一元二次不等式及其解法

合集下载

【超级经典】一元二次不等式及其解法(含答案)

【超级经典】一元二次不等式及其解法(含答案)

1 , 2
由函数 y 4 x 4 x 1的图象为:
2
原不等式的的解集是 { } . 方法二:∵ 原不等式等价于: (2 x 1) 0 ,
2
1 2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
∴原不等式的的解集是 { } . (4)方法一:
2 2 因为 0 ,方程 x 4 x 5 0 无实数解,
函数 y x 4x 5 的简图为:
2
所以不等式 x 4 x 5 0 的解集是 .
2
所以原不等式的解集是 . 方法二:∵ x 4x 5 ( x 2) 1 1 0
2
函数 y x 5x 的简图为:
2
因而不等式 x 5x 0 的解集是 {x | 0 x 5} .
2
方法二: x 5x 0 x( x 5) 0
2
x 0 x 0 或 x 5 0 x 5 0
解得
x 0 x 0 或 ,即 0 x 5 或 x . x 5 x 5
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
【经典例题】 类型一:解一元二次不等式 例 1. 解下列一元二次不等式 (1) x 5x 0 ;
2
(2) x 4 x 4 0 ;
2
(3) x 4 x 5 0
2
思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为 (5)2 4 1 0 25 0 所以方程 x 5x 0 的两个实数根为: x1 0 , x2 5

一元二次不等式及其解法

一元二次不等式及其解法
2
返回目录
返回目录
学点 四
根的分布问题
关于x的方程x2+(m-2)x+5-m=0的两根
都大于2,求实数m的取值范围.
图3-2-1
【解析】
返回目录
返回目录
图3-2-2
【评析】二次方程根的分布问题多借助根的判别式、 韦达定理或者用数形结合法由二次函数图象求解.
返回目录
3.如何研究根的分布问题? 实数k取何值时,含参数m的二次方程ax2+bx+c=0 (1)有实根、无实根、有两个相等实根. (2)有两正根、两负根,一正一负根. (3)有零根. (4)有两个大于k的根,有两个小于k的根,一根大 于k另一根小于k…的一般讨论方法通常考虑以下几个方 面:①求根公式.②判别式.③对称轴.④开口方向.⑤区间 端点处的函数值. 方法有三类:(一)判别式、韦达定理法;(二) 判别式、对称轴、构造函数法;(三)求根公式法. 以下几类是常见问题:(在a≠0条件下) (1)方程ax2+bx+c=0有实根,有两不等实根,无实 根.主要考虑判别式Δ和二次项系数a的符号. 返回目录
返回目录

m<-5或m>1, ≨ ≨1<m<19. 1<m<19,
综上1≤m<19. 【评析】(1)ax2+bx+c>0(a≠0)恒成立的条件为

a>0,
Δ<0.
(2)ax2+bx+c<0(a≠0)恒成立的条件为 a<0, Δ<0.
返回目录
不等式(a+1)x2+ax+a>m(x2+x+1)对任意x∈R恒成立,求 a与m之间的关系. 解:

