无功功率补偿原理及方法分析
无功功率补偿的原理.

从原理来讲,即并联电容器是怎样无功补偿的?我来帮他解答满意回答2009-03-10 18:011、无功补偿的原理电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.2.无功补偿的意义(1补偿无功功率,可以增加电网中有功功率的比例常数(2减少发,供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cos4=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW.对原有设备而言,相当于增大了发,供电设备容量.因此,对新建,改建工程.应充分考虑无功补偿,便可以减少设计容量,从而减少投资.(3降低线损,由公式△P%=(1-cosΦ/cosΦX100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则cosΦ>cosΦ,所以提高功率因数后,线损率也下降了.减少设计容量,减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益.所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行.3.无功补偿的原则提高用电单位的自然功率因数,无功补偿分为集中补偿,分散补偿和随机随器补偿,应该遵循:全面规划,合理布局,分级补偿,就地平衡;集中补偿与分散补偿相结合,以分散补偿主;高压补偿与低压补偿相结合,以低压补偿为主;调压与降损相结合,以降损为主的原则.4.无功补偿装置的组合元件(1低压无功补偿设备的组合元件①无功功率自动补偿控制器根据电网无功功率是否达到无功设定值来控制电力电容器的投入和切除,并且有过,欠电压保护功能②无触点可控硅模块或智能复合开关③电容器(内带放电电阻④熔断器⑤电流互感器⑥避雷器⑦开关⑧电抗器(对无触点开关起到过电流保护作用;对防止电容器过电流也起到抑制作用另外,还装配监视用的电压表,电流表,功率因数表和信号指示灯等.其他回答共1条2009-03-09 22:24changmaojing|五级学过电磁学就知道了一般线路都是感性电路,为了让其功率因数达到或接近一,就要在电路旁边并联电容并且容量值大小是需要选取的,现在的工厂好像都有能自动调整容量的仪器的,这样做的好处是能减少无功电流,进而可以减少输电线的损失,可以充分发挥电力设备(发电机及变压器的潜力,因为发电机的发电潜力用KVA表示,提高功率因数它最多可以输出的功率可以提高很多。
无功功率补偿原理及方法分析

无功功率补偿原理及方法分析摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。
为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。
关键词:无功功率补偿补偿原理补偿方法无功功率补偿是当今电气自动化技术及电力系统研究领域所而临的一项重大课题,正在受到越来越多的关注。
电网中无功功率不平衡主要有以下两个为一面的原因:一为一而是供电部门传送的电力质量不高;另一为一而是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。
显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。
1无功补偿的原理电流在电感元件中做功时,电流滞后于电压90°;而电流在电容元件中作功时,电流超前于电压90\在同一电路中,电感电流与电容电流方向相反,互差180°o如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。
图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。
在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率, 转化为礦场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出礁场能量,电容吸收功率,以E的四分之一周期重复上述循环。
从图3可以看出并联电容器无功补偿原理。
将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。
图1电感中电流、电压和功率的变化图2电容中的电流、电压和功率的变化u Ir| ^3 |Il Czzo图3并联电容器无功补偿原理图4为并联电容器补偿向量图。
无功补偿的工作原理

无功补偿的工作原理
无功补偿是指通过电力系统中的无功功率补偿装置来减少或消除无功功率的损耗,提高电力系统的功率因数。
