数学物理方程 第一章典型方程和定解条件

合集下载

数学物理方程第一章、第二章习题全解

数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x

第一章 三类典型方程和定解条件

第一章 三类典型方程和定解条件

a 其中,ij (x), bi (x), c x , f (x)都只是 x1 , x2, , xm 的已知 函数,与未知函数无关。
若一个函数具有某偏微分方程中所需 要的各阶连续偏导数,并且代入该方程中 能使它变成恒等式,则此函数称为该方程 的解(古典解)。 初始条件和边界条件都称为定解条件。 把某个偏微分方程和相应的定解条件 结合在一起,就构成了一个定解问题。 只有初始条件,没有边界条件的定解问题 称为始值问题(或柯西问题)。反之,只 有边界条件,没有初始条件的定解问题称 为边值问题。既有初始条件又有边界条件 的定解问题,称为混合问题。
数学物理方程
第一章 三类典型方程和定解条件 第二章 分离变量法 第三章 Laplace方程的格林函数法
第四章 贝塞尔函数及勒让德多项式
第一章 三类典型方程和定解条件
数学物理方程的研究对象——定解问题。 一个定解问题是由偏微分方程和相应的定解 条件组成。我们先来介绍三类典型的方程:

三类典型方程
一、波动方程 二、热传导方程
用以说明初始状态的条件称为初始条件。 用以说明边界上的约束情况的条件称为边 界条件。
一、初始条件
比如说波动方程(1.3)其初始条件有两 个,一个是参数u,一个是u的一阶导数。 即: u u t 0 及 都已知。 t
t 0
而热传导方程(1.7)其初始条件只有一 个,就是参数u。即:
Байду номын сангаасu t 0 是已知。
一个定解问题提的是否符合实际情况,从 数学角度来看,有三方面可以加以检验:
1、解的存在性,看定解问题是否有解。
2、解的唯一性,看是否只有一个解。
3、解的稳定性,看当定解条件有微小
变动时,解是否相应地只有微小的变 动,若确实如此,则称此解是稳定的。

第1章 数学物理方程及定解问题

第1章  数学物理方程及定解问题
记 = a
2
T
ρ
, f (x, t) =
F(x, t)
ρ
, 得 力 用 ,弦 动 程 外 作 下 振 方 为
一维非齐次波动方程
∂ 2 u( x , t ) ∂ 2 u( x , t ) − a2 = f ( x , t ). 2 2 ∂t ∂x
二维波动方程或膜振动方程
一块均匀的紧张的薄膜,离开静止水平位置作垂直 于水平位置的微小振动,其运动规律满足
2 ∂ 2u ∂ 2u 2∂ u = a 2 + 2 + f ( x, y , t ) 2 ∂t ∂y ∂x
在时刻t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t ) ∫x ρ ∂t dx;
x + ∆x x
在时刻t + ∆t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t + ∆t ) dx . ∫x ρ ∂t

=∫
∂u( x , t + ∆ t ) ∂u( x , t ) − ρ dx . ∂t ∂t
第一节 波动方程及定解条件
1.一维波动方程或弦振动方程 一维波动方程或弦振动方程
物理模型
一长为 l 的柔软、均匀的细弦,拉紧以后,让它离 的柔软、均匀的细弦,拉紧以后, 开平衡位置在垂直于弦线的外力作用下作微小横振 求弦上个点的运动规律。 动,求弦上个点的运动规律。
张紧的、静止的弦是一直线,该直线是弦的 平衡位置,以此为 x 轴。振动总是传播到整 根弦,横振动就是弦中的质点离开平衡位置 的位移垂直于 x 轴, 可用 t 时刻弦上各质点 x 离开平衡位置的横向位移 u ( x, t ) 来描述弦的 状态, 某一时刻 u ( x, t ) 的分布代表弦的形状, 称为位形。由于弦中质点的位移不同导致弦 的形变,形变产生应力,为了便于应力的描 述,不妨假定所研究的弦为“柔软的”弦。