一元二次不等式及其解法

一元二次不等式及其解法

一元二次不等式及其解法1. (1)解不等式:(x+4)(x-1)<0,{x|-4<x<1}(2)解不等式:2x 2-3x-2>0,{x|x<21,或x>2}(3)解不等式:-3x 2+6x>2 }331x 331|x {+<<-(4)解不等式:4x 2-4x+1>0 }21x |R x {≠∈解不等式:)x 4(x )1x 2x 2(42->+- 解:32x x 04x 12x 9212==⇒>+-∴原不等式的解集为}32x |R x {≠∈4.分式不等式 3.(1))()(x g x f >0⇔f (x )g(x )>0;(2))()(x g x f <0⇔f (x )g(x )<0;c有两相等实根(3))()(x g x f ≥0⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ;(4))()(x g x f ≤0⇔⎩⎨⎧≠≤0)(0)()(x g x g x f17.(本小题满分6分)已知R U =, 且{}0162<-=x x A , {}0342≥+-=x x x B ,求(1)A ∪B ; (2))(A C U ∪)(B C U解:(1)A ∪B=R ;(2)(C U A )∪(C U B )={x ∣x ≤-4或1﹤x ﹤3或x ≥4}12. 当0<a 时,关于x 的不等式05422>--a ax x 的解集是BA .{}a x a x x -<>或5|B .{}a x a x x -><或5|C .{}a x a x -<<5|D .{}a x a x 5|<<-15.不等式2601x x x --->的解集为(C ) (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 21.已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为(A )A .[]11-,B .[]22-,C .[]21-,D .[]12-,10.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = (A )(A ){12}x x -≤< (B )1{|1}2x x -<≤ (C ){|2}x x < (D ){|12}x x ≤<19.已知全集R U =,集合}0)1)(2(|{>-+=x x x A ,}01|{<≤-=x x B ,则)(B C A U 为(C) (A)}12|{>-<x x x 或 (B)}02|{≥-<x x x 或(C)}01|{≥-<x x x 或 (D)}11|{>-<x x x 或 2.若二次不等式ax 2+8ax+21<0的解集为-7<x <-1,则a 的值为(C)(A) 1 (B )2 (C)3 (D) 4 5.不等式252(1)x x +-≥的解集是(D )(A) 132⎡⎤-⎢⎥⎣⎦, (B) 132⎡⎤-⎢⎥⎣⎦, (C )(]11132⎡⎫⎪⎢⎣⎭ ,, (D) (]11132⎡⎫-⎪⎢⎣⎭,,11.函数2log (2)y x =++的定义域为(D)(A) (,1)(3,)-∞-+∞ (B) (,1][3,)-∞-+∞ (C) (2,1]-- (D) (2,1][3,)--+∞ 2、(广东5月模拟)不等式(1)(2)0x x +->的解集为(C ) (A )(,1)(2,)-∞-⋃+∞ (B ) (,2)(1,)-∞-⋃+∞ (C )(1,2)- (D ) (2,1)- 2、(福建质检)不等式203x x ->+的解集是 (D )(A )(2,)+∞ (B ) [2,)+∞ (C )(,3)-∞- (D )(,3)(2,)-∞-⋃+∞4、已知不等式2364ax x -+>的解集为{|1}x x x b <>或.求,a b ; 答案:1,2a b ==5、若关于x 的不等式01x a x ->+的解集为(,1)(4,)-∞-⋃+∞,则实数4a =.3、(2010全国卷2理数)不等式2601x x x --->的解集为(C )(A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<例1 解不等式:3124x x -<-.误:去分母,得324x x -<-,即37x >,得73x >,∴原不等式的解集为7|3x x ⎧⎫>⎨⎬⎩⎭.析:因为分母正负未定,故不等式两边同乘以24x -后不等号方向直接就“定义”不变是不对的.应通过移项、通分解决.正:原不等式变形为3731002424x x x x ---<⇔<--(37)(24)02x x x ⇔-->⇔<或73x >.∴原不等式的解集为7|23x x x ⎧⎫<>⎨⎬⎩⎭,或.第21题. 对任意实数x ,不等式2(2)2(2)40a x a x ----<恒成立,则实数a 的取值范围是( ) A.(2)-,∞B.(]2-,∞C.(22)-,D.(]22-,答案:D.例2.已知关于x 的不等式20x mx n -+≤的解集是{|51}x x -≤≤,求实数,m n 之值.例3.已知不等式20ax bx c ++>的解集为{|23}x x <<求不等式20cx bx a -+>的解集.解:由题意 23230b ac a a ⎧+=-⎪⎪⎪⨯=⎨⎪<⎪⎪⎩, 即560b ac a a =-⎧⎪=⎨⎪<⎩.代入不等式20cx bx a -+>得:2650(0)ax ax a a ++=<.即26510x x ++<,∴所求不等式的解集为11{|}32x x -<<-.例4.已知一元二次不等式2(2)2(2)40m x m x -+-+>的解集为R ,求m 的取值范围.解:2(2)2(2)4y m x m x =-+-+为二次函数,2m ∴≠二次函数的值恒大于零,即2(2)2(2)40m x m x -+-+>的解集为R . 200m ->⎧∴⎨∆<⎩, 即 224(2)16(2)0m m m >⎧⎨---<⎩,解得:226m m >⎧⎨<<⎩ m ∴的取值范围为{|26}m m <<例5.若函数y =中自变量x 的取值范围是一切实数,求k 的取值范围解:y =中自变量x 的取值范围是R , ∴220x kx k ++≥恒成立.∴2440k k ∆=-≤ ∴01k ≤≤ 故k 的取值范围是{|01}k k ≤≤.例3 (课本第88页)解不等式0322>-+-x x . 解:整理,得0322<+-x x .因为032,02=+-<∆x x 方程无实数解,所以不等式0322<+-x x的解集是∅.从而,原不等式的解集是∅.8.在R 上定义运算⊙:a ⊙b a ab b ++=2,则满足x ⊙0)2(<-x 的实数x 的取值范围为B (A ))2,0( (B ))1,2(-(C )),1()2,(+∞⋃--∞ (D ))2,1(-【解析】依题意:x ⊙0)2(<-x (2)220x x x x ⇔-++-<,解得21x -<<。

