线性代数第一章 测试题

合集下载

《线性代数》第一章单元自测题答案

《线性代数》第一章单元自测题答案

第一章 行《线性代数》单元自测题列式专业 班级 姓名 学号一、填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i =____2____;j =_____1____。

2. 在四阶行列式中,带正号且包含因子23a 和31a 的项为_____44312312a a a a __。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取_______+ ___。

4. 在函数xx x x x x f 21123232101)(=中,3x 的系数是 1- ____。

5. 行列式=600300301395200199204100103____2000______。

一、 计算下列各题:1.设4321630211118751=D ,求44434241A A A A +++的值 解:根据行列式展开定理的推论,有44434241A A A A +++4424432342224121A a A a A a A a ⋅+⋅+⋅+⋅==02.计算ab b a b a ba 00000000000 解:由行列式展开定理有abb a b a b a 000000000000 1110)1(-+⋅-⨯=n a b a b a a 11000)1(-+⋅-⨯+n n b a b a b bn n n b a 1)1(+-+=3.计算n 222232222222221解:n222232222222221)加到各列上第二列乘(1-nn n ⨯--202001200200021)1(-=)1(2022020120002-⨯-n n n)!2(2-⋅-=n4.计算ab b b b a b b bb a b bb b a解:ab b b b a b b b b a b b b b a各行加到第一行上abbbb a b b b b a b bn a b n a b n a b n a)1()1()1()1(-+-+-+-+ab b b b a b b bb a b b n a 1111])1([⋅-+=一列从第二列开始各列减第ba b b a b b a b b n a ---⋅-+00000001])1([1)(])1([--⋅-+=n b a b n a5.设51234555533325422221146523D =,求3132333435,A A A A A +++。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

线性代数第一章自测题

线性代数第一章自测题

第一章 行列式(√)1.若111213212223313233a a a a a a d a a a =,则131211232221333231a a a a a a d a a a =. 2.互换行列式的任意两行,行列式值不变. ( ) 3.排列631254的逆序数是6. ( )4.对角行列式的值等于其所有对角元素的乘积. ( )5.分块对角阵的行列式等于对角线上各方块行列式之积.( )6.设A 为3阶方阵,2A =,则12TA A =__________. 7.逆序数()21n τ= _____________. 8.排列32514的逆序数是: . 9.排列631254的逆序(631254)t = 8 .10.设四阶行列式1112224333444pa b c p a b c D p a b c p a b c =,则第四列的代数余子式之和 = 0 .11.设3312243,0311A tB ⨯-⎛⎫ ⎪=≠ ⎪ ⎪-⎝⎭且AB=0,则t = 3 . 12.设a 、b 为实数,则当a =___且b =___时,010000=--a b ba13.==343332312423222143211111x x x x x x x x x x x x D __________________________. 14.设D 为一个三阶行列式,第三行元素分别为-1,2,3,其余子式分别为1,2,1,则D ____________=.15.设211111401D-=-,ijA为D中元素ija的代数余子式,则313233A A A++=_______.16.sin coscos sinαααα-=_____________.17.00102000n=_____________.18.设211111401D-=-,ijA为D中元素ija的代数余子式,则313233A A A++=_______.19.若D是n阶行列式,下列说法中错误的是()..A D与T D相等;.B若D中有两行元素成比例,则D等于零;.C若D中第i行除()j i,元外都为零,则D等于()j i,元与它的代数余子式的乘积;.D D的某一行元素与另一行的对应元素的余子式乘积之和为零.20.行列式349571214-的元素23a的代数余子式23A为()A. 3B.3-C.5D.5-21.方程111012λλλλ-=的实根个数为()A. 0B. 1 .C 2 .D 3 22.23.计算行列式2111121111211112D=;1311131113D=;21111351925D=;1411141114D=;21111241416D =;0100421523132131---;1000313333133331;3112513420111533D ---=---;=aa a a 111111111111 24.设3351110243152113------=D D 的()j i ,元的代数余子式记作ijA ,求 34333231223A A A A +-+25.设 3142313150111235------=D .D 的()j i ,元的余子式记作ijM ,求14131211M M M M -+-.26.设 4001030100214321=D ,D 的()j i ,元的代数余子式记作ij A , 求14131211A A A A +++.。

