化裂化催化剂--渣油裂化催化剂 ORBIT系列 产品性能和技术特点简介: ORBIT-3000催化剂着重于提高目的产物中汽油和柴油的产率。在该催化剂制备过程中采取了如下技术措施:采用复合的分子筛活性组份,使该催化剂既具有优异的焦炭选择性,又具有良好的活性稳定性;在超稳分子筛生产过程中,通过改性技术处理,注重开发超稳分子筛的中孔,使其适应于重油大分子的裂化反应;在改进分子筛性能的同时,采用活性氧化铝技术对担体进行改性处理,有效地提高了担体的大分子裂化能力。 ORBIT-3300催化剂是在ORBIT-3000催化剂所具备的大分子裂化活性高、焦炭选择性好、适合重油加工的基本性能的基础上,通过改变活性组份开发成功的新型重油裂化催化剂。该剂主要适合于加工量较大但剂油比较低的重油催化裂化装置,在装置分馏稳定、气压机系统等的弹性工作范围内,不需改造即可使用。ORBIT-3300催化剂在制备过程中通过对活性组份的调整,增加了产品的抗重金属污染能力,可在原料性质较差和多变的情况下使用。 ORBIT-3600催化剂是针对加工中东进口高钒原料油和增加总液体收率的要求,在ORBIT-3300催化剂的基础上,通过优化活性组元和担体改性处理,开发成功的新型重油裂化催化剂。该剂在制备过程中为满足加工重质原料油需要,在改进分子筛性能的同时,对担体进行改性处理,增加了抗重金属污染组分,有效地提高了催化剂抗重金属(特别是钒)污染性能;添加了择型分子筛组元,可适当增加液态烃产率。 ORBIT-3600B催化剂是以抗钒催化剂ORBIT-3600为基础开发的抗钒降烯烃催化剂。工业应用结果表明该剂具有重油裂化能力强、轻质油收率高、汽油辛烷值高、降烯烃能力强等特点。 为了实现在抗钒重油裂化催化剂ORBIT-3600基础上达到降低汽油烯烃含量的目的,ORBIT-3600B催化剂具有以下特点:通过Y型分子筛的改性处理和活性组分的复配,在维持产品重油裂化活性的基础上增强氢转移活性,达到降低汽油烯烃含量的目的;合理调节催化剂的酸性分布,减少焦炭和干气的产生。 生产单位:催化剂齐鲁分公司 应用单位:中石化荆门分公司、湛江东兴炼厂,大连西太平洋等 ZC系列

沉淀法

沉淀法、浸渍法制备催化剂 沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入 到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、洗涤、干燥和焙烧成型或还原等。 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。 2.2、均匀沉淀法 它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。 例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90℃~100℃,溶液中由于尿素的分解而放出OH—离子,于是氢氧化铝就均匀地沉淀出来。 沉淀条件对催化剂性能的影响 1.沉淀剂的影响 2.溶液浓度的影响 3.沉淀温度的影响 4.沉淀PH值的影响 5.加料方式的影响 6.搅拌温度的影响 7.沉淀的陈化影响 8.沉淀洗涤的影响 9.干燥、焙烧、活化的影响

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

浸渍法制备PdAl2O3催化剂

山西大学 综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名 ddd 专业化学 学号 4444 年级 2009 指导教师王永钊 二Ο一二年 5月11日