一元二次不等式及解法

一元二次不等式及解法

(1)a 0 a 4
1 (2)m m 且m 0 4
深化练习
(1)若对于x 1,3, mx mx 1 m 5
2
恒成立,求m的取值范围.
6 (1)m m 7
(2)已知不等式(m2+4m-5)x2-4(m-1)x+3>0
延伸训练
解关于x的不等式 ax (a 1) x 1 0, (a R )
2
综上所述: 1 a<-1 时,解集为{x|-1<x< }; a a=-1 时,原不等式无解; 1 -1<a<0 时, 解集为{x| <x<-1}; a a=0 时,解集为{x|x<-1}; 1 a>0 时,解集为{x|x<-1 或 x> }. a
1 , 3
(4)a, b均为负值;
a 3, b 2
考点二
解含参数的一元二次不等式
解关于x的不等式x 2 (a 1) x a 0, (a R)
( x 1)( x a) 0
当a 1时,解集为x a x 1 当a 1时,解集为 当a 1时,解集为x 1 x a 综上所述:
有参变量时,往往需要针对这个系数是否为0进行分类讨论,并且如果对应的一
元二次方程有两个不等的实根且根的表达式中又含有参数时,还要再次针对这 两根的大小进行分类讨论.
3.有关一元二次不等式的恒成立问题 此类问题关键提炼出问题有关于一元二次不等式的本质,对变量进行 分类讨论及借助数形结合等方法进行求解计算.
b 4ac
2
0
y
0
y
x1 x2
0
y
y ax bx c
2
x
x1
x2

【数学课件】一元二次不等式及其解法

【数学课件】一元二次不等式及其解法
2
对一切 x R 恒成立,则a的取值范围。
1.若函数 f ( x) kx 6kx (k 8) 的定义 域为R,求实数k的取值范围.
2
解:要使函数f(x)有意义,则必有
kx 6kx (k 8) 0
2
因为函数f(x)的定义域为R,所以 2 kx 6kx (k 8) 0 对一切 x R 恒成立. ①当k=0,不等式8>0对一切 x R 恒成立.
易错题
1.函数 f ( x) log 1 ( x2 kx 2) 的定义域为R,
2
求实数k的取值范围.
2
(2 2, 2 2)
2.函数 f ( x) log 1 ( x kx 2) 的值域为R,
2
求实数k的取值范围.
(, 2 2] [2 2, )
例题选讲
例2.当m取什么实数时,方程 4x2 (m 2) x (m 5) 0
C {x | x 4ax 3a 0}, 若 A
2 2
B C ,求实数a
的取值范围.
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知

一元二次不等式及其解法

一元二次不等式及其解法
2
2 1 ∴原不等式的解集为{x|- ≤ x≤ }. 3 2 (2)∵ Δ=(- 4)2- 4× 2× 7=- 40<0 ∴原不等式的解集为 Ø.
例2
1 1 已知不等式 ax +bx+2>0 的解为- <x< , 2 3
2
求 2x2+bx+a<0 的解.
1 1 变式练习 2 已知不等式 ax +5x+c>0 的解集为{x| <x< }, 3 2
2.不等式|x(x-2)|>x(x-2)的解集是(
)
A.(0,2)
C.(2,+∞)
B.(-∞,0)
D.(-∞,0)∪(0,+∞)
解析:不等式|x(x-2)|>x(x-2)的解集即x(x-2)<0的 解集,解得0<x<2,故选A. 答案:A
3.不等式- 6x2- x+ 2≤ 0 的解集为( 2 1 A. {x|- ≤ x≤ } 3 2 1 C. {x|x≥ } 2
2
1 1 故①当 0<a<1 时,(x-1)(x- )<0⇔1<x< ; a a 1 ②当 a=1 时,(x-1)(x- )<0⇔(x-1)2<0⇔x∈Ø; a 1 1 ③当 a>1 时,(x-1)(x- )<0⇔ <x<1. a a
1 综上所述:当 a<0 时,解集为{x|x< 或 x>1};当 a a 1 =0 时, 解集为{x|x>1}; 当 0<a<1 时, 解集为{x|1<x< }; a 1 当 a=1 时,解集为 Ø;当 a>1 时,解集为{x| <x<1}. a
)
2 1 B.{x|x≤- 或 x≥ } 3 2 2 D. {x|x≤- } 3