线性代数第五版第一章常见试题及解答

线性代数第五版第一章常见试题及解答

线性代数第五版第一章常见试题及解答第一篇:线性代数第五版第一章常见试题及解答一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。

错选、多选或未选均无分。

1.二阶行列式A.k≠-1 C.k≠-1且k≠3 答案:C 2.设行列式a2A.-3 C.1 答案:D k-122k-1≠0的充分必要条件是()B.k≠3 D.k≠-1或≠3 a1b2=1,a2b1a1c2=2,则a2B.-1 D.3c1a1b2+c2=()b1+c1⎧3x1+kx2-x3=0⎪4x2-x3=0有非零解,则 k=()3.如果方程组⎨⎪4x2+kx3=0⎩A.-2 C.1 答案:B a11a12a22a32a13B.-1 D.2 a115a11+2a12a13a23,则D1的值为()a334.设行列式D=a21a31A.-15 C.6 答案:Ca23=3,D1=a215a21+2a22a33a315a31+2a32B.-6 D.15 5.设3阶方阵A=[α1,α2,α3],其中αi(i=1, 2, 3)为A的列向量,且|A|=2,则|B|=|[α1+3α2,α2,α3]|=()A.-2 C.2 答案:CB.0 D.6 ⎧x+x2=06.若方程组⎨1有非零解,则k=()kx-x=02⎩1A.-1 C.1B.0 D.2 答案:A 0-101-1中元素a21的代数余了式A21=()7.3阶行列式aij=1-110A.-2 B.-1 C.1 D.2 答案:C a11a12a132a112a122a138.已知a21a22a23=3,那么a21a22a23=()a31a32a33-2a31-2a32-2a33A.-24 B.-12 C.-6 D.12 答案:B01-119.行列式-101-11-101第二行第一列元素的代数余子式A21=(-11-10A.-2 B.-1 C.1 D.2 答案:B xyz2x2y2z10.设行列式403=1,则行列式401=()1113111A.23 B.1 C.2 D.83 答案:A 11.已知2阶行列式a1a2b2b,则b1b21b=m ,b12c1c=n 2a1+c=(1a2+c2A.m-n B.n-m C.m+nD.-(m+n)答案:B))3 0 -2 0 2.计算行列式 2 10 5 0 0 0 -2 0-2 3 -2 3=()A.-180 B.-120 C.120 D.180二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数同步练习册第一章(15题,18页)

线性代数同步练习册第一章(15题,18页)