浸渍法制备Pd/γ-Al2O3催化剂 姓名:tttt 学号:jikij 专业:化学 (山西大学化学化工学院,山西太原030006) 摘要:用等体积浸渍法,预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的Pd溶液与蒸馏水的量,经干燥,焙烧,还原制备Pd/γ-Al2O3催化剂,此催化剂为银灰色蛋壳型。 关键词:浸渍法 Pd/γ-Al2O3 催化剂 引言: 固体催化剂的制备方法很多。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。本次实验使用等体积浸渍法制备Pd/γ-Al2O3催化剂,使学生了解并掌握催化剂制备的基本原理与简单操作。 浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。而等体积浸渍法,能较便捷的得出所需净渍液的大概体积,由此可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。此方法预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量。 用浸渍法制备催化剂时,毛细管中浸渍液所含的溶质在干燥过程中会发生迁移,造成活性组分的不均匀分布。这时由于在缓慢干燥过程中,热量从颗粒外部传递到其内部,颗粒外部总是先达到液体的蒸发温度,因而孔口部分先蒸发使一部分溶质析出,由于毛细管上升现象,含有活性组分的溶液不断地从毛细管内部上升到孔口,并随溶剂的蒸发溶质不断地析出,活性组分就会向表层集中,留在孔内的活性组分减少。因此,为了减少干燥过程中溶质的迁移,常采用快速干燥法,使溶质迅速析出。有时也可采用稀溶液多次浸渍法来改善。 浸渍完全后再经干燥,焙烧处理得到催化剂产物。 实验部分 1、实验步骤 1.1实验试剂与仪器 1.1.1 试剂:γ-Al2O3小球,蒸馏水,Pd[9.6 mg/mL]溶液 1.1.2 仪器:坩埚,玻璃棒,移液管(1ml),洗耳球,小量筒(10ml),烘箱,马弗炉 1.2具体操作方法 1.2.1 载体吸入溶液能力试验称取三份1.0 g的40-60 目γ-Al2O3小球,逐步滴加蒸馏水,

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

浸渍法原理

概述以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分含助催化剂以盐溶液形态浸渍到多孔载体上并渗透到内表面而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体当浸渍平衡后去掉剩余液体再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥将水分蒸发逸出可使活性组分的盐类遗留在载体的内表面上这些金属和金属氧化物的盐类均匀分布在载体的细孔中经加热分解及活化后即得高度分散的载体催化剂。活性溶液必须浸在载体上常用的多孔性载体有氧化铝、氧化硅、活性炭、硅酸铝、硅藻土、浮石、石棉、陶土、氧化镁、活性白土等可以用粉状的也可以用成型后的颗粒状的。氧化铝和氧化硅这些氧化物载体就像表面具有吸附性能的大多数活性炭一样很容易被水溶液浸湿。另外毛细管作用力可确保液体被吸人到整个多孔结构中甚至一端封闭的毛细管也将被填满而气体在液体中的溶解则有助于过程的进行但也有些载体难于浸湿例如高度石墨化或没有化学吸附氧的碳就是这样可用有机溶剂或将载体在抽空下浸渍。浸渍法有以下优点第一附载组分多数情况下仅仅分布在载体表面上利用率高、用量少、成本低这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义可节省大量贵金属第二可以用市售的、已成形的、规格化的载体材料省去催化剂成型步骤。第三可通过选择适当的载体为催化剂提供所需物理结构特性如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。浸渍法工艺浸渍法可分为粉状载体浸渍法和粒状载体浸渍法两种工艺其特点可由流程图看出。粒状载体浸渍法工艺如图6—2所示。粒状载体浸渍前通常先做成一定形状抽空载体后用溶液接触载体并加入适量的竞争吸附剂。也可将活性组分溶液喷射到转动的容器中翻滚到载体上然后可用过滤、倾析及离心等方法除去过剩溶液。粉状载体浸渍法与粒状载体浸渍法类似但需增加压片、挤条或成球等成形步骤其流程见图6—3。浸渍的方法对