一元二次不等式及其解法

一元二次不等式及其解法基础知识1.一元二次不等式的解法步骤 (1)将不等式化为右边为零,左边为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0). 在不等式ax 2+bx +c >0(a ≠0)中,如果二次项系数a <0,可根据不等式的性质,将其转化为正数. (2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2.一元二次不等式与相应的二次函数及一元二次方程的关系如下表二、常用结论1.一元二次不等式恒成立问题(1)不等式ax 2+bx +c >0(a ≠0),x ∈R 恒成立⇔a >0且Δ<0; (2)不等式ax 2+bx +c <0(a ≠0),x ∈R 恒成立⇔a <0且Δ<0; (3)若a 可以为0,需要分类讨论,一般优先考虑a =0的情形. 2.简单分式不等式(1)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0;(2)f (x )g (x )>0⇔f (x )g (x )>0. 考点一 一元二次不等式的解法 考法(一) 不含参数的一元二次不等式[典例] 解下列不等式:(1)-3x 2-2x +8≥0;(2)0<x 2-x -2≤4;[解] (1)原不等式可化为3x 2+2x -8≤0,即(3x -4)(x +2)≤0,解得-2≤x ≤43,所以原不等式的解集为}342|{≤≤-x x .(2)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. 考法(二) 含参数的一元二次不等式[典例] 解不等式ax 2-(a +1)x +1<0(a >0). [解] 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a )1(ax -(x -1)<0. 所以当a >1,即1a <1时,解为1a <x <1;当a =1时,解集为∅;当0<a <1,即1a >1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为}11|{ax x <<; 当a =1时,不等式的解集为∅; 当a >1时,不等式的解集为}11|{<<x ax . [题组训练]1.不等式(x +5)(3-2x )≥6的解集是( )A.}291|{≥-≤x x x 或 B.}291|{≤≤-x x C.}129|{≥-≤x x x 或D.}129|{≤≤-x x 解析:选D 不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,所以(2x +9)(x -1)≤0,解得-92≤x ≤1.所以不等式(x +5)(3-2x )≥6的解集是}129|{≤≤-x x .故选D. 2.已知不等式ax 2-bx -1≥0的解集是]31,21[--,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.)21,31( D.)31,(-∞∪),21(+∞ 解析:选A 由题意知-12,-13是方程ax 2-bx -1=0的两根,所以由根与系数的关系得⎩⎨⎧-12+⎝⎛⎭⎫-13=b a,-12×⎝⎛⎭⎫-13=-1a .解得⎩⎪⎨⎪⎧a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).3.求不等式12x 2-ax >a 2(a ∈R )的解集.解:原不等式可化为12x 2-ax -a 2>0,即(4x +a )(3x -a )>0, 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为)4,(a--∞∪),3(+∞a ; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为)3,(a --∞∪),4(+∞-a. 考点二 一元二次不等式恒成立问题 考法(一) 在R 上的恒成立问题[典例] 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是( )A .(-∞,2]B .[)2,2(-C .(-2,2]D .(-∞,-2) [解析] 当a -2=0,即a =2时,不等式为-4<0,对一切x ∈R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧ a -2<0,Δ=4(a -2)2+16(a -2)<0,即⎩⎪⎨⎪⎧a -2<0,a 2<4,解得-2<a <2. ∴实数a 的取值范围是(-2,2]. [答案] C解题技法] 一元二次不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.考法(二) 在给定区间上的恒成立问题[典例] 若对任意的x ∈[)2,1(-,都有x 2-2x +a ≤0(a 为常数),则a 的取值范围是( ) A .(-∞,-3] B .(-∞,0] C .),1[+∞[ D DD D .]1,(-∞(解析] 法一:令f (x )=x 2-2x +a ,则由题意,得⎩⎪⎨⎪⎧f (-1)=(-1)2-2×(-1)+a ≤0,f (2)=22-2×2+a ≤0,解得a ≤-3,故选A.法二:当x ∈[)2,1(-]时,不等式x 2-2x +a ≤0恒成立等价于a ≤-x 2+2x 恒成立,则由题意,得a ≤(-x 2+2x )min (x ∈[)2,1(-]).而-x 2+2x =-(x -1)2+1,则当x =-1时,(-x 2+2x )min =-3,所以a ≤-3,故选A. 答案] A [解题技法]一元二次不等式在给定区间上的恒成立问题的求解方法(1)若f (x )>0在集合A 中恒成立,即集合A 是不等式f (x )>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围). (2)转化为函数值域问题,即已知函数f (x )的值域为[m ,n ],则f (x )≥a 恒成立⇒f (x )min ≥a ,即m ≥a ;f (x )≤a 恒成立⇒f (x )max ≤a ,即n ≤a . 考法(三) 给定参数范围求x 范围的恒成立问题[典例] 求使不等式x 2+(a -6)x +9-3a >0(|a |≤1)恒成立的x 的取值范围. 解] 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,因为f (a )>0在|a |≤1时恒成立,所以 (1)若x =3,则f (a )=0,不符合题意,舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4,综上可知,使原不等式恒成立的x 的取值范围是(-∞,2)∪(4,+∞). [解题技法]给定参数范围求x 范围的恒成立问题的解法解决恒成立问题一定要清楚选谁为主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解. [题组训练]1.(2018·忻州第一中学模拟)已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则实数m 的取值范围为( )A .(-∞,-3]B .[-3,+∞)C .[-3,0)D .[-4,+∞)解析:选A x 2-4x ≥m 对任意x ∈(0,1]恒成立,令f (x )=x 2-4x ,∵f (x )图象的对称轴为直线x =2,∴f (x )在(0,1]上单调递减,∴当x =1时,f (x )取到最小值,为-3,∴实数m 的取值范围是(-∞,-3],故选A. 2.