第一章 行列式1、利用对角线法则计算行列式.(1)abn b a m -.(2) 40230120.(3)38114112---. (4) 321a a a aaa .(5)yxyx x y x y y x y x+++.2、利用行列式的性质计算行列式.(1)004003002001000.(2)10315398122299331201221---.(3) 1132211313213211------.(4)3214214314324321.(5) 2100032000002100032100032.(6)vu d c y x b a 00000000.(7)yy x x -+-+1111111111111111.(8)33221111110011001b b b b b b ------.3、计算n 阶行列式(1)....0010...3010...021...321nn .(2)xa a a a x aaa a x a a a a x ............................(3) xa x a x a x a a D nn n 0...01...00..................00...000...100 (011321)---=-.4、证明:(1) 设c b a ,,为互异实数, 证明行列式:ba a c cbc b a cb aD +++=222为零的充要条件是0=++c b a .(2) 0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a .(3)bz ay by ax bx az by ax bx az bzay bxaz bz ay by ax +++++++++yxzx z yz y x b a )(33+=.5、设行列式 aa a a a a a a a D 20...0012...0000......... (000)...120000...012000 (00122)222=证明 n n a n D )1(+=.6、设5021011321011111---=D ,求14131211432A A A A +++,其中j i A 为行列式中元素j i a 的代数余子式.7、求行列式 2235007022220403--=D 的第四行各元素的余子式之和.8、如果齐次方程组⎪⎩⎪⎨⎧===+++++000433322111kx kx kx x x x x 有非零解, k 应取什么值?9、λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧===+---++0002333222111x x x x x x x x x λλ只有零解.10、问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧===++++++002333222111x x x x x x x x x μμλ有非零解.11、解方程02002003211121=xx x .12、利用范德蒙行列式计算行列式 (1)27181914131211111--.(2) 2222................3 (33)2 (22)1 (11)n n nD n n n =.13、用克莱姆法则解下列线性方程组 (1)⎩⎨⎧=+=+273152y x y x .(2) ⎪⎩⎪⎨⎧=+-=+--=-+44522272532z y x z y x z y x .14、求三次多项式)(x f ,使得16)3(,3)2(,410(,0)1(====-f f f f .15、已知m 阶行列式,a A =n 阶行列式,b B =求*B AO D =的值.第一章 行列式 自测题一、选择题: 1、行列式01221≠--k k 的充分必要条件是( ).(A)1-≠k (B )3≠k(C)1-≠k 且3≠k (D) 1-≠k 或3≠k2、行列式01110212=-kk的充要条件是( ).(A)2-=k (B )3=k(C)2-=k 且3=k (D) 21-=k 或3=k 3、设四阶行列式0=A ,则A 中( ).(A) 必有一行元素全为零; (B) 必有两行元素对应成比例;(C) 必有一行元素可以表示为其余各行对应元素的线性关系; (D) 对角线上元素全为零.4、行列式8040703362205010的值为 ( ). (A) 72-; (B) 24-; (C)36-; (D)12-.二、填空题 1、设行列式12211=b a b a ,22211=c a c a ,则=++222111c b a c b a .2、设三阶行列式22=-A ,则=A .3、若三阶行列式6222321332211321=---c c c a b a b a b a a a , 则行列式 =321321321c c c b b b a a a . 4、设100100200001000-=aa ,则=a . 5、若行列式1333231232221121211==a a a a a a a a a D , 则行列式=---333231312322212112121111324324324a a a a a a a a a a a a .6、设3214214314324321=A , 则=+++24232221432A A A A .三、计算四阶行列式(1)dcd c b a b a 00000000.(2)1111111111111111--+---+---x x x x四、计算n 阶行列式1...12...1..................3 (11)2 (211)1...3211 (4321)x xxx x x n x x n x n n---.五、设347534453542333322212223212)(---------------=x x x x x x x x x x x x x x x x x f ,求方程0)(=x f 根的个数?六、求方程08814412211111)(32=--=x xxx f 的根.七、如果齐次线性方程组⎪⎩⎪⎨⎧===+-+++-0002333222111x x x x kx x kx x x 有非零解, k 应取什么值?八、判定方程组;.0)2(03)3(5;02)2(32132213212⎪⎩⎪⎨⎧=++=-++-=-+-x a x x x a x x x x a 是否只有零解.九、证明等式 ∑∏=≤≤≤-==414144434241242322214321)(1111i i i j j i x x x x x x x x x x x x x x x A .十、用克莱姆法则解方程组 ⎪⎩⎪⎨⎧=++=++=++1132132523z y x z y x z y x .。