其工作原理主要包括以下几个方面:
1. 无功功率的来源:电力系统中的电感元件(例如线圈、变压器等)和电容元件(例如电容器、电机等)会导致电流和电压之间存在一定的位移角,从而产生无功功率损耗。
无功功率由虚功和无功电流两部分组成。
2. 无功功率的补偿:无功补偿装置通过把适量的电容或电感接入电力系统中,可以产生相反的无功功率,从而达到补偿的目的。
例如,在电感元件造成的电感性负载时,可以通过并联的电容器来补偿正好与电感的无功功率相互抵消,提高功率因数。
3. 控制与调节:无功补偿装置通常通过控制器进行监测和控制,监测电流、电压、功率因数等参数,根据设定值进行相应的调节。
常见的控制器包括可编程逻辑控制器(PLC)和微处理器等。
4. 节能效果:无功补偿装置的主要目的是减少无功功率的消耗,提高电力系统的功率因数。
通过补偿无功功率,可以减少电流和电压之间的位移角度,降低电流和电压的幅值,从而减少电力系统的损耗,提高能源利用效率。
总之,无功补偿装置通过引入相反的无功功率来补偿电力系统
中的无功功耗,提高功率因数,减少能源损耗,并通过控制器进行监测和调节,实现节能效果。
补偿无功功率节电原理

补偿无功功率节电原理1. 简介随着现代电力系统的不断发展和用电负荷的增加,电力系统中的无功电流越来越大,这通常会导致许多问题,如电压波动,电力损耗增加,线路负荷过重等。
因此,补偿无功功率已成为现代电力系统中必不可少的一环。
补偿无功功率的目的是改善电力系统的质量,消除电压波动,提高电能利用率。
2. 无功功率的概念在交流电路中,电流通常可以被分为两个部分,即有功电流和无功电流。
有功电流是用来做功的电流或实际能量转换的电流,而无功电流是周期性能量转换的电流。
这里的周期性能量转换指的是由电感和电容反复存储和释放电能的过程。
在电力系统中,有功功率主要用来提供能量,如照明、电动机、加热器等。
而无功功率则主要用来维持电力系统中的电压稳定。
无功功率的大小与电路中的电感和电容等参数有关。
当电路中有较大的电感或电容时,就会产生较大的无功电流,从而降低电压质量。
3. 什么是补偿无功功率补偿无功功率是通过在电路中增加等量的电感或电容来消除电路中的无功功率,从而提高电路的效率和稳定性。
这种补偿方法被称作无功补偿或功率因数校正。
补偿无功功率有两种常见的方法,即串联电容器补偿和并联电感器补偿。
串联电容器补偿是指在电路中串联接一个或多个电容器,以减少电路中的无功功率。
而并联电感器补偿则是在电路中并联接一个或多个电感器,以消耗电路中的无功功率。
4. 无功功率补偿的作用补偿无功功率的作用主要包括三方面。
第一,补偿无功功率可以提高电路的功率因数。
功率因数是指有功功率和总视在功率的比值,通常用来衡量电路的效率。
电路的功率因数越大,则电路的效率越高。
第二,补偿无功功率也可以降低电路中的无功电流。
无功电流是电流的一种,通常不做功,只用于电能的储存和释放,对电力系统的运行效率和可靠性产生不利的影响。
第三,补偿无功功率还可以降低电力系统中的电能损耗和电能浪费。
5. 补偿无功功率的优点补偿无功功率具有许多优点。
首先,它可以改善电力系统的质量和可靠性。
用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。
串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。
这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。
并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。
这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。
按电容器安装的位置不同,通常有三种方式。
1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。
可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。
2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。
这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。
但是分组补偿的效果比较明显,采用得也较普遍。
3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。
无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一个重要概念,用于解决电力系统中出现的无功功率不平衡问题。
本文将介绍无功补偿的作用和原理。