若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________.解析:由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎪⎨⎪⎧ f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,即⎩⎪⎨⎪⎧2m 2-1<0,2m 2+3m <0,解得-22<m <0. 答案:)0,22(-3.不等式(a -3)x 2<(4a -2)x 对a ∈(0,1)恒成立,则x 的取值范围是________.解析:由题意知(a -3)x 2<(4a -2)x 对a ∈(0,1)恒成立等价于(x 2-4x )a -3x 2+2x <0对a ∈(0,1)恒成立.令g (a )=(x 2-4x )a -3x 2+2x ,当x =0时,g (a )=0,不满足题意.当x ≠0时,则⎩⎪⎨⎪⎧g (0)=-3x 2+2x ≤0,g (1)=(x 2-4x )-3x 2+2x ≤0,得x ≤-1或x ≥23.答案:(-∞,-1]∪),32[+∞ [课时跟踪检测]1.(2019·石家庄模拟)若集合A ={x |x 2-2x <0},B ={x ||x |≤1},则A ∩B =( )A .[-1,0)B .[-1,2)C .(0,1]D .[1,2)解析:选C 由x 2-2x <0得0<x <2,所以A ={x |0<x <2},由|x |≤1得-1≤x ≤1,所以集合B ={x |-1≤x ≤1},所以A ∩B ={x |0<x ≤1},故选C. 2.不等式3x -1x -2≤0的解集为( )A.}231|{≤≤x x B.}312|{≤>x x x 或 C.}231|{<≤x x D .{x |x <2} 解析:选C 不等式3x -1x -2≤0等价于(3x -1)(x -2)≤0,且x -2≠0,解得13≤x <2.故选C.3.不等式-3<4x -4x 2≤0的解集是( ) A.}231021|{<≤≤<-x x x 或 B .{x |x ≤0或x ≥1} C.}2321|{<<-x x D.}2321|{≥-≤x x x 或 解析:选A 不等式可化为⎩⎪⎨⎪⎧4x (x -1)≥0,4x 2-4x -3<0,解得⎩⎪⎨⎪⎧x ≤0或x ≥1,-12<x <32,所以-12<x ≤0或1≤x <32.4.(2019·广州模拟)已知不等式ax 2-5x +b >0的解集为{x |-3<x <-2},则不等式bx 2-5x +a >0的解集为( ) A.}3121|{-<<-x x B.}2131|{-<->x x x 或 C .{x |-3<x <2} D .{x |x <-3或x >2} 解析:选A 由题意得⎩⎨⎧5a=-3-2,ba =-3×(-2),解得a =-1,b =-6,所以不等式bx 2-5x +a >0为-6x 2-5x-1>0,即(3x +1)(2x +1)<0,所以解集为}3121|{-<<-x x ,故选A. 5.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是( )A .[]2,(-∞)B B . (-∞,-6]]C . ]2,6[-D .(-∞,-6]∪[2,+∞)解析:选D 由关于x 的不等式x 2-ax -a ≤-3的解集不是空集,得对应方程x 2-ax -a +3=0有实数根,即Δ=a 2+4(a -3)≥0,解得a ≥2或a ≤-6,所以a 的取值范围是 (-∞,-6]∪[2,+∞).故选D.6.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:选C 设销售价定为每件x 元,利润为y ,则y =(x -8)[100-10(x -10)], 依题意有,(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16, 所以每件销售价应为12元到16元之间.7.存在x ∈[-1,1],使得x 2+mx -3m ≥0,则m 的最大值为( )A .1 B.14 C.12D .-1解析:选C 若对于任意x ∈[-1,1],不等式x 2+mx -3m <0恒成立,则由函数f (x )=x 2+mx -3m 的图象可知⎩⎪⎨⎪⎧f (-1)=1-m -3m <0,f (1)=1+m -3m <0,解得m >12.所以若存在x ∈[-1,1],使得x 2+mx -3m ≥0,则m ≤12,所以m的最大值为12.故选C.8.(2018·北京东城区期末)设不等式x 2-2ax +a +2≤0的解集为A ,若A ⊆]3,1[,则a 的取值范围为( )A.]511,1(- B.)511,1( C.)511,2( D .[)3,1( 解析:选A 设f (x )=x 2-2ax +a +2,因为不等式x 2-2ax +a +2≤0的解集为A ,且A ⊆[]3,1[], 所以对于方程x 2-2ax +a +2=0,若A =∅,则Δ=4a 2-4(a +2)<0,即a 2-a -2<0,解得-1<a <2;若A ≠∅,则⎩⎪⎨⎪⎧Δ=4a 2-4(a +2)≥0,f (1)≥0,f (3)≥0,1≤a ≤3,即⎩⎪⎨⎪⎧a ≥2或a ≤-1,a ≤3,a ≤115,1≤a ≤3,所以2≤a ≤115.综上,a 的取值范围为]511,1(-,故选A. 9.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2,故不等式的解集为{x |0<x <2}. 答案:{x |0<x <2}10.若a <0,则关于x 的不等式组⎩⎪⎨⎪⎧ax -a 2<0,x 2-ax -2a 2<0的解集为________. 解析:因为a <0,所以由ax -a 2=a (x -a )<0,得x >a ,由x 2-ax -2a 2=(x -2a )(x +a )<0,得2a <x <-a .所以原不等式组的解集为(a ,-a ). 答案:(a ,-a )11.若关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,则实数a 的取值范围是________.解析:关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,所以a >0,解不等式得x 2≤a5,所以-a5≤x ≤ a5,所以3≤ a 5<4,所以9≤a5<16,即45≤a <80, 所以实数a 的取值范围是[45,80). 答案:[45,80)12.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________.解析:因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由二次不等式的性质可得Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4. 答案:[-8,4]13.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数f (x )=ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)因为f (x )=ax 2+2ax +1=a (x +1)2+1-a ,因为a >0,所以当x =-1时,f (x )min =1-a ,由题意得,1-a =22,所以a =12, 所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,所以不等式的解集为)23,21(-。