线代一至四章自测题兼答案

线代一至四章自测题兼答案

《线性代数》单元自测题第一章 行列式专业 班级 姓名 学号一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有正号的项,则i = ,j = . 2. 在四阶行列式中同时含有元素13a 和31a 的项为__ ___. 3. 各行元素之和为零的n 阶行列式的值等于 .4.已知2333231232221131211=a a a a a a a a a ,则=+++133312321131131211232221333a a a a a a a a a a a a . 5.设)4,3,2,1(2=i A i 是行列式6932987342322212a w a za y a x中元素2i a 的代数余子式,则=+++423222126397A A A A __ ___. 二、 选择题:1.已知,42124011123313)(x x x x x x f --=则)(x f 中4x 的系数为( )(A )1- ; (B )1 ; (C )2- ; (D )2 .2.222111c b a c b a=( ) (A )b c a b c a 222++; (B )))()((b c a c a b ---; (C ))(222a c c b b a ++-; (D ))1)(1)(1(---c b a .3.已知0014321≠=-k c b a , 则063152421-+-+c b a =( )(A ) 0 ; (B )k ; (C )k - ; (D )k 2.4.已知01211421=--λλ,则λ=( ) (A )3-=λ; (B )2-=λ; (C )3-=λ或2; (D )3-=λ或2-. 三、 计算题:1.计算63123112115234231----=D .2.设4321630211118751=D ,求44434241A A A A +++的值.3.计算4443332225432543254325432=D .4.计算abb a b a b a D n 000000000000 =.5.计算2111121111211112----=λλλλ n D .6.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值.《线性代数》单元自测题第二章 矩阵专业 班级 姓名 学号一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则)(A R = .2.设A 是3阶可逆方阵,且m A =,则1--mA = .3.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A .4.设A 为3阶方阵,且3=A ,*A 为A 的伴随矩阵,则=-13A ;=*A ;=--1*73A A .5. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=4000003000002000001100041A ,由分块矩阵的方法得=-1A . 二、选择题:1. 设A 、B 为n 阶方阵,则下列命题中正确的是( )(A ) 0=AB 0=⇒A 或0=B ; (B ) TT T A B AB =)(;(C ) B A B A +=+; (D ) 22))((B A B A B A -=-+. 2.设A 为54⨯矩阵,则A 的秩最大为( )(A )2 ; (B )3 ; (C )4 ; (D )5.3.设C B A ,,是n 阶矩阵,且E ABC =,则必有( )(A )E CBA =; (B )E BCA =; (C )E BAC =; (D )E ACB =.4.当=A ( )时,⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a a a a a A ⎪⎪⎪⎭⎫⎝⎛---=333231232221331332123111333a a a a a a a a a a a a . (A )⎪⎪⎪⎭⎫⎝⎛-103010001; (B )⎪⎪⎪⎭⎫⎝⎛-100010301; (C ) ⎪⎪⎪⎭⎫ ⎝⎛-101010300; (D ) ⎪⎪⎪⎭⎫ ⎝⎛-130010001. 5.设B A ,均为n 阶方阵,且O E B A =-)(,则( ) (A )O A =或E B =; (B ) BA A =;(C )0=A 或1=B ; (D ) 两矩阵A 与E B -均不可逆.三、计算题:1.设⎪⎪⎪⎭⎫⎝⎛---=221011332A ,求1-A .2. 设⎪⎪⎪⎭⎫ ⎝⎛--=032211123A ,且X A AX 2+=,求X .3.已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4553251101413223211a A 的秩为3,求a 的值.4.设Λ=-AP P 1,其中⎪⎪⎭⎫⎝⎛--=1141P , ⎪⎪⎭⎫⎝⎛2001-=Λ, (1)求nA ;(2)设()322+-=x x x f ,求()A f .四、证明题:1、 设A 为n 阶方阵,且有0522=--E A A ,证明E A +可逆,并求其逆.2.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵,证明AB 为反对称矩阵的充分必要条件是BA AB =.《线性代数》单元自测题第三章 向量组的线性相关性专业 班级 姓名 学号一、填空题:1.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=6402α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2101β,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=9741γ,且向量ξ满足βαγβξ-=-+22,则ξ= . 2.已知向量组T)1,1,2,1(1-=α,T T t )0,,0,2(,)2,5,4,0(32==αα的秩为2,则=t . 3.若T)1,1,1(1=α,T)2,3,1(2=α,T b a ),0,(3=α线性相关,则b a ,应满足关系式 . 二、单选题:1.下列向量组中,线性无关的是( )(A )T )4321(,T )5201(-,T )8642(;(B )T )001(-,T )012(,T )423(-;(C )T)111(-,T )202(-,T )313(-;(D )T )001(,T )010(,T )100(,T )101(.2.下列向量组中,线性相关的是( ) (A )T b a)1(,T c b a )222(+;)0(≠c (B )T )0001(;(C )T )0001(,T )1000(,T )0010(; (D )T )001(,T )010(,T )000(.3、设向量组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=t 01,121,011γβα线性无关,则( )(A )1-=t ; (B )1-≠t ; (C )1=t ; (D )1≠t .4. 设m ααα,,21 ,均为n 维向量,那么下列结论正确的是( ) (A )若为常数),m m m k k k k k k ,,(0212211=+++ααα,则m ααα,,21 ,线性相关;(B )若对任意一组不全为零的数m k k k ,,,21 ,都有02211≠+++m m k k k ααα ,则m ααα,,21 ,线性无关;(C )若m ααα,,21 ,线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有02211=+++m m k k k ααα ;(D )若有一组全为零的数m k k k ,,,21 ,使得02211=+++m m k k k ααα ,则m ααα,,21 ,线性无关.5、设A 是n 阶方阵,且A 的行列式0=A ,则A 中( )(A )必有一列元素全为零; (B )必有两列元素对应成比例;(C )必有一列向量是其余列向量的线性组合; (D )任一列向量是其余列向量的线性组合.三、计算下列各题:1.判断向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=36122α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21013α,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=09244α的线性相关性.2.求向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=40121α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=21012α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=63033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21114α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=40125α的秩和一个最大无关组,并把其余向量用该最大无关组线性表示出来.3、设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0611,231,2211321αααx x ,若此向量组的秩为2,求x 的值。