数理方程第1讲

数理方程第1讲

CDx
v+Dv
x+Dx
10
L—每一回路单位的串联电感; C—每一单位长度的分路电容. i LDx v x CDx i+Di
v+Dv x+Dx
11
i v (v Dv) LDx t v i L x t
i LD x v x CDx i+Di
(1.4)
v+Dv x+Dx
12
div D (1.11) J—传导电流面密度,—电荷的体密度.
26
D rot H J t B rot E t div B 0 div D
(1.8) ( 1.9) (1.10) (1.11) (1.12)
D E B H J E
(1.13) (1.14)
1
第一章 一些典型方程和定解条件的推导 §1.1 基本方程的建立
2
例1 弦的振动 设有一根均匀柔软的细弦, 平衡时沿直线拉紧, 而且除受不随时间而变的张力作用外, 不受外 力影响. 下面研究弦作微小横向振动的规律. 所谓"横向"是指全部运动出现在一个平面上, 而且弦上的点沿垂直于x轴的方向运动. 所谓"微小"是指的振动的幅度及弦在任意位 置处切线的倾角都很小, 以致它们的高于一次 方的项都可略而不计.
32
例4 热传导方程 在物体中任取一闭曲面S, 它所包围的区域记 作V. 假设在时刻t区域V内点M(x,y,z)处的温度 为u(x,y,z,t), n为曲面元素DS的法向(从V内指向 V外). 由传热学中傅里叶实验定律可知, 物体在无穷 小时间段dt内, 流过一个无穷小面积dS的热量 dQ与时间dt, 曲面面积dS, 以及物体温度u沿曲 面dS的法线方向的方向导数三者成正比

数学物理方程 第一章典型方程和定解条件

数学物理方程 第一章典型方程和定解条件

2u F f k
特别,如果 f 0,则 2u 0
位势(Poisson)方程
Laplace 方程
☆ 三种典型的数学物理方程
方程类型 方程形式
典型例子
弦振动方程
2u t 2

a2
2u x2
波动方程
2u t 2
a22u
膜的横振动方程
2u t 2

a2
(
2u x2
为Fx, y, z, t,由能量守恒定律有
t2 k2udVdt t2 FdVdt t2 c udVdt
t1 V
t1 V
t1 V
t
k2u F c u
t
u a22u f , t
非齐次热传导方程
其中a k 温度传导系数,k热传导系数,c比热,密度 c
u ( x, t ) t

a2
2u( x, t ) x2
( 热传导方程 )
第一章 一些典型方程和 定解条件的推导
一、 基本方程的建立 二、 定解条件的推导 三、 定解问题的概念
一、 基本方程的建立
例1、均匀弦的微小横振动
假设有一根均匀柔软的细弦,平衡时沿直线方向拉紧,只受弦 本身的张力和重力影响。如下图所示,我们研究弦作微小横向
17世纪微积分产生后,人们开始把力学中的一些问题和规律 归结为偏微分方程进行研究。1747年,法国数学家、物理学家 达朗贝尔将弦振动问题归结为如下形式的偏微分方程并探讨了
它的解法:
2u( x, t ) t 2

a2
2u( x, t ) x2
( 弦振动方程 ) ( 波动方程 )
1752年欧拉在论文中首先出现位势方程,后来因为拉普拉 斯(Laplace)的出色工作,称为Laplace方程:

数理方程中典型方程和定解条件的推导PPT课件

数理方程中典型方程和定解条件的推导PPT课件

P i di

Gdx v dv
x

x dx
第16页/共87页
电路准备知识 电容元件:
du
i C C
C
dt
q Cu
i dq d(Cu) C du
dt dt
dt
q idt
电感元件:
uL
L
diL dt
uL
dL dt
L Li
di uL L dt
i
1 L
udt
换路定理: 在换路瞬间,电容上的电压、电感中的电流不能突变。
a2ux x utt
第14页/共87页
一维波动方程
二. 传输线方程(电报方程)的建立
现在考虑电流一来一往的高频传输线,它被当作具有分布参数的导体, 每单位长导线所具有的电阻、电感、电容、电导分别以 R、L、C、G 表示。
对于直流电或低频的交流电,电路的基尔霍夫(Kirchhoff)定律指出, 同一支路中的电流相等。但对于较高频率的电流(指频率还未高到显著 辐射电磁波出去的程度),电路导线中的自感和电容的效应不能被忽视, 因而同一支路中电流呈现瞬态变化。
g)
②一般说来,ut t g , 将 g 略去,上式变为
T
u x
xdx T
u x
x
ds ut t
T( u x
u xdx x
x ) d x ut t
第12页/共87页
T T
T( u x
u xdx x
x ) d x ut t
T T 指出,即张力不随地点 而异,它在整根弦中取 同一数值。
“今考虑一来一往的高频传输线,每单位长一来一往所具有的电阻,电感,电容, 电漏分别记以 R,L,C,G。于是