一元二次不等式及其解法

一元二次方程 ax 2 bx c 0a 0 与二次函数 y ax 2 bx c 0a 0 的关系是: ( 1 ) 当 b2 4ac ≥ 0 时 , 一 元 二 次 方 程 ax 2 bx c 0a 0 有 实 数 根 , 二 次 函 数 y ax 2 bx c 0a 0 的图象与 x 轴有交点,且方程的解是交点的横坐标,交点的横坐标
∵ 32 4 2 2 7 0
∴方程 2x 2 3x 2 0 无实数根 ∴原不等式的解集为 R.
习题 1: 解下列不等式: (1) x 2 5x 6 0 ;
(2) x 2 7x 6 ;
x 2 6x 10 0
(3) 2 xx 3 0 ;
;
当 a 1 ,即 a 1或0 a 1 时,原不等式的解集为 x a x 1 .
原不等式可化为 x 22 0 或 x 22 0 ,所以原不等式的解集为 x x 2或 x x 2;
当 0 ,即 4 a 4 时 方程 x 2 ax 4 0 无实数根,所以原不等式的解集为 R.
例 7. 解不等式 m2 1x 2 4x 1≥0 m R.
第1页
(2)一元二次不等式 ax 2 bx c 0 (≤0)的解集就是二次函数 y ax 2 bx c 0a 0
的图象位于 x 轴下方(包括 x 轴)的部分所对应的自变量的取值范围.
表(1)一元二次方程、二次函数以及一元二次不等式的关系:
判别式 b 2 4ac
解:∵ m 2 ≥0 ∴m2 1 0
42 4m2 1 12 4m2
当 0 ,即