线性代数第一章行列式练习题

线性代数第一章行列式练习题

线性代数第一章行列式练习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--班级__________ 姓名__________ 学号_______第一章第一次练习题一)填空题1)计算(1465372)τ=________;[135(21)246(2)]n n τ-=________;2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________;4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________.二)解答题5)计算三阶行列式 222111ab c a b c .6)用定义证明1(1)212100000(1)0000n nn nnλλλλλλ--=-.7)设n阶行列式中有多于2n n-个元素为零,证明这个行列式为零.班级__________ 姓名__________ 学号_______第一章第二次练习题一)填空题1)把行列式111222a b c a b c ++定出两个行列式之和______________________; 2)把行列式132412340000a a a a x yb b z wb b 写成两个行列式之积_________________________________;3)提取行列式第二行公因子后111213212223313233333a a a a a a a a a =__________________________; 4)行列式223456789a b c d a ab ac ad=_________________________________.二)解答题5)化简行列式111122223333x y x a z x y x a z x y x a z +++6)计算行列式5222 2522 2252 22257)计算行列式3112 5134 2011 1533------班级__________ 姓名__________ 学号_______第一章第三次练习题一)填空题1)将行列式123123123x x xy y yz z z按第三列展开为__________________________________;2)已知四阶行列式D中第三行元素依次为2,5,3,4;它们的余子式分别为3,1,2,4;则D=__________;3)计算1111234549162582764125=__________;4)设3961246812035436D=,则41424423A A A++=__________.二)解答题5)计算行列式100 110 011 001abcd ---.6)当λ为何值时,线性方程组12312330(3)22040x x x x x x x λλ++=⎧⎪--+=⎨⎪=⎩有非零解7)设曲线230123y a a x a x a x =+++通过四个点(1,3),(2,4) ,(3,4) , (4,3)-;求系数0123,,,a a a a .班级__________ 姓名__________ 学号_______第一章复习题1) 按定义计算行列式0001000200200100000n n n--2)计算行列式ab b b ba b b bb a b bbba3)计算行列式01000 00100 00010 a b c d e e d c b a4)计算行列式1231111 1111 11111111n aaaa ++++5)问,λμ取何值时,齐次线性方程组12312312320x x xx x xx x xλμμ++=⎧⎪++=⎨⎪++=⎩有非零解6)解非齐次线性方程组12341241341234 2583692254760 x x x xx x xx x xx x x x+-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩。