一、无功补偿的作用无功功率是指在交流电路中产生和消耗无功功率的能量,它不对机械负载做功,主要表现为电感和电容元件的无功功率。
而无功功率不仅会造成电力系统中的电能浪费,还会导致电压稳定性问题。
无功补偿的作用就是调整电力系统中的无功功率,以提高电能的利用效率和电压的稳定性。
具体而言,无功补偿可以实现以下几个方面的作用:1. 提高功率因数:功率因数是指有功功率与视在功率之比。
功率因数越接近1,说明电能的利用效率越高。
通过无功补偿,可以降低系统中的无功功率,从而提高功率因数。
2. 改善电压稳定性:电力系统中的负载变化会引起电压波动,尤其是大型电动机和变压器的启动和停止会产生较大的电压波动。
通过无功补偿,可以在负载变化时调整无功功率的产生和吸收,从而保持电压在合理范围内的稳定。
3. 减少线路损耗:无功功率不仅会增加变压器和输电线路的负荷,还会导致线路电压降低,从而增加线路上的电能损耗。
通过无功补偿,可以减少线路上的无功损耗,提高电能传输的效率。
二、无功补偿的原理无功补偿的原理主要涉及到无功功率的产生和吸收,可以通过电容器和电感器来实现。
电容器是一种能够存储电能的元件,可以在电路中产生无功功率。
当电容器与电源相连接时,由于电容器具有存储电能的特性,在电源电压较高的时候,电容器会吸收电能;而在电源电压较低的时候,电容器会释放电能。
通过调整电容器的容值和连接方式,可以实现对无功功率的产生和吸收。
电感器是一种能够存储磁能的元件,可以在电路中吸收无功功率。
当电感器与电源相连接时,由于电感器具有存储磁能的特性,在电源电压较低的时候,电感器会吸收电能;而在电源电压较高的时候,电感器会释放电能。
通过调整电感器的参数和连接方式,可以实现对无功功率的吸收。
无功补偿的原理可以通过自动或手动方式实现。
无功补偿的原理及作用有哪些

无功补偿的原理及作用有哪些
无功补偿是电力系统中的一种调节措施,用于改善电力系统的功率因数和电压稳定性。
其原理和作用如下:
原理:
1. 无功功率是电力系统中的虚功,它由电感和电容元件引起。
电感元件会产生感性无功功率,而电容元件会产生容性无功功率。
2. 无功补偿通过在电力系统中引入合适的电抗器(感性或容性)或者调节电容器的接入或退出,来消除或补偿系统中的无功功率。
3. 无功补偿的目标是使系统的功率因数接近于1,减少无功功率的流动,提高电压的稳定性。
作用:
1. 改善功率因数:无功补偿可以将系统的功率因数从低于1的值提高到接近1的值。
功率因数越接近于1,表示系统中的有功功率占比越高,系统的效率也越高。
2. 减少线路损耗:无功补偿可以减少电力系统中的传输线路损耗。
无功功率的流动会导致传输线路上的电流增大,从而增加线路损耗。
通过无功补偿,可以减小无功功率流动,降低线路损耗。
3. 提高电压稳定性:无功补偿可以调节电压的大小,确保系统中的电压稳定在合适的范围内。
在电力系统中,无功功率的流动会引起电压的波动,通过无功补偿可以抑制电压的波动,提高电压的稳定性。
4. 提高输电容量:无功补偿可以提高输电线路的有效容量。
通过补偿无功功率,可以减小电流的大小,从而提高输电线路的容量,减少电力系统的拥塞现象。
总之,无功补偿在电力系统中起到了改善功率因数、减少线路损耗、提高电压稳定性和提高输电容量等作用。
用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法引言在电力系统中,无功功率是不可避免的。
无功功率对于电力系统的影响包括电压稳定性和输电损失等。
由于电容器具有“吞噬”无功功率的功能,因此并联电容器补偿无功功率是一种有效的方法。
本文将介绍并联电容器补偿无功功率的原理及相关方法。
无功功率的产生与影响无功功率是电力系统中不可避免的现象。
在电路中,一部分电能转化为有用功率,用于供电设备的工作,其他部分电能则被转化为无功功率,用于维持电路的电磁场。
一般来说,无功功率对电路性能的影响包括以下几个方面:电压波动电压波动是无功功率对电路性能的主要影响之一。
当无功功率过多时,会导致电路中电压的不稳定。
此时,电路中的各种设备会受到影响,其工作效率将大大降低。
特别是在对质量要求较高的行业中,电压波动将对设备带来严重的危害。
输电损失由于无功功率产生的电磁场的存在,线路中的电流将变得更大。
这意味着更多的电能将被转化为热量和其他不需要的形式的能量。
如果无功功率过多,将导致输电损失增加,进而降低电力系统的效率。
并联电容器补偿无功功率的原理并联电容器可以通过吸收无功功率的方式来调整电路的无功功率。
在电路中引入并联电容器后,电容器将在电流周期中积累电荷,然后在下一个周期中释放这些电荷。
换句话说,电容器通过在不同的周期中增加或减少电流的流动来调整电路的无功功率。