一元二次不等式及解法


[活学活用] 3.已知方程 ax2+bx+2=0 的两根为-12和 2.(1)求 a、b 的值; (2)解不等式 ax2+bx-1>0. 解:(1)∵方程 ax2+bx+2=0 的两根为-12和 2,
由根与系数的关系,得- -1212+ ×22= =2a-. ba, 解得 a=-2,b=3.
(2)由(1)知,ax2+bx-1>0 可变为-2x2+3x-1>0, 即 2x2-3x+1<0,解得12<x<1. ∴不等式 ax2+bx-1>0 的解集为{x|12<x<1}.
(5)原不等式可化为 2x2-3x+2>0,因为 Δ=9-4×2×2=-7 <0,所以方程 2x2-3x+2=0 无实根,又二次函数 y=2x2-3x+2 的图象开口向上,所以原不等式的解集为 R.
[类题通法] 解一元二次不等式的一般步骤
(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式; (3)求出相应的一元二次方程的根,或根据判别式说明方程没 有实根; (4)根据函数图象与 x 轴的相关位置写出不等式的解集.
(2)原不等式可化为 x2-7x+6<0. 解方程 x2-7x+6=0 得,x1=1,x2=6. 结合二次函数 y=x2-7x+6 的图象知,原不等式的解集为 {x|1<x<6}. (3)原不等式可化为(x-2)(x+3)>0. 方程(x-2)(x+3)=0 两根为 2 和-3. 结合二次函数 y=(x-2)(x+3)的图象知,原不等式的解集为 {x|x<-3 或 x>2}.
[导入新知]
பைடு நூலகம்
一元二次不等式与相应的二次函数及一元二次方程的关系
如表
判别式 Δ=b2
Δ>0
Δ=0
Δ<0