(最新)《线性代数》第一章行列式测试卷

(最新)《线性代数》第一章行列式测试卷

第 1 页共 3 页《线性代数》第一章行列式测试卷班级学号姓名一、单项选择题(本大题共10 题,每小题2分,共20分)1、下列排列是5阶偶排列的是().(A) 24315 (B) 14325 (C) 41523(D)243512、如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n的逆序数是(). (A)k(B)k n (C)kn 2!(D)kn n 2)1(3、n 阶行列式的展开式中含1211a a 的项共有()项.(A) 0(B)2n (C) )!2(n (D) )!1(n 4、01001001001000().(A) 0(B)1(C) 1(D) 25、01100000100100().(A) 0(B)1(C) 1(D) 26、在函数1323211112)(x x x x x f 中3x 项的系数是().(A) 0(B)1(C) 1(D) 27、若21333231232221131211a a a a a a a a a D,则3231333122212321121113111222222a a a a a a a a a a a a D ( ).(A) 4 (B) 4(C) 2 (D) 28、若a a a a a 22211211,则21112212ka a ka a ( ).(A)ka (B)ka(C)a k 2(D)ak 29、已知4阶行列式中第1行元依次是3,1,0,4, 第3行元的余子式依次为x ,1,5,2, 则x( ).(A) 0(B)3(C) 3(D) 210、若5734111113263478D,则D 中第一行元的代数余子式的和为( ).(A)1(B)2(C)3(D)0二、填空题(本大题共 4 题,每小题3分,共12分)1、n 2阶排列)12(13)2(24nn 的逆序数是2、若一个n 阶行列式中至少有12n n个元素等于0, 则这个行列式的值等于.3、如果M a a a a a a a a a D333231232221131211,则3232333122222321121213111333333a a a a a a a a a a a a D 4、已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为三、计算题(本大题共9题,1-7题每小题6 分,8-9题每小题8 分,共58 分)1、解方程11011101110xx x x 题号一二三四五六七总分总分人评分得分评分人得分评分人得分评分人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、判断题
(1)标准秩序是指n 个不同元素,各元素间按从小到大的顺序排列( √)
(2)在由 n 个元素构成的任一排列中,当某两个元素的先后秩序与标准秩序不同时,就说它们构成了一个逆序( √ )
(3)一个排列中所有逆序的总和称作逆序数( √ )
(4)逆序数为偶数的排列叫做偶排列,逆序数为奇数的排列叫做奇排列( √ )
(5)一个排列中的任意两个元素对换,排列不改变奇偶性( × )
(6)将行列式
nn n n n
n a a a a a a a a a D 222211212111 =
的行与列互换,得到行列式 nn n n n n T a a a a a a a a a D 222212111211 =
T D 叫作行列式D 的转置行列式( √ )
(7)已知行列式D ,则T D D =( √ )
(8)交换行列式的两行(或列),行列式不改变符号( × )
(9)如果行列式有两行或两列完全相同,该行列式可以不等于0( √ )
(10)行列式中某一行(或列)的各元素有公因子,则可提到行列式符号外面( √ )
(11)行列式所有行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( × )
(12)行列式某行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( √ )
(13)行列式的某一行元素全为零,行列式的值恒为零( √ )
(14)若行列式中有两行(列)的元素对应成比列,行列式的值可能为零,也可能不为零 ( × )
(15)若行列式的某一行(列)的元素都是两数之和,则该行列式可以表示成两行列式之和 ( × )
(16)把行列式的某一行(或列)各元素都乘以同一数k 后,加到另一行(或列)对应元素上去,行列式的值改变( × )
(17)在n 阶行列式中,划去元素ij a 所在的行和列,余下的n-1阶行列式,称为元素ij a 的余子式,记为ij M ,而其代数余子式表示为ij j i M +-)1(( √ )
(18)行列式D 等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 ),2,1( 2211n i A a A a A a D in in i i i i =+++=
(19)范德蒙行列式∑≥>≥----=
1112112222121)( 1
1j i n j
i n n n n n n
x x x x x x x x x x x
( × ) (20)在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(或列)元
素组成的一切k 阶子式与它们对应的代数余子式的乘积之和( √ )
二、填空题
1. x
x x x x f 3 1 0 1 12
3 2
1 2)(----+=设,的系数为2x _________8 . 2. =3
1 11 3
11
1 3 20 . 3. =+=+==1-1-
2 2 3,B A B A B A n B A ,则,,阶方阵,且皆为设_____3_____. 4. ,,32211212121b a ==βααβααββαα,,,,维列向量,且为,,,设则 =+1221,,ααββ_______-(a+b)_______.
5. =+++=n
n
n
n a x a a a a x a a a a x D 212121
______________.11∑=-+n n i n n a x x ______. 6. 设=+++-----=24232221,2 1 6 4 7
2 9 5 4
1 7 32
1 5
2 M M M M D 则_______-30________.。

相关文档
最新文档