数理方程重点总结

数理方程重点总结

X (0) A 0 B 1 0
断 言: B 0, 于 是 有
u
u
0,
0 (2)
x x0
x xl
X ( x) A sin x
又 由 边 界 条 件u
0, 得
x xl
sin l 0
于 是 , 得 到 空 间 变 量 问题 的 本 征 值
l n

n
( n l
)2
(n 1,2,3,)
据此,解得H( y)
H ( y) cos y 1 y2 1 H (0) 6
(7)
将 (5) 、 (7) 代 入 (4) 式 , 即 得 特 解
u( x, y) 1 x3 y2 cos y 1 y2 1 x2
6
6
再另附:直接积分法 求偏微分方程的通解
2u u
t
2 2xt
xt x
可 以 由 两 个 边 界 条 件 唯一 地 被 确 定 。
例如 f (x) x
W (x)
1 6a 2
x3
C1 x C2
W (0) M1
M1 C2
W (l) M2
l3 M2 6a2 C1l M1
据此,得到W ( x) 的解
C1
M2
M1
l3 6a 2
l
M2
l
M1
l2 6a 2
X X 0
(1)
u x
0 , u
x0
x
0
xl
(2)
(1) 式的通解为
X ( x) Acos x B sin x
(3)
对上式求导,得
X ( x) A sin x B cos x
X ( x) A sin x B cos x