一元二次不等式及其解法-一元二次不等式解集

等价形式
一元二次不等式也可以通过因式分解或配方法转换为 (x - x1)(x - x2) ≥ 0 或 (x - x1)(x - x2) ≤ 0 的形式,其中 x1 和 x2 是方程 ax^2 + bx + c = 0 的根。
02 一元二次不等式的解法
配方法
总结词
通过配方将一元二次不等式转化为完全平方形式,从而求解。
05 一元二次不等式的扩展
一元高次不等式
一元高次不等式是指形如 ax^n > b (n ≥ 2) 的不等式,其中 a、b 是常数 且 a ≠ 0。
解一元高次不等式时需要注意不等式 的符号和临界点,确保解集的准确性。
解一元高次不等式需要利用因式分解、 不等式的性质以及数轴等方法,逐步 化简不等式,最终得到解集。
二元一次不等式组的解集可以通过平 面区域来表示,通过确定临界点和约 束条件来确定区域的边界。
一元二次不等式的解集可以通过抛物 线的开口方向和顶点坐标来表示,一 元高次不等式的解集可以通过相应函 数的图像来表示。
利用几何意义可以更加直观地理解不 等式的解集,有助于解决复杂的不等 式问题。
THANKS FOR WATCHING
函数分析
通过一元二次不等式,可以对一元二次函数进行全面的分析,包括函数的单调性、极值点、零点等。
在物理领域的应用
力学问题
在解决物理中的力学问题时,常常需要用到 一元二次不等式。例如,在解决碰撞、落体 等问题时,可以通过一元二次不等式来描述 物理量的变化范围。
波动问题
在研究波动问题时,如声波、电磁波等,一 元二次不等式可以用来描述波的传播范围以 及某些物理量的变化范围。
因式分解法
总结词
通过因式分解将一元二次不等式转化为 两个一次不等式的乘积形式,从而求解 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次不等式及其解法
【知识归纳】
1.一元二次不等式的解法
(1)将不等式的右边化为零,
左边化为二次项系数大于零的不等式ax 2+bx +c >0 (a >0)或ax 2+bx +c <0 (a >0).
(2)求出相应的一元二次方程的根.
(3)利用二次函数的图像与x 轴的交点确定一元二次不等式的解集. 2.一元二次不等式与相应的二次函数及一元二次方程的关系如下表:
判别式
Δ=b 2-4ac
Δ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c
(a >0)的图像
一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2
=-b 2a
没有实数根 ax 2+bx +c >0(a >0)
的解集
{x |x <x 1或x >x 2} {x |x ≠x 1} {x |x ∈R } ax 2+bx +c <0(a >0)
的解集
{x |x 1< x <x 2} ∅ ∅
【难点提升】
1.一元二次不等式的解集及解集的确定 一元二次不等式ax 2+bx +c <0 (a ≠0)的解集的确定受a 的符号、b 2-4ac 的符号的影响,
且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a
≠0)的图像,数形结合求得不等式的解集.
若一元二次不等式经过不等式的同解变形后,化为ax 2+bx +c >0(或<0)(其中a >0)的形
式,其对应的方程ax 2+bx +c =0有两个不等实根x 1,x 2(x 1<x 2) (此时Δ=b 2-4ac >0),
则可根据“大于取两边,小于夹中间”求解集.
2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.
【学前强化】
1.不等式x 2<1的解集为________.
2.函数y =x 2+x -12的定义域是____________.
3.已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为_____________.
4.不等式x -12x +1
≤0的解集为 ( ) A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝
⎛⎦⎤-∞,-12∪[1,+∞)
5.若不等式ax 2+bx -2<0的解集为{x |-2<x <14
},则ab 等于( ) A .-28 B .-26 C .28 D .26
6.设函数f (x )=⎩⎪⎨⎪⎧
x 2-4x +6,x ≥0,x +6, x <0, 则不等式f (x )>f (1)的解集是________.
7.已知f (x )=ax 2-x -c >0的解集为(-3,2),则a =________,c =________.
8.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为________________.
题型一 一元二次不等式的解法
【例1】解下列不等式:
思维启迪: 解一元二次不等式的一般步骤:
(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +
c <0(a >0);
(2)计算相应的判别式;
(3)当Δ≥0时,求出相应的一元二次方程的根;
(4)根据对应二次函数的图象,写出不等式的解集.
(1)-x 2+2x -23
>0; (2)9x 2-6x +1≥0. (3)x 2+2x -3≤0;
(4)x -x 2+6<0; (5)4x 2+4x +1<0; (6)x 2-6x +9≤0;
【变式】 解下列不等式:
(1)2x 2+4x +3<0; (2)-3x 2-2x +8≤0; (3)8x -1≥16x 2.
题型二 含参数的一元二次不等式的解法
【例2】已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },求a ,b 的值;
思维启迪:先化简不等式为标准形式,再依据解集确定a 的符号,然后利用根与系数的
关系列出a ,b 的方程组,求a ,b 的值.
【变式】解关于x的不等式ax2-(a+1)x+1<0.
题型三一元二次不等式恒成立问题
【例3】已知f(x)=x2-2ax+2 (a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
思维启迪注意等价转化思想运用,二次不等式在区间上恒成立的问题可转化为二次函数区间最值问题.
【变式1】已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.
思维启迪:化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧
a >0,Δ=
b 2-4a
c <0.
【变式2】当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,求m 的取值范围。

【强化练习】
1.解下列不等式:
(1)3x 2-x -4>0; (2)x 2-x -12≤0; (3)x 2+3x -4>0;
(4)16-8x +x 2≤0.
2.解关于x 的不等式x 2+2x +1-a 2≤0(a 为常数).
3.若0<a <1,则不等式(x -a )(x -
a 1)<0的解是 ( ) A.a <x <a 1 B. a 1<x <a C.x >a 1或x <a D.x <a
1或x >a
4.解下列不等式:
(1)3x 2-2x +1<0; (2)3x 2-4<0; (3)2x -x 2≥-1;
(4)4-x 2≤0. (5)4+3x -2x 2≥0; (6)9x 2-12x >-4;
5.解关于x 的不等式x 2-(1+a )x +a <0(a 为常数).
6.关于x 的不等式02<++c bx ax 的解为122
x x <->-或求关于x 的不等式02>+-c bx ax 的解.
【一课一练】
已知f (x )=x 2-2ax +2 (a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.。

相关文档
最新文档