并联电容器补偿无功功率的原理可通过以下公式来描述:Qc = Qp * tan(acos(Pf))其中,Qc代表电容器的无功补偿容量,Qp代表电路的总无功功率,Pf为功率因数的余弦值。
并联电容器补偿无功功率的方法为了高效地补偿无功功率,需要根据实际情况选择合适的并联电容器进行安装。
并联电容器的选择通常基于电路的功率因素和负载特性。
以下是几种应用广泛的并联电容器安装方法:固定电容器固定电容器是一种直接在电路中并联安装的电容器。
这种方法对于负载电流比较稳定、功率因数波动不大的电路比较适用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无功功率补偿原理及方法分析摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。
为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。
关键词:无功功率补偿补偿原理补偿方法无功功率补偿是当今电气自动化技术及电力系统研究领域所面临的一项重大课题,正在受到越来越多的关注。
电网中无功功率不平衡主要有以下两个为一面的原因:一为一面是供电部门传送的电力质量不高;另一为一面是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。
显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。
1 无功补偿的原理电流在电感元件中做功时,电流滞后于电压90o;而电流在电容元件中作功时,电流超前于电压90o。
在同一电路中,电感电流与电容电流方向相反,互差180o。
如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。
图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。
在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率,转化为磁场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出磁场能量,电容吸收功率,以后的四分之一周期重复上述循环。
从图3可以看出并联电容器无功补偿原理。
将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。
图1 电感中电流、电压和功率的变化图2 电容中的电流、电压和功率的变化图3 并联电容器无功补偿原理图4为并联电容器补偿向量图。
当未接电容C时,流过电感L的电流为IL,流过电阻R的电流为IR,电源供给的电流为I1, I1=IR+jIL,此时相位角为φ1,,功率因数为cosφ1;并联接入电容C后,由于电容电流IC与电感电流IL方向相反,使电源供给的电流由I1减小为I2, I2=IR+j(IL-IC),相角由φ1减小到φ2,功率因数则由cosφ1提高到cosφ2。
设负荷有功功率为P(千瓦),无功功率为Q(千乏),视在功率为S(千伏安),电压有效值为 ,电流有效值为I,功率三角形如图5,则有:图4 并联电容器补偿向量图图5 有功、无功、视在功率向量图2 无功补偿的作用在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。
如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。
但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。
1)根据用电设备的功率因数,可测算输电线路的电能损失。
通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。
2)采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。
3)无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。
4)减少电力损失,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。
5)改善供电品质,提高功率因数,减少负载总电流及电压降。
于变压器二次侧加装电容可改善功率因数提高二次侧电压。
6)延长设备寿命。
改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低10℃,寿命可延长1倍)7)最终满足电力系统对无功补偿监测要求,消除因为功率因数过低而产生的罚款。
8)无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。
9)无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。