催化剂浸渍法原理

zhangwengui330(金币+2,VIP+0):谢谢分享!8-25 15:10 概述 以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法,也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分(含助催化剂)以盐溶液形态浸渍到多孔载体上并渗透到内表面,而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体,当浸渍平衡后,去掉剩余液体,再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥,将水分蒸发逸出,可使活性组分的盐类遗留在载体的内表面上,这些金属和金属氧化物的盐类均匀分布在载体的细孔中,经加热分解及活化后,即得高度分散的载体催化剂。 活性溶液必须浸在载体上,常用的多孔性载体有氧化铝、氧化硅、活性炭、硅酸铝、硅藻土、浮石、石棉、陶土、氧化镁、活性白土等,可以用粉状的,也可以用成型后的颗粒状的。氧化铝和氧化硅这些氧化物载体,就像表面具有吸附性能的大多数活性炭一样,很容易被水溶液浸湿。另外,毛细管作用力可确保液体被吸人到整个多孔结构中,甚至一端封闭的毛细管也将被填满,而气体在液体中的溶解则有助于过程的进行,但也有些载体难于浸湿,例如高度石墨化或没有化学吸附氧的碳就是这样,可用有机溶剂或将载体在抽空下浸渍。 浸渍法有以下优点:第一,附载组分多数情况下仅仅分布在载体表面上,利用率高、用量少、成本低,这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义,可节省大量贵金属;第二,可以用市售的、已成形的、规格化的载体材料,省去催化剂成型步骤。第三,可通过选择适当的载体,为催化剂提供所需物理结构特性,如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂,尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。 浸渍法工艺 浸渍法可分为粉状载体浸渍法和粒状载体浸渍法两种工艺,其特点可由流程图看出。粒状载体浸渍法工艺如图6—2所示。粒状载体浸渍前通常先做成一定形状,抽空载体后用溶液接触载体,并加入适量的竞争吸附剂。也可将活性组分溶液喷射到转动的容器中翻滚到载体上,然后可用过滤、倾析及离心等方法除去过剩溶液。粉状载体浸渍法与粒状载体浸渍法类似,但需增加压片、挤条或成球等成形步骤,其流程见图6—3。浸渍的方法对催化剂的性能影响较大,粒状载体浸渍时,催化剂表面结构取决于载体颗粒的表面结构,如比表面、孔隙率、孔径大小等,催化反应速率不同,对催化剂表面结构的要求也不同。 沉积在催化剂载体的金属的最终分散度取决于许多因素的相互作用,这些因素包括浸渍方法、吸附的强度,以吸留溶质形式存在的金属化合物相比于吸附在孔壁上的物种的程度,以及加热与干燥时发生的化学变化等。 虽然浸渍过程中,大多数金属试剂都可以不同程度地吸附在载体上,但是吸附过程相当复杂,不同类型的吸附都可能发生,可以是金属离子与含有羟基的表面吸附;也可以是含有碱金属及碱土金属离子的表面进行阳离子交换。载体的表面结构还可能因浸渍步骤不同加以改变,从而更改表面的吸附特性。这些在工艺实施过程中必须加以考虑。若载体遭受浸蚀,情况会更复杂,在高pH值下硅胶要受浸蚀,而高表面积的氧化铝则无论在过高或过低pH 值下都要受浸蚀,在用酸性液体浸渍氧化铝载体的过程中,部分氧化铝会首先发生溶解,并随着pH值的增高接着要发生沉淀,最好用缓冲剂来控制这个效应。 载体原料载体原料粉状载体浸渍溶液 ↓↓↓↓ 水→混合水→浸渍←沉淀剂 ↓↓

催化剂的制备方法与成型技术简汇

\催化剂的制备方法与成型技术1314100125 13化工本一万立之 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 目录 摘要 (1) 1 固体催化剂的组成: (1) 2 催化剂的一般制备方法 (1) 2.1 浸渍法 (1) 2.2 沉淀法 (2) 2.3 混合法 (2) 2.4 滚涂法 (3) 2.5 离子交换法 (3) 2.6 热熔融法 (3) 2.7锚定法 (4) 3 催化剂成型技术 (4) 3.1喷雾成型 3.2油柱成型 3.3转动成型 3.4挤条成型 3.5压片成型 4 小结 (5) 参考文献 (6)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

浸渍法制备催化剂简介

浸渍法制备催化剂简介 2016-04-16 12:21来源:内江洛伯尔材料科技有限公司作者:研发部 浸渍法制备催化剂流程 以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法,也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分(含助催化剂)以盐溶液形态浸渍到多孔载体上并渗透到内表面,而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体,当浸渍平衡后,去掉剩余液体,再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥,将水分蒸发逸出,可使活性组分的盐类遗留在载体的内表面上,这些金属和金属氧化物的盐类均匀分布在载体的细孔中,经加热分解及活化后,即得高度分散的载体催化剂。 浸渍法有以下优点:第一,附载组分多数情况下仅仅分布在载体表面上,利用率高、用量少、成本低,这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义,可节省大量贵金属;第二,可以用市售的、已成形的、规格化的载体材料,省去催化剂成型步骤。第三,可通过选择适当的载体,为催化剂提供所需物理结构特性,如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂,尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。 浸渍法分类:

(1)过量浸渍法本法系将载体泡人过量的浸渍溶液中,即浸渍溶液体积超过载体可吸收体积,待吸附平衡后,滤去过剩溶液,干燥、活化后便得催化剂成品。通常借调节浸渍溶液的浓度和体积控制附载量。 (2)等体积浸渍法将载体浸入到过量溶液中,整釜溶液的成分将随着载体的浸渍而被改变,释放到溶液中的碎物可形成淤泥,使浸渍难于完全使用操作溶液。因而工业上使用等体积浸渍法(吸干浸渍法),即将载体浸到初湿程度,计算好溶液的体积,做到更准确地控制浸渍工艺。工业上,可以用喷雾使载体与适当浓度的溶液接触,溶液的量相当于已知的总孔体积,这样做可以准确控制即将掺入催化剂中的活性组织的量。各个颗粒都可达到良好的重复性,但在一次浸渍中所能达到最大负载量,要受溶剂溶解度的限制。在任何情况下,制成的催化剂通常都要经过干燥与焙烧。在少数情况下,为使得有效组分更均匀地分散,可将浸渍过的催化剂浸入到一种试剂中,以使发生沉淀,从而可使活性组分固定在催化剂内部。本法将载体与它可吸收体积的浸渍溶液相混合,由于浸渍溶液的体积与载体的微孔体积相当,只要充分混合,浸渍溶液恰好浸透载体颗粒而无过剩,可省略废液的过滤与回收。但是必须注意,浸渍溶液体积是浸渍化合物性质和浸渍溶液黏度的函数。确定浸渍溶液体积,应预先进行试验测定。等体积浸渍可以连续或间断进行,设备投资少,生产能力大,能精确调节附载量,所以工业上广泛采用。 (3)多次浸渍法本法即浸渍、干燥、焙烧反复进行数次。采用这种方法的原因有两点。第一,浸渍化合物的溶解度小,一次浸渍不能得到足够大的附载量,需要重复浸渍多次;第二,为避免多组分浸渍化合物各组分间的竞争吸附,应将各别组分按秩序先后浸渍。每次浸渍后,必须进行干燥和焙烧,使之转化为不溶性的物质,这样可以防止上次浸载在载体的化合物在下一次浸渍时又溶解到溶液中,也可以提高下一次浸渍时载体的吸收量。例如,加氢脱硫Co2O3-MoO3/A12O3催化剂的制备,可将氧化铝先用钴盐溶液浸渍,干燥、焙烧后再用钼盐溶液按上述步骤处理。必须注意每次浸渍时附载量的提高情况。随着浸渍次数的增加,每次附载增量将减少。多次浸渍法工艺过程复杂,劳动效率低,生产成本高,除非上述特殊情况,应尽量少采用。 (4)浸渍沉淀法本法是在浸渍法的基础上辅以均匀沉淀法发展起来的一种新方法,即在浸渍液中预先配人沉淀剂母体,待浸渍单元操作完成之后,加热升温使待沉淀组分沉积在载体表面上。此法可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (5)硫化床喷洒浸渍法浸渍溶液直接喷洒到流化床中处于流化状态的载体中,完成浸渍以后,升温干燥和焙烧。在流化床内可一次完成浸渍、干燥、分解和活化过程。流化床内放置一定量的多孔载体颗粒,通人气体使载体硫化,再通过喷嘴将浸渍液向下或用烟道气对浸渍后的载体进行硫化干燥,然后升高床温使负载的盐类分解,逸出不起催化作用的挥发组分,最后用高温烟道气活化催化剂,活化后鼓人冷空气进行冷却,然后卸出催化剂。鼓风机送来的空气分两路,一路经加热器进人流化床,使载体颗粒硫化,废气在床顶接管3放空;另一路进入喷嘴的套管内,用以雾化浸渍液。载体由床顶加料口加人,催化剂由分布板上卸料口6卸出。该法适用于多孔载体的浸渍,制得的催化剂与浸渍法没有区别,但具有流程简单、操作方便、周期短、劳动条件好等优点。不足的是成品率低(在80%~90%以下)、催化剂易结块、性质不均匀等。 (6)蒸气相浸渍法除了溶液浸渍之外,亦可借助浸渍化合物的挥发性,以蒸气相的形式将它附载到载体上。这种方法首先应用正丁烷异构化过程中的催化剂,催

相关文档
最新文档