数学物理方程:第1章 数学物理方程的定解问题

数学物理方程:第1章 数学物理方程的定解问题

第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。

它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。

数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。

②它广泛地运用数学物理中许多的技术成果。

如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。

⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。

由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。

本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。

一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。

由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。

若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。

▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
sin ' tan ' u(x dx,t)
x

T T'
u
M'
ds
T'
'
M
gds
T
x
x dx x
T
u(
x dx, x
t)
u ( x, x
t
)
gds
ma
T
u(x dx,t) x
u ( x, x
t)
gds
ma
m ds
其中:
a 2u(x,t) t 2
ds dx
T
u(x dx,t) x
微小: 振幅极小, 张力与水平方向的夹角很小。
u
M'
ds
T'
'
M
gds
T
x
x dx x
牛顿运动定律:
横向:T cos T 'cos ' 0
纵向:T sin T 'sin ' gds ma 其中: cos 1 2 4 1
2! 4!
cos ' 1
sin tan u(x,t)
数学物理方程与特殊函数
☆ 数学与物理的关系
数理不分家
☆ 数学物理方程: 用数学方程来描述一定的物理现象
数学物理方程(简称数理方程)是指自然科学和工程技术的各门 分支学科中出现的一些偏微分方程(有时也包括积分方程、微分方程等), 它们反映了物理量关于时间的导数和关于空间变量的导数 之间的制约关系。例如声学、流体力学、电磁学、量子力学等等 方面的基本方程都属于数学物理方程的研究对象。
• 如图,取杆长方向为x轴方向,垂直于杆长 方向的各截面均用平行位置x标记;在任一 时刻t,此截面相对于平衡位置的位移为u( x, t )
• 在杆中隔离一小段(x, x dx),分析受力情况
截面x:受到弹(应)力P( x, t )S; 截面x dx:受到弹力P(x dx,t)S, P为单位面积所受的弹力,沿x轴方向.
☆ 特殊函数
在求解某些类型的数理方程时,采用分离变量法所得到的方程的解 是某种特殊函数,例如贝塞尔(Bessel)函数、勒让德(Legendre)函 数等。其中有些特殊函数我们在“微积分”课程中已经学习并且研究 过其性质。在本课程中,我们只讨论它们在数理方程中的应用问题。
☆ 课程的内容: 三类方程、 四种求解方法、 二个特殊函数
dx
T u2 (x,t)
2u( x, t )
g
x2ห้องสมุดไป่ตู้
t 2
令:
a2
T
2u t 2
a2
u 2 x2
g
自由项
忽略重力作用:
2u a2 u2
t 2
x2
…… 一维波动方程 ------非齐次方程
------齐次方程 (弦振动方程)
如果弦在振动方向上还受一外力作用,设单位长度所受的外力
为F ( x, t ), 则仿照前面的推导,有
u( x, t ) x
gdx
2u( x, t ) t 2
dx
其中:u(x dx,t) x
u ( x, t ) x
x
u(x,t) x
dx
2u ( x, t ) x2
dx
T
u2 (x,t) x2
g
dx
2u( x, t ) t 2
dx
T
u2 (x,t) x2
g
dx
2u( x, t ) t 2
u ( x, t ) t
a2
2u( x, t ) x2
( 热传导方程 )
第一章 一些典型方程和 定解条件的推导
一、 基本方程的建立 二、 定解条件的推导 三、 定解问题的概念
一、 基本方程的建立
例1、均匀弦的微小横振动
假设有一根均匀柔软的细弦,平衡时沿直线方向拉紧,只受弦 本身的张力和重力影响。如下图所示,我们研究弦作微小横向
牛顿运动定律:
dm 2u [P(x dx,t) P(x,t)]S. t 2
2u
dm t2 [P(x dx,t) P(x,t)]S.
若杆的密度为,dm dx S,则
2u P
t2 x
又x dx点处的位移 u(x dx,t) u(x,t) du u(x,t) u dx, x
波动方程、 热传导传导、 拉普拉斯方程
分离变量法、 行波法、 积分变换法、 格林函数法
贝赛尔函数、 勒让德函数
☆ 参考书目:
*《数学物理方法》,梁昆淼著,人民教育出版社 *《数学物理方法》,邵惠民著,科学出版社 *《数学物理方程》, 戴嘉尊著,东南大学出版社
☆数学物理方程发展历史简介
偏微分方程诞生于18世纪,19、20世纪是其迅速发展时期:
(1) 首先确定所要研究的物理量 u( x, t )
(2) 根据物理规律分析微元和相邻部分的相互作用(抓住主要 影响,忽略次要影响),这种相互作用在一个短时间段里如何
影响物理量 u
(3) 用数学语言表达出这种相互影响,经简化整理就得到数 学物理方程。
例2、杆的纵振动
考虑一均匀细杆,沿杆长方向作微小振动,假设在垂直杆长 方向的任一截面上各点的振动情况(位移)完全相同。
运动时,弦上各点的运动规律。
简化假设:
(1)柔软:弦上的任意一点的张力沿弦的切线方向; 细:与张力相比可略去重力,弦的截面直径与长度相比可忽略,弦视为曲
线 均匀:质量是均匀的,线密度为常数。
(2)横振动:振动发生在同一平面内。若弦的平衡位置为x轴,横向是指 弦上各点在同一平面内垂直于x轴的方向运动;
2u x2
2u y 2
2u z 2
0
(
( Laplace方程 ) 位势(Possion)方程
)
19世纪打开偏微分方程研究热烈局面的第一人是傅立叶 (Fourier),当时工业上要研究金属冶炼和热处理,迫切需要 确定物体内部各点的温度如何随时间变化。Fourier对这种 热流动问题颇感兴趣,1807年向巴黎科学院提交用数学研 究热传导的论文并创立了分离变量法:
17世纪微积分产生后,人们开始把力学中的一些问题和规律 归结为偏微分方程进行研究。1747年,法国数学家、物理学家 达朗贝尔将弦振动问题归结为如下形式的偏微分方程并探讨了
它的解法:
2u( x, t ) t 2
a2
2u( x, t ) x2
( 弦振动方程 ) ( 波动方程 )
1752年欧拉在论文中首先出现位势方程,后来因为拉普拉 斯(Laplace)的出色工作,称为Laplace方程:
u
Fds
T
2u x2
dx
Fdx
dx
2u t 2
M'
T'
'
M ds
T
2u x2
F
2u t 2
T
x
x dx x
其中a
2u t 2
a2
2u x2
f
,
一维非齐次波动方程 弦的受迫振动
T 为振动在弦上的传播速度,为线密度,T为张力,
f F , F为单位弦长在振动方向上所受的外力。
数学物理方程的导出步骤为:
相关文档
最新文档