3 电网系统中的无功补偿类别我国电网系统中的武功功率补偿方法类别是有区分依据的,例如补偿方式、补偿类别以及电网类型等都是无功功率补偿方法的划分标准的所以我国电网系统中的无功功率的补偿类别主要有以下几种表现形式:3.1补偿方式类别按电网系统无功功率补偿方式进行类别的划分主要可分为六个部分:电网随线补偿,其补偿无功功率的方法主要是在电网系统的高压配电线路上以分散并联的方式安装电容器直接提高电网电网运行功率,降低损耗二变电站处集中补偿其补偿方法,即是在高、低压配电线路中采用组装并联的方式安装电容器对主变空载以及输电线路进行无功功率补偿,实现变电站终端电压的提高,随器、随机补偿,此种补偿方法效益比较高,其连接方式简单,安装容易配置灵活,对低压输电线路的作用比较高,但是其产生的谐波较难控制;低压集中式补偿,此补偿方式在用户变压器中应用较多,由于其在管理和维护上存在制约因素,公共变压器中不经常使用;电动机器就地补偿,此补偿方式以单台电动机器为基础,以联动的方式安装电容器,保障电能功率消耗降低的同时,提高输电线路的输电能力,低压分散式补偿此补偿方式没有针对性,而且其降损节能的效果较为明显,但是其在设备利用上容易造成电容器的闲置。
3.2补偿设备类别按电网系统补偿设备类型进行类别的划分主要分为四类:移相电容器,此补偿设备因在电网系统中使用的功耗小利用率高,但是其只能采用分级的方式进行补偿,不能完全吸收无功的功率而,且其对环境和电压的是有一定要求的;静止补偿装置,此补偿装置由电容器和电抗器共同组成,可对无功功率进行调节,可实现电压在周波内迅速调节;同步调相机,此补偿装置主要是以机器的负载为对象,向电网系统提供具备感应性的无功功率,保持电网系统运行的稳定性;同步电动机,此补偿设备与同步调相机类似,不同之处是其作用对象为电网系统的功率因子。
3.3网络目的类别电网系统无功率补偿方式以网络类型进行分类可分为输配电补偿和配电线补偿,其两者的共同目的即是提高电网系统运行的稳定性,理论是以线路环式连接方式为主的,但是以实际电网线路运行来看,为避免线路中产生电磁影响,一般采用开环的方式连接。
4 无功补偿方式4.1变电站集中补偿变电站集中补偿方式指的是在变电站装设无功补偿装置,包括并联电容器、同步调相机、静IF补偿器等等。
通常采用的调节方式是按照九区图的控制策略,将无功补偿装置与有载调压抽头配合调节,实现电压和无功功率的控制。
这种无功补偿方式的优点是维护方便、管理方式简单,但缺点是无法降低配电网的电能损耗厂4.2低压集中补偿低压集中补偿方式主要应用在变压器低压侧,是国内较普遍采用的另一种无功补偿方式。
其中补偿装置通常采用微机控制的低压并联电容器柜,可根据用户负荷水平的波动来投入适当数量的电容器,从而进行跟踪补偿。
这种补偿方式可改善专用变压器用户的功率因数,实现无功功率的就地平衡,进一步降低配电网及变压器的电能损耗,从而保证用户的电压水平。
然而其缺点在于当线路电压基准偏高或偏低时,无功功率的投切量难以满足实际需求量,就有可能出现无功功率补偿过量或不足的情况。
另外,面向用户的公用变压器通常安装在户外杆架上,在这些变压器上安装集中补偿装置则难以维护、控制和管理,容易产生安全隐患。
因此,这种无功补偿有一定的局限性。
4.3杆上无功补偿为了降低线路网损,把l OkV户外并联电容器安装在架空线路的杆塔上进行无功功率补偿,这样可以提高配电网的功率因素,降低线损,提升电压。
为了避免因杆上安装并联电抗器远离变电站而引起的保护不易配置、控制成本高、维护难度大、安装环境受限等问题,杆上无功补偿必须做到:补偿点宜少、控制方式从简、不设分组投切、补偿容量宜小、接线宜简单及保护方式简化等。
杆上无功补偿方式具有投资小、补偿效率高、便于管理和维护等优点。
在负荷波动的情况下,这种固定的补偿方式适应能力较差。
4.4用户终端分散补偿由于低压用户负荷小、波动大、地点分散、管理较难,因此直接在用户末端进行无功补偿将最恰当地维持配电网的电压水平,降低电力系统的电能损耗。
尤其是企业和厂矿中的电动机更应该进行就地无功补偿。
这种补偿方法的无功装置应具有智能型控制、免维护、易安装、占地面积小、功能完善等特点。
分散补偿的优点是:能大幅降低线损,改善电压质量及提高线路输电能力。
缺点是大量电容器轻载时会闲置,设备利用率不高。
参考文献:[1l何仰赞,温增银.电力系统分析M武汉:华中科技大学出版社,2002[2]崔驰低压配网无功补偿浅析[[J].电网技术,2000. 24 (7) : 71- 72.[3]刘建强,陈刚.配电网四种无功补偿技术方案比较[[J].电力电容器,2003. (3):14- 18[4]张玉珠,杨丽徙,侯向阳,周哲.全网无功优化的变电站电压无功控制策略[J]继电器,2007.35 (12) : 36- 40.。